diff options
Diffstat (limited to 'drivers_nrf/spi_master/nrf_drv_spi.c')
-rw-r--r-- | drivers_nrf/spi_master/nrf_drv_spi.c | 778 |
1 files changed, 778 insertions, 0 deletions
diff --git a/drivers_nrf/spi_master/nrf_drv_spi.c b/drivers_nrf/spi_master/nrf_drv_spi.c new file mode 100644 index 0000000..3b4c912 --- /dev/null +++ b/drivers_nrf/spi_master/nrf_drv_spi.c @@ -0,0 +1,778 @@ +/** + * Copyright (c) 2015 - 2017, Nordic Semiconductor ASA + * + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without modification, + * are permitted provided that the following conditions are met: + * + * 1. Redistributions of source code must retain the above copyright notice, this + * list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form, except as embedded into a Nordic + * Semiconductor ASA integrated circuit in a product or a software update for + * such product, must reproduce the above copyright notice, this list of + * conditions and the following disclaimer in the documentation and/or other + * materials provided with the distribution. + * + * 3. Neither the name of Nordic Semiconductor ASA nor the names of its + * contributors may be used to endorse or promote products derived from this + * software without specific prior written permission. + * + * 4. This software, with or without modification, must only be used with a + * Nordic Semiconductor ASA integrated circuit. + * + * 5. Any software provided in binary form under this license must not be reverse + * engineered, decompiled, modified and/or disassembled. + * + * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS + * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE + * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE + * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT + * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ +#include "sdk_common.h" +#if NRF_MODULE_ENABLED(SPI) +#define ENABLED_SPI_COUNT (SPI0_ENABLED+SPI1_ENABLED+SPI2_ENABLED) +#if ENABLED_SPI_COUNT + +#include "nrf_drv_spi.h" +#include "nrf_drv_common.h" +#include "nrf_gpio.h" +#include "nrf_assert.h" +#include "app_util_platform.h" + +#define NRF_LOG_MODULE_NAME "SPI" + +#if SPI_CONFIG_LOG_ENABLED +#define NRF_LOG_LEVEL SPI_CONFIG_LOG_LEVEL +#define NRF_LOG_INFO_COLOR SPI_CONFIG_INFO_COLOR +#define NRF_LOG_DEBUG_COLOR SPI_CONFIG_DEBUG_COLOR +#else //SPI_CONFIG_LOG_ENABLED +#define NRF_LOG_LEVEL 0 +#endif //SPI_CONFIG_LOG_ENABLED +#include "nrf_log.h" + +#ifndef SPIM_PRESENT + // Make sure SPIx_USE_EASY_DMA is 0 for nRF51 (if a common + // "nrf_drv_config.h" file is provided for nRF51 and nRF52). + #undef SPI0_USE_EASY_DMA + #define SPI0_USE_EASY_DMA 0 + #undef SPI1_USE_EASY_DMA + #define SPI1_USE_EASY_DMA 0 + #undef SPI2_USE_EASY_DMA + #define SPI2_USE_EASY_DMA 0 +#endif + +#ifndef SPI0_USE_EASY_DMA +#define SPI0_USE_EASY_DMA 0 +#endif + +#ifndef SPI1_USE_EASY_DMA +#define SPI1_USE_EASY_DMA 0 +#endif + +#ifndef SPI2_USE_EASY_DMA +#define SPI2_USE_EASY_DMA 0 +#endif + +// This set of macros makes it possible to exclude parts of code when one type +// of supported peripherals is not used. +#if ((NRF_MODULE_ENABLED(SPI0) && SPI0_USE_EASY_DMA) || \ + (NRF_MODULE_ENABLED(SPI1) && SPI1_USE_EASY_DMA) || \ + (NRF_MODULE_ENABLED(SPI2) && SPI2_USE_EASY_DMA)) + #define SPIM_IN_USE +#endif +#if ((NRF_MODULE_ENABLED(SPI0) && !SPI0_USE_EASY_DMA) || \ + (NRF_MODULE_ENABLED(SPI1) && !SPI1_USE_EASY_DMA) || \ + (NRF_MODULE_ENABLED(SPI2) && !SPI2_USE_EASY_DMA)) + #define SPI_IN_USE +#endif +#if defined(SPIM_IN_USE) && defined(SPI_IN_USE) + // SPIM and SPI combined + #define CODE_FOR_SPIM(code) if (p_instance->use_easy_dma) { code } + #define CODE_FOR_SPI(code) else { code } +#elif defined(SPIM_IN_USE) && !defined(SPI_IN_USE) + // SPIM only + #define CODE_FOR_SPIM(code) { code } + #define CODE_FOR_SPI(code) +#elif !defined(SPIM_IN_USE) && defined(SPI_IN_USE) + // SPI only + #define CODE_FOR_SPIM(code) + #define CODE_FOR_SPI(code) { code } +#else + #error "Wrong configuration." +#endif + +#ifdef SPIM_IN_USE +#define END_INT_MASK NRF_SPIM_INT_END_MASK +#endif + +// Control block - driver instance local data. +typedef struct +{ + nrf_drv_spi_evt_handler_t handler; + void * p_context; + nrf_drv_spi_evt_t evt; // Keep the struct that is ready for event handler. Less memcpy. + nrf_drv_state_t state; + volatile bool transfer_in_progress; + + // [no need for 'volatile' attribute for the following members, as they + // are not concurrently used in IRQ handlers and main line code] + uint8_t ss_pin; + uint8_t orc; + uint8_t bytes_transferred; + +#if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND) + uint8_t tx_length; + uint8_t rx_length; +#endif + + bool tx_done : 1; + bool rx_done : 1; + bool abort : 1; +} spi_control_block_t; +static spi_control_block_t m_cb[ENABLED_SPI_COUNT]; + +#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING) + #define IRQ_HANDLER_NAME(n) irq_handler_for_instance_##n + #define IRQ_HANDLER(n) static void IRQ_HANDLER_NAME(n)(void) + + #if NRF_MODULE_ENABLED(SPI0) + IRQ_HANDLER(0); + #endif + #if NRF_MODULE_ENABLED(SPI1) + IRQ_HANDLER(1); + #endif + #if NRF_MODULE_ENABLED(SPI2) + IRQ_HANDLER(2); + #endif + static nrf_drv_irq_handler_t const m_irq_handlers[ENABLED_SPI_COUNT] = { + #if NRF_MODULE_ENABLED(SPI0) + IRQ_HANDLER_NAME(0), + #endif + #if NRF_MODULE_ENABLED(SPI1) + IRQ_HANDLER_NAME(1), + #endif + #if NRF_MODULE_ENABLED(SPI2) + IRQ_HANDLER_NAME(2), + #endif + }; +#else + #define IRQ_HANDLER(n) void SPI##n##_IRQ_HANDLER(void) +#endif // NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING) + +ret_code_t nrf_drv_spi_init(nrf_drv_spi_t const * const p_instance, + nrf_drv_spi_config_t const * p_config, + nrf_drv_spi_evt_handler_t handler, + void * p_context) +{ + ASSERT(p_config); + spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; + ret_code_t err_code; + + if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED) + { + err_code = NRF_ERROR_INVALID_STATE; + NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", + (uint32_t)__func__, + (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; + } + +#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING) + if (nrf_drv_common_per_res_acquire(p_instance->p_registers, + m_irq_handlers[p_instance->drv_inst_idx]) != NRF_SUCCESS) + { + err_code = NRF_ERROR_BUSY; + NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", + (uint32_t)__func__, + (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; + } +#endif + + p_cb->handler = handler; + p_cb->p_context = p_context; + + uint32_t mosi_pin; + uint32_t miso_pin; + // Configure pins used by the peripheral: + // - SCK - output with initial value corresponding with the SPI mode used: + // 0 - for modes 0 and 1 (CPOL = 0), 1 - for modes 2 and 3 (CPOL = 1); + // according to the reference manual guidelines this pin and its input + // buffer must always be connected for the SPI to work. + if (p_config->mode <= NRF_DRV_SPI_MODE_1) + { + nrf_gpio_pin_clear(p_config->sck_pin); + } + else + { + nrf_gpio_pin_set(p_config->sck_pin); + } + nrf_gpio_cfg(p_config->sck_pin, + NRF_GPIO_PIN_DIR_OUTPUT, + NRF_GPIO_PIN_INPUT_CONNECT, + NRF_GPIO_PIN_NOPULL, + NRF_GPIO_PIN_S0S1, + NRF_GPIO_PIN_NOSENSE); + // - MOSI (optional) - output with initial value 0, + if (p_config->mosi_pin != NRF_DRV_SPI_PIN_NOT_USED) + { + mosi_pin = p_config->mosi_pin; + nrf_gpio_pin_clear(mosi_pin); + nrf_gpio_cfg_output(mosi_pin); + } + else + { + mosi_pin = NRF_SPI_PIN_NOT_CONNECTED; + } + // - MISO (optional) - input, + if (p_config->miso_pin != NRF_DRV_SPI_PIN_NOT_USED) + { + miso_pin = p_config->miso_pin; + nrf_gpio_cfg_input(miso_pin, NRF_GPIO_PIN_NOPULL); + } + else + { + miso_pin = NRF_SPI_PIN_NOT_CONNECTED; + } + // - Slave Select (optional) - output with initial value 1 (inactive). + if (p_config->ss_pin != NRF_DRV_SPI_PIN_NOT_USED) + { + nrf_gpio_pin_set(p_config->ss_pin); + nrf_gpio_cfg_output(p_config->ss_pin); + } + m_cb[p_instance->drv_inst_idx].ss_pin = p_config->ss_pin; + + CODE_FOR_SPIM + ( + NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers; + nrf_spim_pins_set(p_spim, p_config->sck_pin, mosi_pin, miso_pin); + nrf_spim_frequency_set(p_spim, + (nrf_spim_frequency_t)p_config->frequency); + nrf_spim_configure(p_spim, + (nrf_spim_mode_t)p_config->mode, + (nrf_spim_bit_order_t)p_config->bit_order); + + nrf_spim_orc_set(p_spim, p_config->orc); + + if (p_cb->handler) + { + nrf_spim_int_enable(p_spim, END_INT_MASK); + } + + nrf_spim_enable(p_spim); + ) + CODE_FOR_SPI + ( + NRF_SPI_Type * p_spi = p_instance->p_registers; + nrf_spi_pins_set(p_spi, p_config->sck_pin, mosi_pin, miso_pin); + nrf_spi_frequency_set(p_spi, + (nrf_spi_frequency_t)p_config->frequency); + nrf_spi_configure(p_spi, + (nrf_spi_mode_t)p_config->mode, + (nrf_spi_bit_order_t)p_config->bit_order); + + m_cb[p_instance->drv_inst_idx].orc = p_config->orc; + + if (p_cb->handler) + { + nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK); + } + + nrf_spi_enable(p_spi); + ) + + if (p_cb->handler) + { + nrf_drv_common_irq_enable(p_instance->irq, p_config->irq_priority); + } + + p_cb->transfer_in_progress = false; + p_cb->state = NRF_DRV_STATE_INITIALIZED; + + NRF_LOG_INFO("Init\r\n"); + + err_code = NRF_SUCCESS; + NRF_LOG_INFO("Function: %s, error code: %s.\r\n", + (uint32_t)__func__, + (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; +} + +void nrf_drv_spi_uninit(nrf_drv_spi_t const * const p_instance) +{ + spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; + ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED); + + if (p_cb->handler) + { + nrf_drv_common_irq_disable(p_instance->irq); + } + + #define DISABLE_ALL 0xFFFFFFFF + + CODE_FOR_SPIM + ( + NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers; + if (p_cb->handler) + { + nrf_spim_int_disable(p_spim, DISABLE_ALL); + if (p_cb->transfer_in_progress) + { + // Ensure that SPI is not performing any transfer. + nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_STOP); + while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STOPPED)) {} + p_cb->transfer_in_progress = false; + } + } + nrf_spim_disable(p_spim); + ) + CODE_FOR_SPI + ( + NRF_SPI_Type * p_spi = p_instance->p_registers; + if (p_cb->handler) + { + nrf_spi_int_disable(p_spi, DISABLE_ALL); + } + nrf_spi_disable(p_spi); + ) + #undef DISABLE_ALL + +#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING) + nrf_drv_common_per_res_release(p_instance->p_registers); +#endif + + p_cb->state = NRF_DRV_STATE_UNINITIALIZED; +} + +ret_code_t nrf_drv_spi_transfer(nrf_drv_spi_t const * const p_instance, + uint8_t const * p_tx_buffer, + uint8_t tx_buffer_length, + uint8_t * p_rx_buffer, + uint8_t rx_buffer_length) +{ + nrf_drv_spi_xfer_desc_t xfer_desc; + xfer_desc.p_tx_buffer = p_tx_buffer; + xfer_desc.p_rx_buffer = p_rx_buffer; + xfer_desc.tx_length = tx_buffer_length; + xfer_desc.rx_length = rx_buffer_length; + + NRF_LOG_INFO("Transfer tx_len:%d, rx_len:%d.\r\n", tx_buffer_length, rx_buffer_length); + NRF_LOG_DEBUG("Tx data:\r\n"); + NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_tx_buffer, tx_buffer_length * sizeof(p_tx_buffer)); + return nrf_drv_spi_xfer(p_instance, &xfer_desc, 0); +} + +static void finish_transfer(spi_control_block_t * p_cb) +{ + // If Slave Select signal is used, this is the time to deactivate it. + if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED) + { + nrf_gpio_pin_set(p_cb->ss_pin); + } + + // By clearing this flag before calling the handler we allow subsequent + // transfers to be started directly from the handler function. + p_cb->transfer_in_progress = false; + p_cb->evt.type = NRF_DRV_SPI_EVENT_DONE; + NRF_LOG_INFO("Transfer rx_len:%d.\r\n", p_cb->evt.data.done.rx_length); + NRF_LOG_DEBUG("Rx data:\r\n"); + NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_cb->evt.data.done.p_rx_buffer, + p_cb->evt.data.done.rx_length * sizeof(p_cb->evt.data.done.p_rx_buffer)); + p_cb->handler(&p_cb->evt, p_cb->p_context); +} + +#ifdef SPI_IN_USE +// This function is called from IRQ handler or, in blocking mode, directly +// from the 'nrf_drv_spi_transfer' function. +// It returns true as long as the transfer should be continued, otherwise (when +// there is nothing more to send/receive) it returns false. +static bool transfer_byte(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb) +{ + // Read the data byte received in this transfer and store it in RX buffer, + // if needed. + volatile uint8_t rx_data = nrf_spi_rxd_get(p_spi); + if (p_cb->bytes_transferred < p_cb->evt.data.done.rx_length) + { + p_cb->evt.data.done.p_rx_buffer[p_cb->bytes_transferred] = rx_data; + } + + ++p_cb->bytes_transferred; + + // Check if there are more bytes to send or receive and write proper data + // byte (next one from TX buffer or over-run character) to the TXD register + // when needed. + // NOTE - we've already used 'p_cb->bytes_transferred + 1' bytes from our + // buffers, because we take advantage of double buffering of TXD + // register (so in effect one byte is still being transmitted now); + // see how the transfer is started in the 'nrf_drv_spi_transfer' + // function. + uint16_t bytes_used = p_cb->bytes_transferred + 1; + + if (p_cb->abort) + { + if (bytes_used < p_cb->evt.data.done.tx_length) + { + p_cb->evt.data.done.tx_length = bytes_used; + } + if (bytes_used < p_cb->evt.data.done.rx_length) + { + p_cb->evt.data.done.rx_length = bytes_used; + } + } + + if (bytes_used < p_cb->evt.data.done.tx_length) + { + nrf_spi_txd_set(p_spi, p_cb->evt.data.done.p_tx_buffer[bytes_used]); + return true; + } + else if (bytes_used < p_cb->evt.data.done.rx_length) + { + nrf_spi_txd_set(p_spi, p_cb->orc); + return true; + } + + return (p_cb->bytes_transferred < p_cb->evt.data.done.tx_length || + p_cb->bytes_transferred < p_cb->evt.data.done.rx_length); +} + +static void spi_xfer(NRF_SPI_Type * p_spi, + spi_control_block_t * p_cb, + nrf_drv_spi_xfer_desc_t const * p_xfer_desc) +{ + p_cb->bytes_transferred = 0; + nrf_spi_int_disable(p_spi, NRF_SPI_INT_READY_MASK); + + nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY); + + // Start the transfer by writing some byte to the TXD register; + // if TX buffer is not empty, take the first byte from this buffer, + // otherwise - use over-run character. + nrf_spi_txd_set(p_spi, + (p_xfer_desc->tx_length > 0 ? p_xfer_desc->p_tx_buffer[0] : p_cb->orc)); + + // TXD register is double buffered, so next byte to be transmitted can + // be written immediately, if needed, i.e. if TX or RX transfer is to + // be more that 1 byte long. Again - if there is something more in TX + // buffer send it, otherwise use over-run character. + if (p_xfer_desc->tx_length > 1) + { + nrf_spi_txd_set(p_spi, p_xfer_desc->p_tx_buffer[1]); + } + else if (p_xfer_desc->rx_length > 1) + { + nrf_spi_txd_set(p_spi, p_cb->orc); + } + + // For blocking mode (user handler not provided) wait here for READY + // events (indicating that the byte from TXD register was transmitted + // and a new incoming byte was moved to the RXD register) and continue + // transaction until all requested bytes are transferred. + // In non-blocking mode - IRQ service routine will do this stuff. + if (p_cb->handler) + { + nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK); + } + else + { + do { + while (!nrf_spi_event_check(p_spi, NRF_SPI_EVENT_READY)) {} + nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY); + NRF_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY.\r\n"); + } while (transfer_byte(p_spi, p_cb)); + if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED) + { + nrf_gpio_pin_set(p_cb->ss_pin); + } + } +} +#endif // SPI_IN_USE + +#ifdef SPIM_IN_USE +__STATIC_INLINE void spim_int_enable(NRF_SPIM_Type * p_spim, bool enable) +{ + if (!enable) + { + nrf_spim_int_disable(p_spim, END_INT_MASK); + } + else + { + nrf_spim_int_enable(p_spim, END_INT_MASK); + } +} + +__STATIC_INLINE void spim_list_enable_handle(NRF_SPIM_Type * p_spim, uint32_t flags) +{ + if (NRF_DRV_SPI_FLAG_TX_POSTINC & flags) + { + nrf_spim_tx_list_enable(p_spim); + } + else + { + nrf_spim_tx_list_disable(p_spim); + } + + if (NRF_DRV_SPI_FLAG_RX_POSTINC & flags) + { + nrf_spim_rx_list_enable(p_spim); + } + else + { + nrf_spim_rx_list_disable(p_spim); + } +} + +static ret_code_t spim_xfer(NRF_SPIM_Type * p_spim, + spi_control_block_t * p_cb, + nrf_drv_spi_xfer_desc_t const * p_xfer_desc, + uint32_t flags) +{ + ret_code_t err_code; + // EasyDMA requires that transfer buffers are placed in Data RAM region; + // signal error if they are not. + if ((p_xfer_desc->p_tx_buffer != NULL && !nrf_drv_is_in_RAM(p_xfer_desc->p_tx_buffer)) || + (p_xfer_desc->p_rx_buffer != NULL && !nrf_drv_is_in_RAM(p_xfer_desc->p_rx_buffer))) + { + p_cb->transfer_in_progress = false; + err_code = NRF_ERROR_INVALID_ADDR; + NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", + (uint32_t)__func__, + (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; + } + +#if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND) + p_cb->tx_length = 0; + p_cb->rx_length = 0; +#endif + + nrf_spim_tx_buffer_set(p_spim, p_xfer_desc->p_tx_buffer, p_xfer_desc->tx_length); + nrf_spim_rx_buffer_set(p_spim, p_xfer_desc->p_rx_buffer, p_xfer_desc->rx_length); + + nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END); + + spim_list_enable_handle(p_spim, flags); + + if (!(flags & NRF_DRV_SPI_FLAG_HOLD_XFER)) + { + nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START); + } +#if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND) + if (flags & NRF_DRV_SPI_FLAG_HOLD_XFER) + { + nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_STARTED); + p_cb->tx_length = p_xfer_desc->tx_length; + p_cb->rx_length = p_xfer_desc->rx_length; + nrf_spim_tx_buffer_set(p_spim, p_xfer_desc->p_tx_buffer, 0); + nrf_spim_rx_buffer_set(p_spim, p_xfer_desc->p_rx_buffer, 0); + nrf_spim_int_enable(p_spim, NRF_SPIM_INT_STARTED_MASK); + } +#endif + + if (!p_cb->handler) + { + while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END)){} + if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED) + { + nrf_gpio_pin_set(p_cb->ss_pin); + } + } + else + { + spim_int_enable(p_spim, !(flags & NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER)); + } + err_code = NRF_SUCCESS; + NRF_LOG_INFO("Function: %s, error code: %s.\r\n", + (uint32_t)__func__, + (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; +} +#endif + +ret_code_t nrf_drv_spi_xfer(nrf_drv_spi_t const * const p_instance, + nrf_drv_spi_xfer_desc_t const * p_xfer_desc, + uint32_t flags) +{ + spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; + ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED); + ASSERT(p_xfer_desc->p_tx_buffer != NULL || p_xfer_desc->tx_length == 0); + ASSERT(p_xfer_desc->p_rx_buffer != NULL || p_xfer_desc->rx_length == 0); + + ret_code_t err_code = NRF_SUCCESS; + + if (p_cb->transfer_in_progress) + { + err_code = NRF_ERROR_BUSY; + NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", + (uint32_t)__func__, + (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; + } + else + { + if (p_cb->handler && !(flags & (NRF_DRV_SPI_FLAG_REPEATED_XFER | + NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER))) + { + p_cb->transfer_in_progress = true; + } + } + + p_cb->evt.data.done = *p_xfer_desc; + p_cb->tx_done = false; + p_cb->rx_done = false; + p_cb->abort = false; + + if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED) + { + nrf_gpio_pin_clear(p_cb->ss_pin); + } + CODE_FOR_SPIM + ( + return spim_xfer(p_instance->p_registers, p_cb, p_xfer_desc, flags); + ) + CODE_FOR_SPI + ( + if (flags) + { + p_cb->transfer_in_progress = false; + err_code = NRF_ERROR_NOT_SUPPORTED; + } + else + { + spi_xfer(p_instance->p_registers, p_cb, p_xfer_desc); + } + NRF_LOG_INFO("Function: %s, error code: %s.\r\n", + (uint32_t)__func__, + (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code)); + return err_code; + ) +} + + +void nrf_drv_spi_abort(nrf_drv_spi_t const * p_instance) +{ + spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx]; + ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED); + + CODE_FOR_SPIM + ( + nrf_spim_task_trigger(p_instance->p_registers, NRF_SPIM_TASK_STOP); + while (!nrf_spim_event_check(p_instance->p_registers, NRF_SPIM_EVENT_STOPPED)) {} + p_cb->transfer_in_progress = false; + ) + CODE_FOR_SPI + ( + p_cb->abort = true; + ) +} + + +#ifdef SPIM_IN_USE +static void irq_handler_spim(NRF_SPIM_Type * p_spim, spi_control_block_t * p_cb) +{ + +#if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND) + if ((nrf_spim_int_enable_check(p_spim, NRF_SPIM_INT_STARTED_MASK)) && + (nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STARTED)) ) + { + /* Handle first, zero-length, auxiliary transmission. */ + nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_STARTED); + nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END); + + ASSERT(p_spim->TXD.MAXCNT == 0); + p_spim->TXD.MAXCNT = p_cb->tx_length; + + ASSERT(p_spim->RXD.MAXCNT == 0); + p_spim->RXD.MAXCNT = p_cb->rx_length; + + /* Disable STARTED interrupt, used only in auxiliary transmission. */ + nrf_spim_int_disable(p_spim, NRF_SPIM_INT_STARTED_MASK); + + /* Start the actual, glitch-free transmission. */ + nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START); + return; + } +#endif + + if (nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END)) + { + nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END); + ASSERT(p_cb->handler); + NRF_LOG_DEBUG("SPIM: Event: NRF_SPIM_EVENT_END.\r\n"); + finish_transfer(p_cb); + } +} + +uint32_t nrf_drv_spi_start_task_get(nrf_drv_spi_t const * p_instance) +{ + NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers; + return nrf_spim_task_address_get(p_spim, NRF_SPIM_TASK_START); +} + +uint32_t nrf_drv_spi_end_event_get(nrf_drv_spi_t const * p_instance) +{ + NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers; + return nrf_spim_event_address_get(p_spim, NRF_SPIM_EVENT_END); +} +#endif // SPIM_IN_USE + +#ifdef SPI_IN_USE +static void irq_handler_spi(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb) +{ + ASSERT(p_cb->handler); + + nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY); + NRF_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY.\r\n"); + + if (!transfer_byte(p_spi, p_cb)) + { + finish_transfer(p_cb); + } +} +#endif // SPI_IN_USE + +#if NRF_MODULE_ENABLED(SPI0) +IRQ_HANDLER(0) +{ + spi_control_block_t * p_cb = &m_cb[SPI0_INSTANCE_INDEX]; + #if SPI0_USE_EASY_DMA + irq_handler_spim(NRF_SPIM0, p_cb); + #else + irq_handler_spi(NRF_SPI0, p_cb); + #endif +} +#endif // NRF_MODULE_ENABLED(SPI0) + +#if NRF_MODULE_ENABLED(SPI1) +IRQ_HANDLER(1) +{ + spi_control_block_t * p_cb = &m_cb[SPI1_INSTANCE_INDEX]; + #if SPI1_USE_EASY_DMA + irq_handler_spim(NRF_SPIM1, p_cb); + #else + irq_handler_spi(NRF_SPI1, p_cb); + #endif +} +#endif // NRF_MODULE_ENABLED(SPI1) + +#if NRF_MODULE_ENABLED(SPI2) +IRQ_HANDLER(2) +{ + spi_control_block_t * p_cb = &m_cb[SPI2_INSTANCE_INDEX]; + #if SPI2_USE_EASY_DMA + irq_handler_spim(NRF_SPIM2, p_cb); + #else + irq_handler_spi(NRF_SPI2, p_cb); + #endif +} +#endif // NRF_MODULE_ENABLED(SPI2) +#endif // ENABLED_SPI_COUNT +#endif // NRF_MODULE_ENABLED(SPI) |