1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
|
/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(I2S)
#include "nrf_drv_i2s.h"
#include "nrf_drv_common.h"
#include "nrf_gpio.h"
#include "nrf_assert.h"
#include "app_util_platform.h"
#define NRF_LOG_MODULE_NAME "I2S"
#if I2S_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL I2S_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR I2S_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR I2S_CONFIG_DEBUG_COLOR
#define EVT_TO_STR(event) (event == NRF_I2S_EVENT_RXPTRUPD ? "NRF_I2S_EVENT_RXPTRUPD" : \
(event == NRF_I2S_EVENT_TXPTRUPD ? "NRF_I2S_EVENT_TXPTRUPD" : \
(event == NRF_I2S_EVENT_STOPPED ? "NRF_I2S_EVENT_STOPPED" : "UNKNOWN EVENT")))
#else //I2S_CONFIG_LOG_ENABLED
#define EVT_TO_STR(event) ""
#define NRF_LOG_LEVEL 0
#endif //I2S_CONFIG_LOG_ENABLED
#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#define MODULE_INITIALIZED (m_cb.state == NRF_DRV_STATE_INITIALIZED) /**< Macro designating whether the module has been initialized properly. */
// Control block - driver instance local data.
typedef struct
{
nrf_drv_i2s_data_handler_t handler;
nrf_drv_state_t state;
bool synchronized_mode : 1;
bool rx_ready : 1;
bool tx_ready : 1;
bool just_started : 1;
uint16_t buffer_half_size;
uint32_t * p_rx_buffer;
uint32_t * p_tx_buffer;
} i2s_control_block_t;
static i2s_control_block_t m_cb;
static nrf_drv_i2s_config_t const m_default_config = NRF_DRV_I2S_DEFAULT_CONFIG;
static void configure_pins(nrf_drv_i2s_config_t const * p_config)
{
uint32_t mck_pin, sdout_pin, sdin_pin;
// Configure pins used by the peripheral:
// - SCK and LRCK (required) - depending on the mode of operation these
// pins are configured as outputs (in Master mode) or inputs (in Slave
// mode).
if (p_config->mode == NRF_I2S_MODE_MASTER)
{
nrf_gpio_cfg_output(p_config->sck_pin);
nrf_gpio_cfg_output(p_config->lrck_pin);
}
else
{
nrf_gpio_cfg_input(p_config->sck_pin, NRF_GPIO_PIN_NOPULL);
nrf_gpio_cfg_input(p_config->lrck_pin, NRF_GPIO_PIN_NOPULL);
}
// - MCK (optional) - always output,
if (p_config->mck_pin != NRF_DRV_I2S_PIN_NOT_USED)
{
mck_pin = p_config->mck_pin;
nrf_gpio_cfg_output(mck_pin);
}
else
{
mck_pin = NRF_I2S_PIN_NOT_CONNECTED;
}
// - SDOUT (optional) - always output,
if (p_config->sdout_pin != NRF_DRV_I2S_PIN_NOT_USED)
{
sdout_pin = p_config->sdout_pin;
nrf_gpio_cfg_output(sdout_pin);
}
else
{
sdout_pin = NRF_I2S_PIN_NOT_CONNECTED;
}
// - SDIN (optional) - always input.
if (p_config->sdin_pin != NRF_DRV_I2S_PIN_NOT_USED)
{
sdin_pin = p_config->sdin_pin;
nrf_gpio_cfg_input(sdin_pin, NRF_GPIO_PIN_NOPULL);
}
else
{
sdin_pin = NRF_I2S_PIN_NOT_CONNECTED;
}
nrf_i2s_pins_set(NRF_I2S, p_config->sck_pin, p_config->lrck_pin,
mck_pin, sdout_pin, sdin_pin);
}
ret_code_t nrf_drv_i2s_init(nrf_drv_i2s_config_t const * p_config,
nrf_drv_i2s_data_handler_t handler)
{
ASSERT(handler);
ret_code_t err_code;
if (m_cb.state != NRF_DRV_STATE_UNINITIALIZED)
{
err_code = NRF_ERROR_INVALID_STATE;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
if (p_config == NULL)
{
p_config = &m_default_config;
}
if (!nrf_i2s_configure(NRF_I2S, p_config->mode,
p_config->format,
p_config->alignment,
p_config->sample_width,
p_config->channels,
p_config->mck_setup,
p_config->ratio))
{
err_code = NRF_ERROR_INVALID_PARAM;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
configure_pins(p_config);
m_cb.handler = handler;
nrf_drv_common_irq_enable(I2S_IRQn, p_config->irq_priority);
m_cb.state = NRF_DRV_STATE_INITIALIZED;
err_code = NRF_SUCCESS;
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrf_drv_i2s_uninit(void)
{
ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
nrf_drv_i2s_stop();
nrf_drv_common_irq_disable(I2S_IRQn);
m_cb.state = NRF_DRV_STATE_UNINITIALIZED;
NRF_LOG_INFO("Initialized.\r\n");
}
ret_code_t nrf_drv_i2s_start(uint32_t * p_rx_buffer,
uint32_t * p_tx_buffer,
uint16_t buffer_size,
uint8_t flags)
{
ASSERT((p_rx_buffer != NULL) || (p_tx_buffer != NULL));
uint16_t buffer_half_size = buffer_size / 2;
ASSERT(buffer_half_size != 0);
VERIFY_MODULE_INITIALIZED();
ret_code_t err_code;
if ((p_rx_buffer != NULL) && !nrf_drv_is_in_RAM(p_rx_buffer))
{
err_code = NRF_ERROR_INVALID_ADDR;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
if ((p_tx_buffer != NULL) && !nrf_drv_is_in_RAM(p_tx_buffer))
{
err_code = NRF_ERROR_INVALID_ADDR;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
// Initially we set up the peripheral to use the first half of each buffer,
// then in 'I2S_IRQHandler' we will switch to the second half.
nrf_i2s_transfer_set(NRF_I2S, buffer_half_size, p_rx_buffer, p_tx_buffer);
m_cb.p_rx_buffer = p_rx_buffer;
m_cb.p_tx_buffer = p_tx_buffer;
m_cb.buffer_half_size = buffer_half_size;
m_cb.just_started = true;
if ((flags & NRF_DRV_I2S_FLAG_SYNCHRONIZED_MODE) &&
// [synchronized mode makes sense only when both RX and TX are enabled]
(m_cb.p_rx_buffer != NULL) && (m_cb.p_tx_buffer != NULL))
{
m_cb.synchronized_mode = true;
m_cb.rx_ready = false;
m_cb.tx_ready = false;
}
else
{
m_cb.synchronized_mode = false;
}
nrf_i2s_enable(NRF_I2S);
m_cb.state = NRF_DRV_STATE_POWERED_ON;
if (m_cb.p_tx_buffer != NULL)
{
// Get from the application the first portion of data to be sent - we
// need to have it in the transmit buffer before we start the transfer.
// Unless the synchronized mode is active. In this mode we must wait
// with this until the first portion of data is received, so here we
// just make sure that there will be silence on the SDOUT line prior
// to that moment.
if (m_cb.synchronized_mode)
{
memset(m_cb.p_tx_buffer, 0, buffer_size);
}
else
{
m_cb.handler(NULL, m_cb.p_tx_buffer, m_cb.buffer_half_size);
}
}
nrf_i2s_event_clear(NRF_I2S, NRF_I2S_EVENT_RXPTRUPD);
nrf_i2s_event_clear(NRF_I2S, NRF_I2S_EVENT_TXPTRUPD);
nrf_i2s_int_enable(NRF_I2S,
NRF_I2S_INT_RXPTRUPD_MASK | NRF_I2S_INT_TXPTRUPD_MASK);
nrf_i2s_task_trigger(NRF_I2S, NRF_I2S_TASK_START);
err_code = NRF_SUCCESS;
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrf_drv_i2s_stop(void)
{
ASSERT(m_cb.state != NRF_DRV_STATE_UNINITIALIZED);
// First disable interrupts, then trigger the STOP task, so no spurious
// RXPTRUPD and TXPTRUPD events (see FTPAN-55) will be processed.
nrf_i2s_int_disable(NRF_I2S,
NRF_I2S_INT_RXPTRUPD_MASK | NRF_I2S_INT_TXPTRUPD_MASK);
nrf_i2s_task_trigger(NRF_I2S, NRF_I2S_TASK_STOP);
nrf_i2s_disable(NRF_I2S);
m_cb.state = NRF_DRV_STATE_INITIALIZED;
NRF_LOG_INFO("Disabled.");
}
void I2S_IRQHandler(void)
{
uint32_t * p_data_received = NULL;
uint32_t * p_data_to_send = NULL;
if (nrf_i2s_event_check(NRF_I2S, NRF_I2S_EVENT_TXPTRUPD))
{
nrf_i2s_event_clear(NRF_I2S, NRF_I2S_EVENT_TXPTRUPD);
NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_I2S_EVENT_TXPTRUPD));
// If transmission is not enabled, but for some reason the TXPTRUPD
// event has been generated, just ignore it.
if (m_cb.p_tx_buffer != NULL)
{
uint32_t * p_tx_buffer_next;
if (nrf_i2s_tx_buffer_get(NRF_I2S) == m_cb.p_tx_buffer)
{
p_tx_buffer_next = m_cb.p_tx_buffer + m_cb.buffer_half_size;
}
else
{
p_tx_buffer_next = m_cb.p_tx_buffer;
}
nrf_i2s_tx_buffer_set(NRF_I2S, p_tx_buffer_next);
m_cb.tx_ready = true;
// Now the part of the buffer that we've configured as "next" should
// be filled by the application with proper data to be sent;
// the peripheral is sending data from the other part of the buffer
// (but it will finish soon...).
p_data_to_send = p_tx_buffer_next;
}
}
if (nrf_i2s_event_check(NRF_I2S, NRF_I2S_EVENT_RXPTRUPD))
{
nrf_i2s_event_clear(NRF_I2S, NRF_I2S_EVENT_RXPTRUPD);
NRF_LOG_DEBUG("Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_I2S_EVENT_RXPTRUPD));
// If reception is not enabled, but for some reason the RXPTRUPD event
// has been generated, just ignore it.
if (m_cb.p_rx_buffer != NULL)
{
uint32_t * p_rx_buffer_next;
if (nrf_i2s_rx_buffer_get(NRF_I2S) == m_cb.p_rx_buffer)
{
p_rx_buffer_next = m_cb.p_rx_buffer + m_cb.buffer_half_size;
}
else
{
p_rx_buffer_next = m_cb.p_rx_buffer;
}
nrf_i2s_rx_buffer_set(NRF_I2S, p_rx_buffer_next);
m_cb.rx_ready = true;
// The RXPTRUPD event is generated for the first time right after
// the transfer is started. Since there is no data received yet at
// this point we only update the buffer pointer (it is done above),
// there is no callback to the application.
// [for synchronized mode this has to be handled differently -
// see below]
if (m_cb.just_started && !m_cb.synchronized_mode)
{
m_cb.just_started = false;
}
else
{
// The RXPTRUPD event indicates that from now on the peripheral
// will be filling the part of the buffer that was pointed at
// the time the event has been generated, hence now we can let
// the application process the data stored in the other part of
// the buffer - the one that we've just set to be filled next.
p_data_received = p_rx_buffer_next;
}
}
}
// Call the data handler passing received data to the application and/or
// requesting data to be sent.
if (!m_cb.synchronized_mode)
{
if ((p_data_received != NULL) || (p_data_to_send != NULL))
{
if (p_data_received != NULL)
{
NRF_LOG_DEBUG("Rx data:\r\n");
NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_data_received,
m_cb.buffer_half_size * sizeof(p_data_received));
}
m_cb.handler(p_data_received, p_data_to_send,
m_cb.buffer_half_size);
if (p_data_to_send != NULL)
{
NRF_LOG_DEBUG("Tx data:\r\n");
NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_data_to_send,
m_cb.buffer_half_size * sizeof(p_data_to_send));
}
}
}
// In the synchronized mode wait until the events for both RX and TX occur.
// And ignore the initial occurrences of these events, since they only
// indicate that the transfer has started - no data is received yet at
// that moment, so we have got nothing to pass to the application.
else
{
if (m_cb.rx_ready && m_cb.tx_ready)
{
m_cb.rx_ready = false;
m_cb.tx_ready = false;
if (m_cb.just_started)
{
m_cb.just_started = false;
}
else
{
NRF_LOG_DEBUG("Rx data:\r\n");
NRF_LOG_HEXDUMP_DEBUG((uint8_t *)nrf_i2s_rx_buffer_get(NRF_I2S),
m_cb.buffer_half_size * sizeof(p_data_to_send));
m_cb.handler(nrf_i2s_rx_buffer_get(NRF_I2S),
nrf_i2s_tx_buffer_get(NRF_I2S),
m_cb.buffer_half_size);
NRF_LOG_DEBUG("Tx data:\r\n");
NRF_LOG_HEXDUMP_DEBUG((uint8_t *)nrf_i2s_tx_buffer_get(NRF_I2S),
m_cb.buffer_half_size * sizeof(p_data_to_send));
}
}
}
}
#endif //NRF_MODULE_ENABLED(I2S)
|