aboutsummaryrefslogtreecommitdiffstats
path: root/drivers_nrf/pwm/nrf_drv_pwm.c
blob: 581ff607c2afa3ab25ff9e9b6a63b5d4fcb1c79d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
/**
 * Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 * 
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 * 
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 * 
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 * 
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 */
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(PWM)
#define ENABLED_PWM_COUNT (PWM0_ENABLED+PWM1_ENABLED+PWM2_ENABLED)
#if ENABLED_PWM_COUNT
#include <string.h>
#include "nrf_drv_pwm.h"
#include "nrf_drv_common.h"
#include "nrf_gpio.h"
#include "app_util_platform.h"

#define NRF_LOG_MODULE_NAME "PWM"

#if PWM_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL       PWM_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR  PWM_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR PWM_CONFIG_DEBUG_COLOR
#else //PWM_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL       0
#endif //PWM_CONFIG_LOG_ENABLED
#include "nrf_log.h"
#include "nrf_log_ctrl.h"

#if NRF_MODULE_ENABLED(PWM_NRF52_ANOMALY_109_WORKAROUND)
// The workaround uses interrupts to wake up the CPU and ensure it is active
// when PWM is about to start a DMA transfer. For initial transfer, done when
// a playback is started via PPI, a specific EGU instance is used to generate
// an interrupt. During the playback, the PWM interrupt triggered on SEQEND
// event of a preceding sequence is used to protect the transfer done for
// the next sequence to be played.
#include "nrf_egu.h"
#define USE_DMA_ISSUE_WORKAROUND
#endif
#if defined(USE_DMA_ISSUE_WORKAROUND)
#define EGU_IRQn(i)         EGU_IRQn_(i)
#define EGU_IRQn_(i)        SWI##i##_EGU##i##_IRQn
#define EGU_IRQHandler(i)   EGU_IRQHandler_(i)
#define EGU_IRQHandler_(i)  SWI##i##_EGU##i##_IRQHandler
#define DMA_ISSUE_EGU_IDX   PWM_NRF52_ANOMALY_109_EGU_INSTANCE
#define DMA_ISSUE_EGU               CONCAT_2(NRF_EGU, DMA_ISSUE_EGU_IDX)
#define DMA_ISSUE_EGU_IRQn          EGU_IRQn(DMA_ISSUE_EGU_IDX)
#define DMA_ISSUE_EGU_IRQHandler    EGU_IRQHandler(DMA_ISSUE_EGU_IDX)
#endif

// Control block - driver instance local data.
typedef struct
{
#if defined(USE_DMA_ISSUE_WORKAROUND)
    uint32_t                 starting_task_address;
#endif
    nrf_drv_pwm_handler_t    handler;
    nrf_drv_state_t volatile state;
    uint8_t                  flags;
} pwm_control_block_t;
static pwm_control_block_t m_cb[ENABLED_PWM_COUNT];

static void configure_pins(nrf_drv_pwm_t const * const p_instance,
                           nrf_drv_pwm_config_t const * p_config)
{
    uint32_t out_pins[NRF_PWM_CHANNEL_COUNT];
    uint8_t i;

    for (i = 0; i < NRF_PWM_CHANNEL_COUNT; ++i)
    {
        uint8_t output_pin = p_config->output_pins[i];
        if (output_pin != NRF_DRV_PWM_PIN_NOT_USED)
        {
            bool inverted = output_pin &  NRF_DRV_PWM_PIN_INVERTED;
            out_pins[i]   = output_pin & ~NRF_DRV_PWM_PIN_INVERTED;

            if (inverted)
            {
                nrf_gpio_pin_set(out_pins[i]);
            }
            else
            {
                nrf_gpio_pin_clear(out_pins[i]);
            }

            nrf_gpio_cfg_output(out_pins[i]);
        }
        else
        {
            out_pins[i] = NRF_PWM_PIN_NOT_CONNECTED;
        }
    }

    nrf_pwm_pins_set(p_instance->p_registers, out_pins);
}


ret_code_t nrf_drv_pwm_init(nrf_drv_pwm_t const * const p_instance,
                            nrf_drv_pwm_config_t const * p_config,
                            nrf_drv_pwm_handler_t        handler)
{
    ASSERT(p_config);

    ret_code_t err_code;

    pwm_control_block_t * p_cb  = &m_cb[p_instance->drv_inst_idx];

    if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED)
    {
        err_code = NRF_ERROR_INVALID_STATE;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n", (uint32_t)__func__,
            (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }

    p_cb->handler = handler;

    configure_pins(p_instance, p_config);

    nrf_pwm_enable(p_instance->p_registers);
    nrf_pwm_configure(p_instance->p_registers,
        p_config->base_clock, p_config->count_mode, p_config->top_value);
    nrf_pwm_decoder_set(p_instance->p_registers,
        p_config->load_mode, p_config->step_mode);

    nrf_pwm_shorts_set(p_instance->p_registers, 0);
    nrf_pwm_int_set(p_instance->p_registers, 0);
    nrf_pwm_event_clear(p_instance->p_registers, NRF_PWM_EVENT_LOOPSDONE);
    nrf_pwm_event_clear(p_instance->p_registers, NRF_PWM_EVENT_SEQEND0);
    nrf_pwm_event_clear(p_instance->p_registers, NRF_PWM_EVENT_SEQEND1);
    nrf_pwm_event_clear(p_instance->p_registers, NRF_PWM_EVENT_STOPPED);

    // The workaround for nRF52 Anomaly 109 "protects" DMA transfers by handling
    // interrupts generated on SEQEND0 and SEQEND1 events (this ensures that
    // the 64 MHz clock is ready when data for the next sequence to be played
    // is read). Therefore, the PWM interrupt must be enabled even if the event
    // handler is not used.
#if defined(USE_DMA_ISSUE_WORKAROUND)
    nrf_drv_common_irq_enable(DMA_ISSUE_EGU_IRQn, p_config->irq_priority);
#else
    if (p_cb->handler)
#endif
    {
        nrf_drv_common_irq_enable(nrf_drv_get_IRQn(p_instance->p_registers),
            p_config->irq_priority);
    }

    p_cb->state = NRF_DRV_STATE_INITIALIZED;

    err_code = NRF_SUCCESS;
    NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__,
        (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
    return err_code;
}


void nrf_drv_pwm_uninit(nrf_drv_pwm_t const * const p_instance)
{
    pwm_control_block_t * p_cb  = &m_cb[p_instance->drv_inst_idx];
    ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);

    nrf_drv_common_irq_disable(nrf_drv_get_IRQn(p_instance->p_registers));
#if defined(USE_DMA_ISSUE_WORKAROUND)
    nrf_drv_common_irq_disable(DMA_ISSUE_EGU_IRQn);
#endif

    nrf_pwm_disable(p_instance->p_registers);

    p_cb->state = NRF_DRV_STATE_UNINITIALIZED;
}


static uint32_t start_playback(nrf_drv_pwm_t const * const p_instance,
                               pwm_control_block_t * p_cb,
                               uint8_t               flags,
                               nrf_pwm_task_t        starting_task)
{
    p_cb->state = NRF_DRV_STATE_POWERED_ON;
    p_cb->flags = flags;

    if (p_cb->handler)
    {
        // The notification about finished playback is by default enabled,
        // but this can be suppressed.
        // The notification that the peripheral has stopped is always enabled.
        uint32_t int_mask = NRF_PWM_INT_LOOPSDONE_MASK |
                            NRF_PWM_INT_STOPPED_MASK;

        // The workaround for nRF52 Anomaly 109 "protects" DMA transfers by
        // handling interrupts generated on SEQEND0 and SEQEND1 events (see
        // 'nrf_drv_pwm_init'), hence these events must be always enabled
        // to generate interrupts.
        // However, the user handler is called for them only when requested
        // (see 'irq_handler').
#if defined(USE_DMA_ISSUE_WORKAROUND)
        int_mask |= NRF_PWM_INT_SEQEND0_MASK | NRF_PWM_INT_SEQEND1_MASK;
#else
        if (flags & NRF_DRV_PWM_FLAG_SIGNAL_END_SEQ0)
        {
            int_mask |= NRF_PWM_INT_SEQEND0_MASK;
        }
        if (flags & NRF_DRV_PWM_FLAG_SIGNAL_END_SEQ1)
        {
            int_mask |= NRF_PWM_INT_SEQEND1_MASK;
        }
#endif
        if (flags & NRF_DRV_PWM_FLAG_NO_EVT_FINISHED)
        {
            int_mask &= ~NRF_PWM_INT_LOOPSDONE_MASK;
        }

        nrf_pwm_int_set(p_instance->p_registers, int_mask);
    }
#if defined(USE_DMA_ISSUE_WORKAROUND)
    else
    {
        nrf_pwm_int_set(p_instance->p_registers,
            NRF_PWM_INT_SEQEND0_MASK | NRF_PWM_INT_SEQEND1_MASK);
    }
#endif

    nrf_pwm_event_clear(p_instance->p_registers, NRF_PWM_EVENT_STOPPED);

    if (flags & NRF_DRV_PWM_FLAG_START_VIA_TASK)
    {
        uint32_t starting_task_address =
            nrf_pwm_task_address_get(p_instance->p_registers, starting_task);

#if defined(USE_DMA_ISSUE_WORKAROUND)
        // To "protect" the initial DMA transfer it is required to start
        // the PWM by triggering the proper task from EGU interrupt handler,
        // it is not safe to do it directly via PPI.
        p_cb->starting_task_address = starting_task_address;
        nrf_egu_int_enable(DMA_ISSUE_EGU,
            nrf_egu_int_get(DMA_ISSUE_EGU, p_instance->drv_inst_idx));
        return (uint32_t)nrf_egu_task_trigger_address_get(DMA_ISSUE_EGU,
            p_instance->drv_inst_idx);
#else
        return starting_task_address;
#endif
    }

    nrf_pwm_task_trigger(p_instance->p_registers, starting_task);
    return 0;
}


uint32_t nrf_drv_pwm_simple_playback(nrf_drv_pwm_t const * const p_instance,
                                     nrf_pwm_sequence_t const * p_sequence,
                                     uint16_t                   playback_count,
                                     uint32_t                   flags)
{
    pwm_control_block_t * p_cb  = &m_cb[p_instance->drv_inst_idx];
    ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);
    ASSERT(playback_count > 0);
    ASSERT(nrf_drv_is_in_RAM(p_sequence->values.p_raw));

    // To take advantage of the looping mechanism, we need to use both sequences
    // (single sequence can be played back only once).
    nrf_pwm_sequence_set(p_instance->p_registers, 0, p_sequence);
    nrf_pwm_sequence_set(p_instance->p_registers, 1, p_sequence);
    bool odd = (playback_count & 1);
    nrf_pwm_loop_set(p_instance->p_registers,
        (playback_count / 2) + (odd ? 1 : 0));

    uint32_t shorts_mask;
    if (flags & NRF_DRV_PWM_FLAG_STOP)
    {
        shorts_mask = NRF_PWM_SHORT_LOOPSDONE_STOP_MASK;
    }
    else if (flags & NRF_DRV_PWM_FLAG_LOOP)
    {
        shorts_mask = odd ? NRF_PWM_SHORT_LOOPSDONE_SEQSTART1_MASK
                          : NRF_PWM_SHORT_LOOPSDONE_SEQSTART0_MASK;
    }
    else
    {
        shorts_mask = 0;
    }
    nrf_pwm_shorts_set(p_instance->p_registers, shorts_mask);

    NRF_LOG_INFO("Function: %s, sequence length: %d.\r\n", (uint32_t)__func__,
        p_sequence->length * sizeof(p_sequence->values));
    NRF_LOG_DEBUG("Sequence data:\r\n");
    NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_sequence->values.p_raw,
        p_sequence->length * sizeof(p_sequence->values));
    return start_playback(p_instance, p_cb, flags,
        odd ? NRF_PWM_TASK_SEQSTART1 : NRF_PWM_TASK_SEQSTART0);
}


uint32_t nrf_drv_pwm_complex_playback(nrf_drv_pwm_t const * const p_instance,
                                      nrf_pwm_sequence_t const * p_sequence_0,
                                      nrf_pwm_sequence_t const * p_sequence_1,
                                      uint16_t                   playback_count,
                                      uint32_t                   flags)
{
    pwm_control_block_t * p_cb  = &m_cb[p_instance->drv_inst_idx];
    ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);
    ASSERT(playback_count > 0);
    ASSERT(nrf_drv_is_in_RAM(p_sequence_0->values.p_raw));
    ASSERT(nrf_drv_is_in_RAM(p_sequence_1->values.p_raw));

    nrf_pwm_sequence_set(p_instance->p_registers, 0, p_sequence_0);
    nrf_pwm_sequence_set(p_instance->p_registers, 1, p_sequence_1);
    nrf_pwm_loop_set(p_instance->p_registers, playback_count);

    uint32_t shorts_mask;
    if (flags & NRF_DRV_PWM_FLAG_STOP)
    {
        shorts_mask = NRF_PWM_SHORT_LOOPSDONE_STOP_MASK;
    }
    else if (flags & NRF_DRV_PWM_FLAG_LOOP)
    {
        shorts_mask = NRF_PWM_SHORT_LOOPSDONE_SEQSTART0_MASK;
    }
    else
    {
        shorts_mask = 0;
    }
    nrf_pwm_shorts_set(p_instance->p_registers, shorts_mask);

    NRF_LOG_INFO("Function: %s, sequence 0 length: %d.\r\n", (uint32_t)__func__,
        p_sequence_0->length * sizeof(p_sequence_0->values));
    NRF_LOG_INFO("Function: %s, sequence 1 length: %d.\r\n", (uint32_t)__func__,
        p_sequence_1->length * sizeof(p_sequence_1->values));
    NRF_LOG_DEBUG("Sequence 0 data:\r\n");
    NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_sequence_0->values.p_raw,
        p_sequence_0->length * sizeof(p_sequence_0->values));
    NRF_LOG_DEBUG("Sequence 1 data:\r\n");
    NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_sequence_1->values.p_raw,
        p_sequence_1->length * sizeof(p_sequence_1->values));
    return start_playback(p_instance, p_cb, flags, NRF_PWM_TASK_SEQSTART0);
}


bool nrf_drv_pwm_stop(nrf_drv_pwm_t const * const p_instance,
                      bool wait_until_stopped)
{
    ASSERT(m_cb[p_instance->drv_inst_idx].state != NRF_DRV_STATE_UNINITIALIZED);

    bool ret_val = false;

    if (nrf_drv_pwm_is_stopped(p_instance))
    {
        ret_val = true;
    }
    else
    {
        nrf_pwm_task_trigger(p_instance->p_registers, NRF_PWM_TASK_STOP);

        do {
            if (nrf_drv_pwm_is_stopped(p_instance))
            {
                ret_val = true;
                break;
            }
        } while (wait_until_stopped);
    }

    NRF_LOG_INFO("%s returned %d.\r\n", (uint32_t)__func__, ret_val);
    return ret_val;
}


bool nrf_drv_pwm_is_stopped(nrf_drv_pwm_t const * const p_instance)
{
    pwm_control_block_t * p_cb  = &m_cb[p_instance->drv_inst_idx];
    ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);

    bool ret_val = false;

    // If the event handler is used (interrupts are enabled), the state will
    // be changed in interrupt handler when the STOPPED event occurs.
    if (p_cb->state != NRF_DRV_STATE_POWERED_ON)
    {
        ret_val = true;
    }
    // If interrupts are disabled, we must check the STOPPED event here.
    if (nrf_pwm_event_check(p_instance->p_registers, NRF_PWM_EVENT_STOPPED))
    {
        p_cb->state = NRF_DRV_STATE_INITIALIZED;
        NRF_LOG_INFO("Disabled.\r\n");
        ret_val = true;
    }

    NRF_LOG_INFO("%s returned %d.\r\n", (uint32_t)__func__, ret_val);
    return ret_val;
}


static void irq_handler(NRF_PWM_Type * p_pwm, pwm_control_block_t * p_cb)
{
    // The user handler is called for SEQEND0 and SEQEND1 events only when the
    // user asks for it (by setting proper flags when starting the playback).
    if (nrf_pwm_event_check(p_pwm, NRF_PWM_EVENT_SEQEND0))
    {
        nrf_pwm_event_clear(p_pwm, NRF_PWM_EVENT_SEQEND0);
        if ((p_cb->flags & NRF_DRV_PWM_FLAG_SIGNAL_END_SEQ0) && p_cb->handler)
        {
            p_cb->handler(NRF_DRV_PWM_EVT_END_SEQ0);
        }
    }
    if (nrf_pwm_event_check(p_pwm, NRF_PWM_EVENT_SEQEND1))
    {
        nrf_pwm_event_clear(p_pwm, NRF_PWM_EVENT_SEQEND1);
        if ((p_cb->flags & NRF_DRV_PWM_FLAG_SIGNAL_END_SEQ1) && p_cb->handler)
        {
            p_cb->handler(NRF_DRV_PWM_EVT_END_SEQ1);
        }
    }
    // For LOOPSDONE the handler is called by default, but the user can disable
    // this (via flags).
    if (nrf_pwm_event_check(p_pwm, NRF_PWM_EVENT_LOOPSDONE))
    {
        nrf_pwm_event_clear(p_pwm, NRF_PWM_EVENT_LOOPSDONE);
        if (!(p_cb->flags & NRF_DRV_PWM_FLAG_NO_EVT_FINISHED) && p_cb->handler)
        {
            p_cb->handler(NRF_DRV_PWM_EVT_FINISHED);
        }
    }

    // The STOPPED event is always propagated to the user handler.
    if (nrf_pwm_event_check(p_pwm, NRF_PWM_EVENT_STOPPED))
    {
        nrf_pwm_event_clear(p_pwm, NRF_PWM_EVENT_STOPPED);

        p_cb->state = NRF_DRV_STATE_INITIALIZED;
        if (p_cb->handler)
        {
            p_cb->handler(NRF_DRV_PWM_EVT_STOPPED);
        }
    }
}


#if defined(USE_DMA_ISSUE_WORKAROUND)
// See 'start_playback' why this is needed.
void DMA_ISSUE_EGU_IRQHandler(void)
{
    int i;
    for (i = 0; i < ENABLED_PWM_COUNT; ++i)
    {
        volatile uint32_t * p_event_reg =
            nrf_egu_event_triggered_address_get(DMA_ISSUE_EGU, i);
        if (*p_event_reg)
        {
            *p_event_reg = 0;
            *(volatile uint32_t *)(m_cb[i].starting_task_address) = 1;
        }
    }
}
#endif


#if NRF_MODULE_ENABLED(PWM0)
void PWM0_IRQHandler(void)
{
    irq_handler(NRF_PWM0, &m_cb[PWM0_INSTANCE_INDEX]);
}
#endif

#if NRF_MODULE_ENABLED(PWM1)
void PWM1_IRQHandler(void)
{
    irq_handler(NRF_PWM1, &m_cb[PWM1_INSTANCE_INDEX]);
}
#endif

#if NRF_MODULE_ENABLED(PWM2)
void PWM2_IRQHandler(void)
{
    irq_handler(NRF_PWM2, &m_cb[PWM2_INSTANCE_INDEX]);
}
#endif

#if PWM3_ENABLED
void PWM3_IRQHandler(void)
{
    irq_handler(NRF_PWM3, &m_cb[PWM3_INSTANCE_INDEX]);
}
#endif
#endif //ENABLED_PWM_COUNT
#endif //NRF_MODULE_ENABLED(PWM)