1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
|
/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(GPIOTE)
#include "nrf_drv_gpiote.h"
#include "nrf_drv_common.h"
#include "app_util_platform.h"
#include "nrf_assert.h"
#include "nrf_bitmask.h"
#include <string.h>
#define NRF_LOG_MODULE_NAME "GPIOTE"
#if GPIOTE_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL GPIOTE_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR GPIOTE_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR GPIOTE_CONFIG_DEBUG_COLOR
#else // GPIOTE_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL 0
#endif // GPIOTE_CONFIG_LOG_ENABLED
#include "nrf_log.h"
#include "nrf_log_ctrl.h"
/* Validate configuration */
INTERRUPT_PRIORITY_VALIDATION(GPIOTE_CONFIG_IRQ_PRIORITY);
#define FORBIDDEN_HANDLER_ADDRESS ((nrf_drv_gpiote_evt_handler_t)UINT32_MAX)
#define PIN_NOT_USED (-1)
#define PIN_USED (-2)
#define NO_CHANNELS (-1)
#define SENSE_FIELD_POS (6)
#define SENSE_FIELD_MASK (0xC0)
/**
* @brief Macro for converting task-event index to an address of an event register.
*
* Macro utilizes the fact that registers are grouped together in ascending order.
*/
#define TE_IDX_TO_EVENT_ADDR(idx) (nrf_gpiote_events_t)((uint32_t)NRF_GPIOTE_EVENTS_IN_0 + \
(sizeof(uint32_t) * (idx)))
/**
* @brief Macro for converting task-event index of OUT task to an address of a task register.
*
* Macro utilizes the fact that registers are grouped together in ascending order.
*/
#define TE_OUT_IDX_TO_TASK_ADDR(idx) (nrf_gpiote_tasks_t)((uint32_t)NRF_GPIOTE_TASKS_OUT_0 + \
(sizeof(uint32_t) * (idx)))
#if defined(GPIOTE_FEATURE_SET_PRESENT) || defined(__SDK_DOXYGEN__)
/**
* @brief Macro for converting task-event index of SET task to an address of a task register.
*
* Macro utilizes the fact that registers are grouped together in ascending order.
*/
#define TE_SET_IDX_TO_TASK_ADDR(idx) (nrf_gpiote_tasks_t)((uint32_t)NRF_GPIOTE_TASKS_SET_0 + \
(sizeof(uint32_t) * (idx)))
#endif // defined(GPIOTE_FEATURE_SET_PRESENT) || defined(__SDK_DOXYGEN__)
#if defined(GPIOTE_FEATURE_CLR_PRESENT) || defined(__SDK_DOXYGEN__)
/**
* @brief Macro for converting task-event index of CLR task to an address of a task register.
*
* Macro utilizes the fact that registers are grouped together in ascending order.
*/
#define TE_CLR_IDX_TO_TASK_ADDR(idx) (nrf_gpiote_tasks_t)((uint32_t)NRF_GPIOTE_TASKS_CLR_0 + \
(sizeof(uint32_t) * (idx)))
#endif // defined(GPIOTE_FEATURE_CLR_PRESENT) || defined(__SDK_DOXYGEN__)
/*lint -save -e661*/
typedef struct
{
nrf_drv_gpiote_evt_handler_t handlers[GPIOTE_CH_NUM + GPIOTE_CONFIG_NUM_OF_LOW_POWER_EVENTS];
int8_t pin_assignments[NUMBER_OF_PINS];
int8_t port_handlers_pins[GPIOTE_CONFIG_NUM_OF_LOW_POWER_EVENTS];
nrf_drv_state_t state;
} gpiote_control_block_t;
static gpiote_control_block_t m_cb;
__STATIC_INLINE bool pin_in_use(uint32_t pin)
{
return (m_cb.pin_assignments[pin] != PIN_NOT_USED);
}
__STATIC_INLINE bool pin_in_use_as_non_task_out(uint32_t pin)
{
return (m_cb.pin_assignments[pin] == PIN_USED);
}
__STATIC_INLINE bool pin_in_use_by_te(uint32_t pin)
{
return (m_cb.pin_assignments[pin] >= 0 && m_cb.pin_assignments[pin] <
GPIOTE_CH_NUM) ? true : false;
}
__STATIC_INLINE bool pin_in_use_by_port(uint32_t pin)
{
return (m_cb.pin_assignments[pin] >= GPIOTE_CH_NUM);
}
__STATIC_INLINE bool pin_in_use_by_gpiote(uint32_t pin)
{
return (m_cb.pin_assignments[pin] >= 0);
}
__STATIC_INLINE void pin_in_use_by_te_set(uint32_t pin,
uint32_t channel_id,
nrf_drv_gpiote_evt_handler_t handler,
bool is_channel)
{
m_cb.pin_assignments[pin] = channel_id;
m_cb.handlers[channel_id] = handler;
if (!is_channel)
{
m_cb.port_handlers_pins[channel_id - GPIOTE_CH_NUM] = (int8_t)pin;
}
}
__STATIC_INLINE void pin_in_use_set(uint32_t pin)
{
m_cb.pin_assignments[pin] = PIN_USED;
}
__STATIC_INLINE void pin_in_use_clear(uint32_t pin)
{
m_cb.pin_assignments[pin] = PIN_NOT_USED;
}
__STATIC_INLINE int8_t channel_port_get(uint32_t pin)
{
return m_cb.pin_assignments[pin];
}
__STATIC_INLINE nrf_drv_gpiote_evt_handler_t channel_handler_get(uint32_t channel)
{
return m_cb.handlers[channel];
}
static int8_t channel_port_alloc(uint32_t pin, nrf_drv_gpiote_evt_handler_t handler, bool channel)
{
int8_t channel_id = NO_CHANNELS;
uint32_t i;
uint32_t start_idx = channel ? 0 : GPIOTE_CH_NUM;
uint32_t end_idx =
channel ? GPIOTE_CH_NUM : (GPIOTE_CH_NUM + GPIOTE_CONFIG_NUM_OF_LOW_POWER_EVENTS);
// critical section
for (i = start_idx; i < end_idx; i++)
{
if (m_cb.handlers[i] == FORBIDDEN_HANDLER_ADDRESS)
{
pin_in_use_by_te_set(pin, i, handler, channel);
channel_id = i;
break;
}
}
// critical section
return channel_id;
}
static void channel_free(uint8_t channel_id)
{
m_cb.handlers[channel_id] = FORBIDDEN_HANDLER_ADDRESS;
if (channel_id >= GPIOTE_CH_NUM)
{
m_cb.port_handlers_pins[channel_id - GPIOTE_CH_NUM] = (int8_t)PIN_NOT_USED;
}
}
ret_code_t nrf_drv_gpiote_init(void)
{
ret_code_t err_code;
if (m_cb.state != NRF_DRV_STATE_UNINITIALIZED)
{
err_code = NRF_ERROR_INVALID_STATE;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
uint8_t i;
for (i = 0; i < NUMBER_OF_PINS; i++)
{
pin_in_use_clear(i);
}
for (i = 0; i < (GPIOTE_CH_NUM + GPIOTE_CONFIG_NUM_OF_LOW_POWER_EVENTS); i++)
{
channel_free(i);
}
nrf_drv_common_irq_enable(GPIOTE_IRQn, GPIOTE_CONFIG_IRQ_PRIORITY);
nrf_gpiote_event_clear(NRF_GPIOTE_EVENTS_PORT);
nrf_gpiote_int_enable(GPIOTE_INTENSET_PORT_Msk);
m_cb.state = NRF_DRV_STATE_INITIALIZED;
err_code = NRF_SUCCESS;
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
bool nrf_drv_gpiote_is_init(void)
{
return (m_cb.state != NRF_DRV_STATE_UNINITIALIZED) ? true : false;
}
void nrf_drv_gpiote_uninit(void)
{
ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
uint32_t i;
for (i = 0; i < NUMBER_OF_PINS; i++)
{
if (pin_in_use_as_non_task_out(i))
{
nrf_drv_gpiote_out_uninit(i);
}
else if ( pin_in_use_by_gpiote(i))
{
/* Disable gpiote_in is having the same effect on out pin as gpiote_out_uninit on
* so it can be called on all pins used by GPIOTE.
*/
nrf_drv_gpiote_in_uninit(i);
}
}
m_cb.state = NRF_DRV_STATE_UNINITIALIZED;
NRF_LOG_INFO("Uninitialized.\r\n");
}
ret_code_t nrf_drv_gpiote_out_init(nrf_drv_gpiote_pin_t pin,
nrf_drv_gpiote_out_config_t const * p_config)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(m_cb.state == NRF_DRV_STATE_INITIALIZED);
ASSERT(p_config);
ret_code_t err_code = NRF_SUCCESS;
if (pin_in_use(pin))
{
err_code = NRF_ERROR_INVALID_STATE;
}
else
{
if (p_config->task_pin)
{
int8_t channel = channel_port_alloc(pin, NULL, true);
if (channel != NO_CHANNELS)
{
nrf_gpiote_task_configure(channel, pin, p_config->action, p_config->init_state);
}
else
{
err_code = NRF_ERROR_NO_MEM;
}
}
else
{
pin_in_use_set(pin);
}
if (err_code == NRF_SUCCESS)
{
if (p_config->init_state == NRF_GPIOTE_INITIAL_VALUE_HIGH)
{
nrf_gpio_pin_set(pin);
}
else
{
nrf_gpio_pin_clear(pin);
}
nrf_gpio_cfg_output(pin);
}
}
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrf_drv_gpiote_out_uninit(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use(pin));
if (pin_in_use_by_te(pin))
{
channel_free((uint8_t)channel_port_get(pin));
nrf_gpiote_te_default(channel_port_get(pin));
}
pin_in_use_clear(pin);
nrf_gpio_cfg_default(pin);
}
void nrf_drv_gpiote_out_set(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use(pin));
ASSERT(!pin_in_use_by_te(pin))
nrf_gpio_pin_set(pin);
}
void nrf_drv_gpiote_out_clear(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use(pin));
ASSERT(!pin_in_use_by_te(pin))
nrf_gpio_pin_clear(pin);
}
void nrf_drv_gpiote_out_toggle(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use(pin));
ASSERT(!pin_in_use_by_te(pin))
nrf_gpio_pin_toggle(pin);
}
void nrf_drv_gpiote_out_task_enable(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use(pin));
ASSERT(pin_in_use_by_te(pin))
nrf_gpiote_task_enable(m_cb.pin_assignments[pin]);
}
void nrf_drv_gpiote_out_task_disable(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use(pin));
ASSERT(pin_in_use_by_te(pin))
nrf_gpiote_task_disable(m_cb.pin_assignments[pin]);
}
uint32_t nrf_drv_gpiote_out_task_addr_get(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use_by_te(pin));
nrf_gpiote_tasks_t task = TE_OUT_IDX_TO_TASK_ADDR(channel_port_get(pin));
return nrf_gpiote_task_addr_get(task);
}
#if defined(GPIOTE_FEATURE_SET_PRESENT)
uint32_t nrf_drv_gpiote_set_task_addr_get(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use_by_te(pin));
nrf_gpiote_tasks_t task = TE_SET_IDX_TO_TASK_ADDR(channel_port_get(pin));
return nrf_gpiote_task_addr_get(task);
}
#endif // defined(GPIOTE_FEATURE_SET_PRESENT)
#if defined(GPIOTE_FEATURE_CLR_PRESENT)
uint32_t nrf_drv_gpiote_clr_task_addr_get(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use_by_te(pin));
nrf_gpiote_tasks_t task = TE_CLR_IDX_TO_TASK_ADDR(channel_port_get(pin));
return nrf_gpiote_task_addr_get(task);
}
#endif // defined(GPIOTE_FEATURE_CLR_PRESENT)
void nrf_drv_gpiote_out_task_force(nrf_drv_gpiote_pin_t pin, uint8_t state)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use(pin));
ASSERT(pin_in_use_by_te(pin));
nrf_gpiote_outinit_t init_val =
state ? NRF_GPIOTE_INITIAL_VALUE_HIGH : NRF_GPIOTE_INITIAL_VALUE_LOW;
nrf_gpiote_task_force(m_cb.pin_assignments[pin], init_val);
}
void nrf_drv_gpiote_out_task_trigger(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use(pin));
ASSERT(pin_in_use_by_te(pin));
nrf_gpiote_tasks_t task = TE_OUT_IDX_TO_TASK_ADDR(channel_port_get(pin));
nrf_gpiote_task_set(task);
}
#if defined(GPIOTE_FEATURE_SET_PRESENT)
void nrf_drv_gpiote_set_task_trigger(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use(pin));
ASSERT(pin_in_use_by_te(pin));
nrf_gpiote_tasks_t task = TE_SET_IDX_TO_TASK_ADDR(channel_port_get(pin));
nrf_gpiote_task_set(task);
}
#endif // defined(GPIOTE_FEATURE_SET_PRESENT)
#if defined(GPIOTE_FEATURE_CLR_PRESENT)
void nrf_drv_gpiote_clr_task_trigger(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use(pin));
ASSERT(pin_in_use_by_te(pin));
nrf_gpiote_tasks_t task = TE_CLR_IDX_TO_TASK_ADDR(channel_port_get(pin));
nrf_gpiote_task_set(task);
}
#endif // defined(GPIOTE_FEATURE_CLR_PRESENT)
ret_code_t nrf_drv_gpiote_in_init(nrf_drv_gpiote_pin_t pin,
nrf_drv_gpiote_in_config_t const * p_config,
nrf_drv_gpiote_evt_handler_t evt_handler)
{
ASSERT(pin < NUMBER_OF_PINS);
ret_code_t err_code = NRF_SUCCESS;
/* Only one GPIOTE channel can be assigned to one physical pin. */
if (pin_in_use_by_gpiote(pin))
{
err_code = NRF_ERROR_INVALID_STATE;
}
else
{
int8_t channel = channel_port_alloc(pin, evt_handler, p_config->hi_accuracy);
if (channel != NO_CHANNELS)
{
if (p_config->is_watcher)
{
nrf_gpio_cfg_watcher(pin);
}
else
{
nrf_gpio_cfg_input(pin, p_config->pull);
}
if (p_config->hi_accuracy)
{
nrf_gpiote_event_configure(channel, pin, p_config->sense);
}
else
{
m_cb.port_handlers_pins[channel -
GPIOTE_CH_NUM] |= (p_config->sense) << SENSE_FIELD_POS;
}
}
else
{
err_code = NRF_ERROR_NO_MEM;
}
}
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrf_drv_gpiote_in_event_enable(nrf_drv_gpiote_pin_t pin, bool int_enable)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use_by_gpiote(pin));
if (pin_in_use_by_port(pin))
{
uint8_t pin_and_sense =
m_cb.port_handlers_pins[channel_port_get(pin) - GPIOTE_CH_NUM];
nrf_gpiote_polarity_t polarity =
(nrf_gpiote_polarity_t)(pin_and_sense >> SENSE_FIELD_POS);
nrf_gpio_pin_sense_t sense;
if (polarity == NRF_GPIOTE_POLARITY_TOGGLE)
{
/* read current pin state and set for next sense to oposit */
sense = (nrf_gpio_pin_read(pin)) ?
NRF_GPIO_PIN_SENSE_LOW : NRF_GPIO_PIN_SENSE_HIGH;
}
else
{
sense = (polarity == NRF_GPIOTE_POLARITY_LOTOHI) ?
NRF_GPIO_PIN_SENSE_HIGH : NRF_GPIO_PIN_SENSE_LOW;
}
nrf_gpio_cfg_sense_set(pin, sense);
}
else if (pin_in_use_by_te(pin))
{
int32_t channel = (int32_t)channel_port_get(pin);
nrf_gpiote_events_t event = TE_IDX_TO_EVENT_ADDR(channel);
nrf_gpiote_event_enable(channel);
nrf_gpiote_event_clear(event);
if (int_enable)
{
nrf_drv_gpiote_evt_handler_t handler = channel_handler_get(channel_port_get(pin));
// Enable the interrupt only if event handler was provided.
if (handler)
{
nrf_gpiote_int_enable(1 << channel);
}
}
}
}
void nrf_drv_gpiote_in_event_disable(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use_by_gpiote(pin));
if (pin_in_use_by_port(pin))
{
nrf_gpio_cfg_sense_set(pin, NRF_GPIO_PIN_NOSENSE);
}
else if (pin_in_use_by_te(pin))
{
int32_t channel = (int32_t)channel_port_get(pin);
nrf_gpiote_event_disable(channel);
nrf_gpiote_int_disable(1 << channel);
}
}
void nrf_drv_gpiote_in_uninit(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use_by_gpiote(pin));
nrf_drv_gpiote_in_event_disable(pin);
if (pin_in_use_by_te(pin))
{
nrf_gpiote_te_default(channel_port_get(pin));
}
nrf_gpio_cfg_default(pin);
channel_free((uint8_t)channel_port_get(pin));
pin_in_use_clear(pin);
}
bool nrf_drv_gpiote_in_is_set(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
return nrf_gpio_pin_read(pin) ? true : false;
}
uint32_t nrf_drv_gpiote_in_event_addr_get(nrf_drv_gpiote_pin_t pin)
{
ASSERT(pin < NUMBER_OF_PINS);
ASSERT(pin_in_use_by_port(pin) || pin_in_use_by_te(pin));
nrf_gpiote_events_t event = NRF_GPIOTE_EVENTS_PORT;
if (pin_in_use_by_te(pin))
{
event = TE_IDX_TO_EVENT_ADDR(channel_port_get(pin));
}
return nrf_gpiote_event_addr_get(event);
}
void GPIOTE_IRQHandler(void)
{
uint32_t status = 0;
uint32_t input[GPIO_COUNT] = {0};
/* collect status of all GPIOTE pin events. Processing is done once all are collected and cleared.*/
uint32_t i;
nrf_gpiote_events_t event = NRF_GPIOTE_EVENTS_IN_0;
uint32_t mask = (uint32_t)NRF_GPIOTE_INT_IN0_MASK;
for (i = 0; i < GPIOTE_CH_NUM; i++)
{
if (nrf_gpiote_event_is_set(event) && nrf_gpiote_int_is_enabled(mask))
{
nrf_gpiote_event_clear(event);
status |= mask;
}
mask <<= 1;
/* Incrementing to next event, utilizing the fact that events are grouped together
* in ascending order. */
event = (nrf_gpiote_events_t)((uint32_t)event + sizeof(uint32_t));
}
/* collect PORT status event, if event is set read pins state. Processing is postponed to the
* end of interrupt. */
if (nrf_gpiote_event_is_set(NRF_GPIOTE_EVENTS_PORT))
{
nrf_gpiote_event_clear(NRF_GPIOTE_EVENTS_PORT);
status |= (uint32_t)NRF_GPIOTE_INT_PORT_MASK;
nrf_gpio_ports_read(0, GPIO_COUNT, input);
}
/* Process pin events. */
if (status & NRF_GPIOTE_INT_IN_MASK)
{
mask = (uint32_t)NRF_GPIOTE_INT_IN0_MASK;
for (i = 0; i < GPIOTE_CH_NUM; i++)
{
if (mask & status)
{
nrf_drv_gpiote_pin_t pin = nrf_gpiote_event_pin_get(i);
NRF_LOG_DEBUG("Event in number: %d.\r\n", i);
nrf_gpiote_polarity_t polarity = nrf_gpiote_event_polarity_get(i);
nrf_drv_gpiote_evt_handler_t handler = channel_handler_get(i);
NRF_LOG_DEBUG("Pin: %d, polarity: %d.\r\n", pin, polarity);
if (handler)
{
handler(pin, polarity);
}
}
mask <<= 1;
}
}
if (status & (uint32_t)NRF_GPIOTE_INT_PORT_MASK)
{
/* Process port event. */
uint32_t port_idx;
uint8_t repeat = 0;
uint32_t toggle_mask[GPIO_COUNT] = {0};
uint32_t pins_to_check[GPIO_COUNT];
// Faster way of doing memset because in interrupt context.
for (port_idx = 0; port_idx < GPIO_COUNT; port_idx++)
{
pins_to_check[port_idx] = 0xFFFFFFFF;
}
do
{
repeat = 0;
for (i = 0; i < GPIOTE_CONFIG_NUM_OF_LOW_POWER_EVENTS; i++)
{
uint8_t pin_and_sense = m_cb.port_handlers_pins[i];
nrf_drv_gpiote_pin_t pin = (pin_and_sense & ~SENSE_FIELD_MASK);
if ((m_cb.port_handlers_pins[i] != PIN_NOT_USED)
&& nrf_bitmask_bit_is_set(pin, pins_to_check))
{
nrf_gpiote_polarity_t polarity =
(nrf_gpiote_polarity_t)((pin_and_sense &
SENSE_FIELD_MASK) >> SENSE_FIELD_POS);
nrf_drv_gpiote_evt_handler_t handler =
channel_handler_get(channel_port_get(pin));
if (handler || (polarity == NRF_GPIOTE_POLARITY_TOGGLE))
{
if (polarity == NRF_GPIOTE_POLARITY_TOGGLE)
{
nrf_bitmask_bit_set(pin, toggle_mask);
}
nrf_gpio_pin_sense_t sense = nrf_gpio_pin_sense_get(pin);
uint32_t pin_state = nrf_bitmask_bit_is_set(pin, input);
if ((pin_state && (sense == NRF_GPIO_PIN_SENSE_HIGH)) ||
(!pin_state && (sense == NRF_GPIO_PIN_SENSE_LOW)) )
{
NRF_LOG_DEBUG("PORT event for pin: %d, polarity: %d.\r\n", pin,
polarity);
if (polarity == NRF_GPIOTE_POLARITY_TOGGLE)
{
nrf_gpio_pin_sense_t next_sense =
(sense == NRF_GPIO_PIN_SENSE_HIGH) ?
NRF_GPIO_PIN_SENSE_LOW :
NRF_GPIO_PIN_SENSE_HIGH;
nrf_gpio_cfg_sense_set(pin, next_sense);
++repeat;
}
if (handler)
{
handler(pin, polarity);
}
}
}
}
}
if (repeat)
{
// When one of the pins in low-accuracy and toggle mode becomes active,
// it's sense mode is inverted to clear the internal SENSE signal.
// State of any other enabled low-accuracy input in toggle mode must be checked
// explicitly, because it does not trigger the interrput when SENSE signal is active.
// For more information about SENSE functionality, refer to Product Specification.
uint32_t new_input[GPIO_COUNT];
bool input_unchanged = true;
nrf_gpio_ports_read(0, GPIO_COUNT, new_input);
// Faster way of doing memcmp because in interrupt context.
for (port_idx = 0; port_idx < GPIO_COUNT; port_idx++)
{
if (new_input[port_idx] != input[port_idx])
{
input_unchanged = false;
break;
}
}
if (input_unchanged)
{
// No change.
repeat = 0;
}
else
{
// Faster way of doing memcpy because in interrupt context.
for (port_idx = 0; port_idx < GPIO_COUNT; port_idx++)
{
input[port_idx] = new_input[port_idx];
pins_to_check[port_idx] = toggle_mask[port_idx];
}
}
}
}
while (repeat);
}
}
/*lint -restore*/
#endif // NRF_MODULE_ENABLED(GPIOTE)
|