aboutsummaryrefslogtreecommitdiffstats
path: root/drivers_nrf/spi_master/nrf_drv_spi.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers_nrf/spi_master/nrf_drv_spi.c')
-rw-r--r--drivers_nrf/spi_master/nrf_drv_spi.c778
1 files changed, 778 insertions, 0 deletions
diff --git a/drivers_nrf/spi_master/nrf_drv_spi.c b/drivers_nrf/spi_master/nrf_drv_spi.c
new file mode 100644
index 0000000..3b4c912
--- /dev/null
+++ b/drivers_nrf/spi_master/nrf_drv_spi.c
@@ -0,0 +1,778 @@
+/**
+ * Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
+ *
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice, this
+ * list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form, except as embedded into a Nordic
+ * Semiconductor ASA integrated circuit in a product or a software update for
+ * such product, must reproduce the above copyright notice, this list of
+ * conditions and the following disclaimer in the documentation and/or other
+ * materials provided with the distribution.
+ *
+ * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
+ * contributors may be used to endorse or promote products derived from this
+ * software without specific prior written permission.
+ *
+ * 4. This software, with or without modification, must only be used with a
+ * Nordic Semiconductor ASA integrated circuit.
+ *
+ * 5. Any software provided in binary form under this license must not be reverse
+ * engineered, decompiled, modified and/or disassembled.
+ *
+ * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
+ * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
+ * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
+ * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
+ * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ */
+#include "sdk_common.h"
+#if NRF_MODULE_ENABLED(SPI)
+#define ENABLED_SPI_COUNT (SPI0_ENABLED+SPI1_ENABLED+SPI2_ENABLED)
+#if ENABLED_SPI_COUNT
+
+#include "nrf_drv_spi.h"
+#include "nrf_drv_common.h"
+#include "nrf_gpio.h"
+#include "nrf_assert.h"
+#include "app_util_platform.h"
+
+#define NRF_LOG_MODULE_NAME "SPI"
+
+#if SPI_CONFIG_LOG_ENABLED
+#define NRF_LOG_LEVEL SPI_CONFIG_LOG_LEVEL
+#define NRF_LOG_INFO_COLOR SPI_CONFIG_INFO_COLOR
+#define NRF_LOG_DEBUG_COLOR SPI_CONFIG_DEBUG_COLOR
+#else //SPI_CONFIG_LOG_ENABLED
+#define NRF_LOG_LEVEL 0
+#endif //SPI_CONFIG_LOG_ENABLED
+#include "nrf_log.h"
+
+#ifndef SPIM_PRESENT
+ // Make sure SPIx_USE_EASY_DMA is 0 for nRF51 (if a common
+ // "nrf_drv_config.h" file is provided for nRF51 and nRF52).
+ #undef SPI0_USE_EASY_DMA
+ #define SPI0_USE_EASY_DMA 0
+ #undef SPI1_USE_EASY_DMA
+ #define SPI1_USE_EASY_DMA 0
+ #undef SPI2_USE_EASY_DMA
+ #define SPI2_USE_EASY_DMA 0
+#endif
+
+#ifndef SPI0_USE_EASY_DMA
+#define SPI0_USE_EASY_DMA 0
+#endif
+
+#ifndef SPI1_USE_EASY_DMA
+#define SPI1_USE_EASY_DMA 0
+#endif
+
+#ifndef SPI2_USE_EASY_DMA
+#define SPI2_USE_EASY_DMA 0
+#endif
+
+// This set of macros makes it possible to exclude parts of code when one type
+// of supported peripherals is not used.
+#if ((NRF_MODULE_ENABLED(SPI0) && SPI0_USE_EASY_DMA) || \
+ (NRF_MODULE_ENABLED(SPI1) && SPI1_USE_EASY_DMA) || \
+ (NRF_MODULE_ENABLED(SPI2) && SPI2_USE_EASY_DMA))
+ #define SPIM_IN_USE
+#endif
+#if ((NRF_MODULE_ENABLED(SPI0) && !SPI0_USE_EASY_DMA) || \
+ (NRF_MODULE_ENABLED(SPI1) && !SPI1_USE_EASY_DMA) || \
+ (NRF_MODULE_ENABLED(SPI2) && !SPI2_USE_EASY_DMA))
+ #define SPI_IN_USE
+#endif
+#if defined(SPIM_IN_USE) && defined(SPI_IN_USE)
+ // SPIM and SPI combined
+ #define CODE_FOR_SPIM(code) if (p_instance->use_easy_dma) { code }
+ #define CODE_FOR_SPI(code) else { code }
+#elif defined(SPIM_IN_USE) && !defined(SPI_IN_USE)
+ // SPIM only
+ #define CODE_FOR_SPIM(code) { code }
+ #define CODE_FOR_SPI(code)
+#elif !defined(SPIM_IN_USE) && defined(SPI_IN_USE)
+ // SPI only
+ #define CODE_FOR_SPIM(code)
+ #define CODE_FOR_SPI(code) { code }
+#else
+ #error "Wrong configuration."
+#endif
+
+#ifdef SPIM_IN_USE
+#define END_INT_MASK NRF_SPIM_INT_END_MASK
+#endif
+
+// Control block - driver instance local data.
+typedef struct
+{
+ nrf_drv_spi_evt_handler_t handler;
+ void * p_context;
+ nrf_drv_spi_evt_t evt; // Keep the struct that is ready for event handler. Less memcpy.
+ nrf_drv_state_t state;
+ volatile bool transfer_in_progress;
+
+ // [no need for 'volatile' attribute for the following members, as they
+ // are not concurrently used in IRQ handlers and main line code]
+ uint8_t ss_pin;
+ uint8_t orc;
+ uint8_t bytes_transferred;
+
+#if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND)
+ uint8_t tx_length;
+ uint8_t rx_length;
+#endif
+
+ bool tx_done : 1;
+ bool rx_done : 1;
+ bool abort : 1;
+} spi_control_block_t;
+static spi_control_block_t m_cb[ENABLED_SPI_COUNT];
+
+#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
+ #define IRQ_HANDLER_NAME(n) irq_handler_for_instance_##n
+ #define IRQ_HANDLER(n) static void IRQ_HANDLER_NAME(n)(void)
+
+ #if NRF_MODULE_ENABLED(SPI0)
+ IRQ_HANDLER(0);
+ #endif
+ #if NRF_MODULE_ENABLED(SPI1)
+ IRQ_HANDLER(1);
+ #endif
+ #if NRF_MODULE_ENABLED(SPI2)
+ IRQ_HANDLER(2);
+ #endif
+ static nrf_drv_irq_handler_t const m_irq_handlers[ENABLED_SPI_COUNT] = {
+ #if NRF_MODULE_ENABLED(SPI0)
+ IRQ_HANDLER_NAME(0),
+ #endif
+ #if NRF_MODULE_ENABLED(SPI1)
+ IRQ_HANDLER_NAME(1),
+ #endif
+ #if NRF_MODULE_ENABLED(SPI2)
+ IRQ_HANDLER_NAME(2),
+ #endif
+ };
+#else
+ #define IRQ_HANDLER(n) void SPI##n##_IRQ_HANDLER(void)
+#endif // NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
+
+ret_code_t nrf_drv_spi_init(nrf_drv_spi_t const * const p_instance,
+ nrf_drv_spi_config_t const * p_config,
+ nrf_drv_spi_evt_handler_t handler,
+ void * p_context)
+{
+ ASSERT(p_config);
+ spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
+ ret_code_t err_code;
+
+ if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED)
+ {
+ err_code = NRF_ERROR_INVALID_STATE;
+ NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
+ (uint32_t)__func__,
+ (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ }
+
+#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
+ if (nrf_drv_common_per_res_acquire(p_instance->p_registers,
+ m_irq_handlers[p_instance->drv_inst_idx]) != NRF_SUCCESS)
+ {
+ err_code = NRF_ERROR_BUSY;
+ NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
+ (uint32_t)__func__,
+ (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ }
+#endif
+
+ p_cb->handler = handler;
+ p_cb->p_context = p_context;
+
+ uint32_t mosi_pin;
+ uint32_t miso_pin;
+ // Configure pins used by the peripheral:
+ // - SCK - output with initial value corresponding with the SPI mode used:
+ // 0 - for modes 0 and 1 (CPOL = 0), 1 - for modes 2 and 3 (CPOL = 1);
+ // according to the reference manual guidelines this pin and its input
+ // buffer must always be connected for the SPI to work.
+ if (p_config->mode <= NRF_DRV_SPI_MODE_1)
+ {
+ nrf_gpio_pin_clear(p_config->sck_pin);
+ }
+ else
+ {
+ nrf_gpio_pin_set(p_config->sck_pin);
+ }
+ nrf_gpio_cfg(p_config->sck_pin,
+ NRF_GPIO_PIN_DIR_OUTPUT,
+ NRF_GPIO_PIN_INPUT_CONNECT,
+ NRF_GPIO_PIN_NOPULL,
+ NRF_GPIO_PIN_S0S1,
+ NRF_GPIO_PIN_NOSENSE);
+ // - MOSI (optional) - output with initial value 0,
+ if (p_config->mosi_pin != NRF_DRV_SPI_PIN_NOT_USED)
+ {
+ mosi_pin = p_config->mosi_pin;
+ nrf_gpio_pin_clear(mosi_pin);
+ nrf_gpio_cfg_output(mosi_pin);
+ }
+ else
+ {
+ mosi_pin = NRF_SPI_PIN_NOT_CONNECTED;
+ }
+ // - MISO (optional) - input,
+ if (p_config->miso_pin != NRF_DRV_SPI_PIN_NOT_USED)
+ {
+ miso_pin = p_config->miso_pin;
+ nrf_gpio_cfg_input(miso_pin, NRF_GPIO_PIN_NOPULL);
+ }
+ else
+ {
+ miso_pin = NRF_SPI_PIN_NOT_CONNECTED;
+ }
+ // - Slave Select (optional) - output with initial value 1 (inactive).
+ if (p_config->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
+ {
+ nrf_gpio_pin_set(p_config->ss_pin);
+ nrf_gpio_cfg_output(p_config->ss_pin);
+ }
+ m_cb[p_instance->drv_inst_idx].ss_pin = p_config->ss_pin;
+
+ CODE_FOR_SPIM
+ (
+ NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers;
+ nrf_spim_pins_set(p_spim, p_config->sck_pin, mosi_pin, miso_pin);
+ nrf_spim_frequency_set(p_spim,
+ (nrf_spim_frequency_t)p_config->frequency);
+ nrf_spim_configure(p_spim,
+ (nrf_spim_mode_t)p_config->mode,
+ (nrf_spim_bit_order_t)p_config->bit_order);
+
+ nrf_spim_orc_set(p_spim, p_config->orc);
+
+ if (p_cb->handler)
+ {
+ nrf_spim_int_enable(p_spim, END_INT_MASK);
+ }
+
+ nrf_spim_enable(p_spim);
+ )
+ CODE_FOR_SPI
+ (
+ NRF_SPI_Type * p_spi = p_instance->p_registers;
+ nrf_spi_pins_set(p_spi, p_config->sck_pin, mosi_pin, miso_pin);
+ nrf_spi_frequency_set(p_spi,
+ (nrf_spi_frequency_t)p_config->frequency);
+ nrf_spi_configure(p_spi,
+ (nrf_spi_mode_t)p_config->mode,
+ (nrf_spi_bit_order_t)p_config->bit_order);
+
+ m_cb[p_instance->drv_inst_idx].orc = p_config->orc;
+
+ if (p_cb->handler)
+ {
+ nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK);
+ }
+
+ nrf_spi_enable(p_spi);
+ )
+
+ if (p_cb->handler)
+ {
+ nrf_drv_common_irq_enable(p_instance->irq, p_config->irq_priority);
+ }
+
+ p_cb->transfer_in_progress = false;
+ p_cb->state = NRF_DRV_STATE_INITIALIZED;
+
+ NRF_LOG_INFO("Init\r\n");
+
+ err_code = NRF_SUCCESS;
+ NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
+ (uint32_t)__func__,
+ (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+}
+
+void nrf_drv_spi_uninit(nrf_drv_spi_t const * const p_instance)
+{
+ spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
+ ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);
+
+ if (p_cb->handler)
+ {
+ nrf_drv_common_irq_disable(p_instance->irq);
+ }
+
+ #define DISABLE_ALL 0xFFFFFFFF
+
+ CODE_FOR_SPIM
+ (
+ NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers;
+ if (p_cb->handler)
+ {
+ nrf_spim_int_disable(p_spim, DISABLE_ALL);
+ if (p_cb->transfer_in_progress)
+ {
+ // Ensure that SPI is not performing any transfer.
+ nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_STOP);
+ while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STOPPED)) {}
+ p_cb->transfer_in_progress = false;
+ }
+ }
+ nrf_spim_disable(p_spim);
+ )
+ CODE_FOR_SPI
+ (
+ NRF_SPI_Type * p_spi = p_instance->p_registers;
+ if (p_cb->handler)
+ {
+ nrf_spi_int_disable(p_spi, DISABLE_ALL);
+ }
+ nrf_spi_disable(p_spi);
+ )
+ #undef DISABLE_ALL
+
+#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
+ nrf_drv_common_per_res_release(p_instance->p_registers);
+#endif
+
+ p_cb->state = NRF_DRV_STATE_UNINITIALIZED;
+}
+
+ret_code_t nrf_drv_spi_transfer(nrf_drv_spi_t const * const p_instance,
+ uint8_t const * p_tx_buffer,
+ uint8_t tx_buffer_length,
+ uint8_t * p_rx_buffer,
+ uint8_t rx_buffer_length)
+{
+ nrf_drv_spi_xfer_desc_t xfer_desc;
+ xfer_desc.p_tx_buffer = p_tx_buffer;
+ xfer_desc.p_rx_buffer = p_rx_buffer;
+ xfer_desc.tx_length = tx_buffer_length;
+ xfer_desc.rx_length = rx_buffer_length;
+
+ NRF_LOG_INFO("Transfer tx_len:%d, rx_len:%d.\r\n", tx_buffer_length, rx_buffer_length);
+ NRF_LOG_DEBUG("Tx data:\r\n");
+ NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_tx_buffer, tx_buffer_length * sizeof(p_tx_buffer));
+ return nrf_drv_spi_xfer(p_instance, &xfer_desc, 0);
+}
+
+static void finish_transfer(spi_control_block_t * p_cb)
+{
+ // If Slave Select signal is used, this is the time to deactivate it.
+ if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
+ {
+ nrf_gpio_pin_set(p_cb->ss_pin);
+ }
+
+ // By clearing this flag before calling the handler we allow subsequent
+ // transfers to be started directly from the handler function.
+ p_cb->transfer_in_progress = false;
+ p_cb->evt.type = NRF_DRV_SPI_EVENT_DONE;
+ NRF_LOG_INFO("Transfer rx_len:%d.\r\n", p_cb->evt.data.done.rx_length);
+ NRF_LOG_DEBUG("Rx data:\r\n");
+ NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_cb->evt.data.done.p_rx_buffer,
+ p_cb->evt.data.done.rx_length * sizeof(p_cb->evt.data.done.p_rx_buffer));
+ p_cb->handler(&p_cb->evt, p_cb->p_context);
+}
+
+#ifdef SPI_IN_USE
+// This function is called from IRQ handler or, in blocking mode, directly
+// from the 'nrf_drv_spi_transfer' function.
+// It returns true as long as the transfer should be continued, otherwise (when
+// there is nothing more to send/receive) it returns false.
+static bool transfer_byte(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb)
+{
+ // Read the data byte received in this transfer and store it in RX buffer,
+ // if needed.
+ volatile uint8_t rx_data = nrf_spi_rxd_get(p_spi);
+ if (p_cb->bytes_transferred < p_cb->evt.data.done.rx_length)
+ {
+ p_cb->evt.data.done.p_rx_buffer[p_cb->bytes_transferred] = rx_data;
+ }
+
+ ++p_cb->bytes_transferred;
+
+ // Check if there are more bytes to send or receive and write proper data
+ // byte (next one from TX buffer or over-run character) to the TXD register
+ // when needed.
+ // NOTE - we've already used 'p_cb->bytes_transferred + 1' bytes from our
+ // buffers, because we take advantage of double buffering of TXD
+ // register (so in effect one byte is still being transmitted now);
+ // see how the transfer is started in the 'nrf_drv_spi_transfer'
+ // function.
+ uint16_t bytes_used = p_cb->bytes_transferred + 1;
+
+ if (p_cb->abort)
+ {
+ if (bytes_used < p_cb->evt.data.done.tx_length)
+ {
+ p_cb->evt.data.done.tx_length = bytes_used;
+ }
+ if (bytes_used < p_cb->evt.data.done.rx_length)
+ {
+ p_cb->evt.data.done.rx_length = bytes_used;
+ }
+ }
+
+ if (bytes_used < p_cb->evt.data.done.tx_length)
+ {
+ nrf_spi_txd_set(p_spi, p_cb->evt.data.done.p_tx_buffer[bytes_used]);
+ return true;
+ }
+ else if (bytes_used < p_cb->evt.data.done.rx_length)
+ {
+ nrf_spi_txd_set(p_spi, p_cb->orc);
+ return true;
+ }
+
+ return (p_cb->bytes_transferred < p_cb->evt.data.done.tx_length ||
+ p_cb->bytes_transferred < p_cb->evt.data.done.rx_length);
+}
+
+static void spi_xfer(NRF_SPI_Type * p_spi,
+ spi_control_block_t * p_cb,
+ nrf_drv_spi_xfer_desc_t const * p_xfer_desc)
+{
+ p_cb->bytes_transferred = 0;
+ nrf_spi_int_disable(p_spi, NRF_SPI_INT_READY_MASK);
+
+ nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
+
+ // Start the transfer by writing some byte to the TXD register;
+ // if TX buffer is not empty, take the first byte from this buffer,
+ // otherwise - use over-run character.
+ nrf_spi_txd_set(p_spi,
+ (p_xfer_desc->tx_length > 0 ? p_xfer_desc->p_tx_buffer[0] : p_cb->orc));
+
+ // TXD register is double buffered, so next byte to be transmitted can
+ // be written immediately, if needed, i.e. if TX or RX transfer is to
+ // be more that 1 byte long. Again - if there is something more in TX
+ // buffer send it, otherwise use over-run character.
+ if (p_xfer_desc->tx_length > 1)
+ {
+ nrf_spi_txd_set(p_spi, p_xfer_desc->p_tx_buffer[1]);
+ }
+ else if (p_xfer_desc->rx_length > 1)
+ {
+ nrf_spi_txd_set(p_spi, p_cb->orc);
+ }
+
+ // For blocking mode (user handler not provided) wait here for READY
+ // events (indicating that the byte from TXD register was transmitted
+ // and a new incoming byte was moved to the RXD register) and continue
+ // transaction until all requested bytes are transferred.
+ // In non-blocking mode - IRQ service routine will do this stuff.
+ if (p_cb->handler)
+ {
+ nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK);
+ }
+ else
+ {
+ do {
+ while (!nrf_spi_event_check(p_spi, NRF_SPI_EVENT_READY)) {}
+ nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
+ NRF_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY.\r\n");
+ } while (transfer_byte(p_spi, p_cb));
+ if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
+ {
+ nrf_gpio_pin_set(p_cb->ss_pin);
+ }
+ }
+}
+#endif // SPI_IN_USE
+
+#ifdef SPIM_IN_USE
+__STATIC_INLINE void spim_int_enable(NRF_SPIM_Type * p_spim, bool enable)
+{
+ if (!enable)
+ {
+ nrf_spim_int_disable(p_spim, END_INT_MASK);
+ }
+ else
+ {
+ nrf_spim_int_enable(p_spim, END_INT_MASK);
+ }
+}
+
+__STATIC_INLINE void spim_list_enable_handle(NRF_SPIM_Type * p_spim, uint32_t flags)
+{
+ if (NRF_DRV_SPI_FLAG_TX_POSTINC & flags)
+ {
+ nrf_spim_tx_list_enable(p_spim);
+ }
+ else
+ {
+ nrf_spim_tx_list_disable(p_spim);
+ }
+
+ if (NRF_DRV_SPI_FLAG_RX_POSTINC & flags)
+ {
+ nrf_spim_rx_list_enable(p_spim);
+ }
+ else
+ {
+ nrf_spim_rx_list_disable(p_spim);
+ }
+}
+
+static ret_code_t spim_xfer(NRF_SPIM_Type * p_spim,
+ spi_control_block_t * p_cb,
+ nrf_drv_spi_xfer_desc_t const * p_xfer_desc,
+ uint32_t flags)
+{
+ ret_code_t err_code;
+ // EasyDMA requires that transfer buffers are placed in Data RAM region;
+ // signal error if they are not.
+ if ((p_xfer_desc->p_tx_buffer != NULL && !nrf_drv_is_in_RAM(p_xfer_desc->p_tx_buffer)) ||
+ (p_xfer_desc->p_rx_buffer != NULL && !nrf_drv_is_in_RAM(p_xfer_desc->p_rx_buffer)))
+ {
+ p_cb->transfer_in_progress = false;
+ err_code = NRF_ERROR_INVALID_ADDR;
+ NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
+ (uint32_t)__func__,
+ (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ }
+
+#if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND)
+ p_cb->tx_length = 0;
+ p_cb->rx_length = 0;
+#endif
+
+ nrf_spim_tx_buffer_set(p_spim, p_xfer_desc->p_tx_buffer, p_xfer_desc->tx_length);
+ nrf_spim_rx_buffer_set(p_spim, p_xfer_desc->p_rx_buffer, p_xfer_desc->rx_length);
+
+ nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END);
+
+ spim_list_enable_handle(p_spim, flags);
+
+ if (!(flags & NRF_DRV_SPI_FLAG_HOLD_XFER))
+ {
+ nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START);
+ }
+#if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND)
+ if (flags & NRF_DRV_SPI_FLAG_HOLD_XFER)
+ {
+ nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_STARTED);
+ p_cb->tx_length = p_xfer_desc->tx_length;
+ p_cb->rx_length = p_xfer_desc->rx_length;
+ nrf_spim_tx_buffer_set(p_spim, p_xfer_desc->p_tx_buffer, 0);
+ nrf_spim_rx_buffer_set(p_spim, p_xfer_desc->p_rx_buffer, 0);
+ nrf_spim_int_enable(p_spim, NRF_SPIM_INT_STARTED_MASK);
+ }
+#endif
+
+ if (!p_cb->handler)
+ {
+ while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END)){}
+ if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
+ {
+ nrf_gpio_pin_set(p_cb->ss_pin);
+ }
+ }
+ else
+ {
+ spim_int_enable(p_spim, !(flags & NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER));
+ }
+ err_code = NRF_SUCCESS;
+ NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
+ (uint32_t)__func__,
+ (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+}
+#endif
+
+ret_code_t nrf_drv_spi_xfer(nrf_drv_spi_t const * const p_instance,
+ nrf_drv_spi_xfer_desc_t const * p_xfer_desc,
+ uint32_t flags)
+{
+ spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
+ ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);
+ ASSERT(p_xfer_desc->p_tx_buffer != NULL || p_xfer_desc->tx_length == 0);
+ ASSERT(p_xfer_desc->p_rx_buffer != NULL || p_xfer_desc->rx_length == 0);
+
+ ret_code_t err_code = NRF_SUCCESS;
+
+ if (p_cb->transfer_in_progress)
+ {
+ err_code = NRF_ERROR_BUSY;
+ NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
+ (uint32_t)__func__,
+ (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ }
+ else
+ {
+ if (p_cb->handler && !(flags & (NRF_DRV_SPI_FLAG_REPEATED_XFER |
+ NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER)))
+ {
+ p_cb->transfer_in_progress = true;
+ }
+ }
+
+ p_cb->evt.data.done = *p_xfer_desc;
+ p_cb->tx_done = false;
+ p_cb->rx_done = false;
+ p_cb->abort = false;
+
+ if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
+ {
+ nrf_gpio_pin_clear(p_cb->ss_pin);
+ }
+ CODE_FOR_SPIM
+ (
+ return spim_xfer(p_instance->p_registers, p_cb, p_xfer_desc, flags);
+ )
+ CODE_FOR_SPI
+ (
+ if (flags)
+ {
+ p_cb->transfer_in_progress = false;
+ err_code = NRF_ERROR_NOT_SUPPORTED;
+ }
+ else
+ {
+ spi_xfer(p_instance->p_registers, p_cb, p_xfer_desc);
+ }
+ NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
+ (uint32_t)__func__,
+ (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
+ return err_code;
+ )
+}
+
+
+void nrf_drv_spi_abort(nrf_drv_spi_t const * p_instance)
+{
+ spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
+ ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);
+
+ CODE_FOR_SPIM
+ (
+ nrf_spim_task_trigger(p_instance->p_registers, NRF_SPIM_TASK_STOP);
+ while (!nrf_spim_event_check(p_instance->p_registers, NRF_SPIM_EVENT_STOPPED)) {}
+ p_cb->transfer_in_progress = false;
+ )
+ CODE_FOR_SPI
+ (
+ p_cb->abort = true;
+ )
+}
+
+
+#ifdef SPIM_IN_USE
+static void irq_handler_spim(NRF_SPIM_Type * p_spim, spi_control_block_t * p_cb)
+{
+
+#if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND)
+ if ((nrf_spim_int_enable_check(p_spim, NRF_SPIM_INT_STARTED_MASK)) &&
+ (nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STARTED)) )
+ {
+ /* Handle first, zero-length, auxiliary transmission. */
+ nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_STARTED);
+ nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END);
+
+ ASSERT(p_spim->TXD.MAXCNT == 0);
+ p_spim->TXD.MAXCNT = p_cb->tx_length;
+
+ ASSERT(p_spim->RXD.MAXCNT == 0);
+ p_spim->RXD.MAXCNT = p_cb->rx_length;
+
+ /* Disable STARTED interrupt, used only in auxiliary transmission. */
+ nrf_spim_int_disable(p_spim, NRF_SPIM_INT_STARTED_MASK);
+
+ /* Start the actual, glitch-free transmission. */
+ nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START);
+ return;
+ }
+#endif
+
+ if (nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END))
+ {
+ nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END);
+ ASSERT(p_cb->handler);
+ NRF_LOG_DEBUG("SPIM: Event: NRF_SPIM_EVENT_END.\r\n");
+ finish_transfer(p_cb);
+ }
+}
+
+uint32_t nrf_drv_spi_start_task_get(nrf_drv_spi_t const * p_instance)
+{
+ NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers;
+ return nrf_spim_task_address_get(p_spim, NRF_SPIM_TASK_START);
+}
+
+uint32_t nrf_drv_spi_end_event_get(nrf_drv_spi_t const * p_instance)
+{
+ NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers;
+ return nrf_spim_event_address_get(p_spim, NRF_SPIM_EVENT_END);
+}
+#endif // SPIM_IN_USE
+
+#ifdef SPI_IN_USE
+static void irq_handler_spi(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb)
+{
+ ASSERT(p_cb->handler);
+
+ nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
+ NRF_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY.\r\n");
+
+ if (!transfer_byte(p_spi, p_cb))
+ {
+ finish_transfer(p_cb);
+ }
+}
+#endif // SPI_IN_USE
+
+#if NRF_MODULE_ENABLED(SPI0)
+IRQ_HANDLER(0)
+{
+ spi_control_block_t * p_cb = &m_cb[SPI0_INSTANCE_INDEX];
+ #if SPI0_USE_EASY_DMA
+ irq_handler_spim(NRF_SPIM0, p_cb);
+ #else
+ irq_handler_spi(NRF_SPI0, p_cb);
+ #endif
+}
+#endif // NRF_MODULE_ENABLED(SPI0)
+
+#if NRF_MODULE_ENABLED(SPI1)
+IRQ_HANDLER(1)
+{
+ spi_control_block_t * p_cb = &m_cb[SPI1_INSTANCE_INDEX];
+ #if SPI1_USE_EASY_DMA
+ irq_handler_spim(NRF_SPIM1, p_cb);
+ #else
+ irq_handler_spi(NRF_SPI1, p_cb);
+ #endif
+}
+#endif // NRF_MODULE_ENABLED(SPI1)
+
+#if NRF_MODULE_ENABLED(SPI2)
+IRQ_HANDLER(2)
+{
+ spi_control_block_t * p_cb = &m_cb[SPI2_INSTANCE_INDEX];
+ #if SPI2_USE_EASY_DMA
+ irq_handler_spim(NRF_SPIM2, p_cb);
+ #else
+ irq_handler_spi(NRF_SPI2, p_cb);
+ #endif
+}
+#endif // NRF_MODULE_ENABLED(SPI2)
+#endif // ENABLED_SPI_COUNT
+#endif // NRF_MODULE_ENABLED(SPI)