aboutsummaryrefslogtreecommitdiffstats
path: root/drivers_nrf/spi_master/nrf_drv_spi.c
blob: 3b4c912e431f060b19bdaae1dc40061220523317 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
/**
 * Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
 * 
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 * 
 * 1. Redistributions of source code must retain the above copyright notice, this
 *    list of conditions and the following disclaimer.
 * 
 * 2. Redistributions in binary form, except as embedded into a Nordic
 *    Semiconductor ASA integrated circuit in a product or a software update for
 *    such product, must reproduce the above copyright notice, this list of
 *    conditions and the following disclaimer in the documentation and/or other
 *    materials provided with the distribution.
 * 
 * 3. Neither the name of Nordic Semiconductor ASA nor the names of its
 *    contributors may be used to endorse or promote products derived from this
 *    software without specific prior written permission.
 * 
 * 4. This software, with or without modification, must only be used with a
 *    Nordic Semiconductor ASA integrated circuit.
 * 
 * 5. Any software provided in binary form under this license must not be reverse
 *    engineered, decompiled, modified and/or disassembled.
 * 
 * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 */
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(SPI)
#define ENABLED_SPI_COUNT (SPI0_ENABLED+SPI1_ENABLED+SPI2_ENABLED)
#if ENABLED_SPI_COUNT

#include "nrf_drv_spi.h"
#include "nrf_drv_common.h"
#include "nrf_gpio.h"
#include "nrf_assert.h"
#include "app_util_platform.h"

#define NRF_LOG_MODULE_NAME "SPI"

#if SPI_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL       SPI_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR  SPI_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR SPI_CONFIG_DEBUG_COLOR
#else //SPI_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL       0
#endif //SPI_CONFIG_LOG_ENABLED
#include "nrf_log.h"

#ifndef SPIM_PRESENT
    // Make sure SPIx_USE_EASY_DMA is 0 for nRF51 (if a common
    // "nrf_drv_config.h" file is provided for nRF51 and nRF52).
    #undef  SPI0_USE_EASY_DMA
    #define SPI0_USE_EASY_DMA 0
    #undef  SPI1_USE_EASY_DMA
    #define SPI1_USE_EASY_DMA 0
    #undef  SPI2_USE_EASY_DMA
    #define SPI2_USE_EASY_DMA 0
#endif

#ifndef SPI0_USE_EASY_DMA
#define SPI0_USE_EASY_DMA 0
#endif

#ifndef SPI1_USE_EASY_DMA
#define SPI1_USE_EASY_DMA 0
#endif

#ifndef SPI2_USE_EASY_DMA
#define SPI2_USE_EASY_DMA 0
#endif

// This set of macros makes it possible to exclude parts of code when one type
// of supported peripherals is not used.
#if ((NRF_MODULE_ENABLED(SPI0) && SPI0_USE_EASY_DMA) || \
     (NRF_MODULE_ENABLED(SPI1) && SPI1_USE_EASY_DMA) || \
     (NRF_MODULE_ENABLED(SPI2) && SPI2_USE_EASY_DMA))
    #define SPIM_IN_USE
#endif
#if ((NRF_MODULE_ENABLED(SPI0) && !SPI0_USE_EASY_DMA) || \
     (NRF_MODULE_ENABLED(SPI1) && !SPI1_USE_EASY_DMA) || \
     (NRF_MODULE_ENABLED(SPI2) && !SPI2_USE_EASY_DMA))
    #define SPI_IN_USE
#endif
#if defined(SPIM_IN_USE) && defined(SPI_IN_USE)
    // SPIM and SPI combined
    #define CODE_FOR_SPIM(code) if (p_instance->use_easy_dma) { code }
    #define CODE_FOR_SPI(code)  else { code }
#elif defined(SPIM_IN_USE) && !defined(SPI_IN_USE)
    // SPIM only
    #define CODE_FOR_SPIM(code) { code }
    #define CODE_FOR_SPI(code)
#elif !defined(SPIM_IN_USE) && defined(SPI_IN_USE)
    // SPI only
    #define CODE_FOR_SPIM(code)
    #define CODE_FOR_SPI(code)  { code }
#else
    #error "Wrong configuration."
#endif

#ifdef SPIM_IN_USE
#define END_INT_MASK     NRF_SPIM_INT_END_MASK
#endif

// Control block - driver instance local data.
typedef struct
{
    nrf_drv_spi_evt_handler_t handler;
    void *                p_context;
    nrf_drv_spi_evt_t     evt;  // Keep the struct that is ready for event handler. Less memcpy.
    nrf_drv_state_t       state;
    volatile bool         transfer_in_progress;

    // [no need for 'volatile' attribute for the following members, as they
    //  are not concurrently used in IRQ handlers and main line code]
    uint8_t         ss_pin;
    uint8_t         orc;
    uint8_t         bytes_transferred;

#if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND)
    uint8_t         tx_length;
    uint8_t         rx_length;
#endif

    bool tx_done : 1;
    bool rx_done : 1;
    bool abort   : 1;
} spi_control_block_t;
static spi_control_block_t m_cb[ENABLED_SPI_COUNT];

#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
    #define IRQ_HANDLER_NAME(n) irq_handler_for_instance_##n
    #define IRQ_HANDLER(n)      static void IRQ_HANDLER_NAME(n)(void)

    #if NRF_MODULE_ENABLED(SPI0)
        IRQ_HANDLER(0);
    #endif
    #if NRF_MODULE_ENABLED(SPI1)
        IRQ_HANDLER(1);
    #endif
    #if NRF_MODULE_ENABLED(SPI2)
        IRQ_HANDLER(2);
    #endif
    static nrf_drv_irq_handler_t const m_irq_handlers[ENABLED_SPI_COUNT] = {
    #if NRF_MODULE_ENABLED(SPI0)
        IRQ_HANDLER_NAME(0),
    #endif
    #if NRF_MODULE_ENABLED(SPI1)
        IRQ_HANDLER_NAME(1),
    #endif
    #if NRF_MODULE_ENABLED(SPI2)
        IRQ_HANDLER_NAME(2),
    #endif
    };
#else
    #define IRQ_HANDLER(n) void SPI##n##_IRQ_HANDLER(void)
#endif // NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)

ret_code_t nrf_drv_spi_init(nrf_drv_spi_t const * const p_instance,
                            nrf_drv_spi_config_t const * p_config,
                            nrf_drv_spi_evt_handler_t handler,
                            void * p_context)
{
    ASSERT(p_config);
    spi_control_block_t * p_cb  = &m_cb[p_instance->drv_inst_idx];
    ret_code_t err_code;

    if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED)
    {
        err_code = NRF_ERROR_INVALID_STATE;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
                        (uint32_t)__func__,
                        (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }

#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
    if (nrf_drv_common_per_res_acquire(p_instance->p_registers,
            m_irq_handlers[p_instance->drv_inst_idx]) != NRF_SUCCESS)
    {
        err_code = NRF_ERROR_BUSY;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
                        (uint32_t)__func__,
                        (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }
#endif

    p_cb->handler = handler;
    p_cb->p_context = p_context;

    uint32_t mosi_pin;
    uint32_t miso_pin;
    // Configure pins used by the peripheral:
    // - SCK - output with initial value corresponding with the SPI mode used:
    //   0 - for modes 0 and 1 (CPOL = 0), 1 - for modes 2 and 3 (CPOL = 1);
    //   according to the reference manual guidelines this pin and its input
    //   buffer must always be connected for the SPI to work.
    if (p_config->mode <= NRF_DRV_SPI_MODE_1)
    {
        nrf_gpio_pin_clear(p_config->sck_pin);
    }
    else
    {
        nrf_gpio_pin_set(p_config->sck_pin);
    }
    nrf_gpio_cfg(p_config->sck_pin,
                 NRF_GPIO_PIN_DIR_OUTPUT,
                 NRF_GPIO_PIN_INPUT_CONNECT,
                 NRF_GPIO_PIN_NOPULL,
                 NRF_GPIO_PIN_S0S1,
                 NRF_GPIO_PIN_NOSENSE);
    // - MOSI (optional) - output with initial value 0,
    if (p_config->mosi_pin != NRF_DRV_SPI_PIN_NOT_USED)
    {
        mosi_pin = p_config->mosi_pin;
        nrf_gpio_pin_clear(mosi_pin);
        nrf_gpio_cfg_output(mosi_pin);
    }
    else
    {
        mosi_pin = NRF_SPI_PIN_NOT_CONNECTED;
    }
    // - MISO (optional) - input,
    if (p_config->miso_pin != NRF_DRV_SPI_PIN_NOT_USED)
    {
        miso_pin = p_config->miso_pin;
        nrf_gpio_cfg_input(miso_pin, NRF_GPIO_PIN_NOPULL);
    }
    else
    {
        miso_pin = NRF_SPI_PIN_NOT_CONNECTED;
    }
    // - Slave Select (optional) - output with initial value 1 (inactive).
    if (p_config->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
    {
        nrf_gpio_pin_set(p_config->ss_pin);
        nrf_gpio_cfg_output(p_config->ss_pin);
    }
    m_cb[p_instance->drv_inst_idx].ss_pin = p_config->ss_pin;

    CODE_FOR_SPIM
    (
        NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers;
        nrf_spim_pins_set(p_spim, p_config->sck_pin, mosi_pin, miso_pin);
        nrf_spim_frequency_set(p_spim,
            (nrf_spim_frequency_t)p_config->frequency);
        nrf_spim_configure(p_spim,
            (nrf_spim_mode_t)p_config->mode,
            (nrf_spim_bit_order_t)p_config->bit_order);

        nrf_spim_orc_set(p_spim, p_config->orc);

        if (p_cb->handler)
        {
            nrf_spim_int_enable(p_spim, END_INT_MASK);
        }

        nrf_spim_enable(p_spim);
    )
    CODE_FOR_SPI
    (
        NRF_SPI_Type * p_spi = p_instance->p_registers;
        nrf_spi_pins_set(p_spi, p_config->sck_pin, mosi_pin, miso_pin);
        nrf_spi_frequency_set(p_spi,
            (nrf_spi_frequency_t)p_config->frequency);
        nrf_spi_configure(p_spi,
            (nrf_spi_mode_t)p_config->mode,
            (nrf_spi_bit_order_t)p_config->bit_order);

        m_cb[p_instance->drv_inst_idx].orc = p_config->orc;

        if (p_cb->handler)
        {
            nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK);
        }

        nrf_spi_enable(p_spi);
    )

    if (p_cb->handler)
    {
        nrf_drv_common_irq_enable(p_instance->irq, p_config->irq_priority);
    }

    p_cb->transfer_in_progress = false;
    p_cb->state = NRF_DRV_STATE_INITIALIZED;

    NRF_LOG_INFO("Init\r\n");

    err_code = NRF_SUCCESS;
    NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
                 (uint32_t)__func__,
                 (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
    return err_code;
}

void nrf_drv_spi_uninit(nrf_drv_spi_t const * const p_instance)
{
    spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
    ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);

    if (p_cb->handler)
    {
        nrf_drv_common_irq_disable(p_instance->irq);
    }

    #define DISABLE_ALL  0xFFFFFFFF

    CODE_FOR_SPIM
    (
        NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers;
        if (p_cb->handler)
        {
            nrf_spim_int_disable(p_spim, DISABLE_ALL);
            if (p_cb->transfer_in_progress)
            {
                // Ensure that SPI is not performing any transfer.
                nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_STOP);
                while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STOPPED)) {}
                p_cb->transfer_in_progress = false;
            }
        }
        nrf_spim_disable(p_spim);
    )
    CODE_FOR_SPI
    (
        NRF_SPI_Type * p_spi = p_instance->p_registers;
        if (p_cb->handler)
        {
            nrf_spi_int_disable(p_spi, DISABLE_ALL);
        }
        nrf_spi_disable(p_spi);
    )
    #undef DISABLE_ALL

#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
    nrf_drv_common_per_res_release(p_instance->p_registers);
#endif

    p_cb->state = NRF_DRV_STATE_UNINITIALIZED;
}

ret_code_t nrf_drv_spi_transfer(nrf_drv_spi_t const * const p_instance,
                                uint8_t const * p_tx_buffer,
                                uint8_t         tx_buffer_length,
                                uint8_t       * p_rx_buffer,
                                uint8_t         rx_buffer_length)
{
    nrf_drv_spi_xfer_desc_t xfer_desc;
    xfer_desc.p_tx_buffer = p_tx_buffer;
    xfer_desc.p_rx_buffer = p_rx_buffer;
    xfer_desc.tx_length   = tx_buffer_length;
    xfer_desc.rx_length   = rx_buffer_length;

    NRF_LOG_INFO("Transfer tx_len:%d, rx_len:%d.\r\n", tx_buffer_length, rx_buffer_length);
    NRF_LOG_DEBUG("Tx data:\r\n");
    NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_tx_buffer, tx_buffer_length * sizeof(p_tx_buffer));
    return nrf_drv_spi_xfer(p_instance, &xfer_desc, 0);
}

static void finish_transfer(spi_control_block_t * p_cb)
{
    // If Slave Select signal is used, this is the time to deactivate it.
    if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
    {
        nrf_gpio_pin_set(p_cb->ss_pin);
    }

    // By clearing this flag before calling the handler we allow subsequent
    // transfers to be started directly from the handler function.
    p_cb->transfer_in_progress = false;
    p_cb->evt.type = NRF_DRV_SPI_EVENT_DONE;
    NRF_LOG_INFO("Transfer rx_len:%d.\r\n", p_cb->evt.data.done.rx_length);
    NRF_LOG_DEBUG("Rx data:\r\n");
    NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_cb->evt.data.done.p_rx_buffer,
                          p_cb->evt.data.done.rx_length * sizeof(p_cb->evt.data.done.p_rx_buffer));
    p_cb->handler(&p_cb->evt, p_cb->p_context);
}

#ifdef SPI_IN_USE
// This function is called from IRQ handler or, in blocking mode, directly
// from the 'nrf_drv_spi_transfer' function.
// It returns true as long as the transfer should be continued, otherwise (when
// there is nothing more to send/receive) it returns false.
static bool transfer_byte(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb)
{
    // Read the data byte received in this transfer and store it in RX buffer,
    // if needed.
    volatile uint8_t rx_data = nrf_spi_rxd_get(p_spi);
    if (p_cb->bytes_transferred < p_cb->evt.data.done.rx_length)
    {
        p_cb->evt.data.done.p_rx_buffer[p_cb->bytes_transferred] = rx_data;
    }

    ++p_cb->bytes_transferred;

    // Check if there are more bytes to send or receive and write proper data
    // byte (next one from TX buffer or over-run character) to the TXD register
    // when needed.
    // NOTE - we've already used 'p_cb->bytes_transferred + 1' bytes from our
    //        buffers, because we take advantage of double buffering of TXD
    //        register (so in effect one byte is still being transmitted now);
    //        see how the transfer is started in the 'nrf_drv_spi_transfer'
    //        function.
    uint16_t bytes_used = p_cb->bytes_transferred + 1;

    if (p_cb->abort)
    {
        if (bytes_used < p_cb->evt.data.done.tx_length)
        {
            p_cb->evt.data.done.tx_length = bytes_used;
        }
        if (bytes_used < p_cb->evt.data.done.rx_length)
        {
            p_cb->evt.data.done.rx_length = bytes_used;
        }
    }

    if (bytes_used < p_cb->evt.data.done.tx_length)
    {
        nrf_spi_txd_set(p_spi, p_cb->evt.data.done.p_tx_buffer[bytes_used]);
        return true;
    }
    else if (bytes_used < p_cb->evt.data.done.rx_length)
    {
        nrf_spi_txd_set(p_spi, p_cb->orc);
        return true;
    }

    return (p_cb->bytes_transferred < p_cb->evt.data.done.tx_length ||
            p_cb->bytes_transferred < p_cb->evt.data.done.rx_length);
}

static void spi_xfer(NRF_SPI_Type                  * p_spi,
                     spi_control_block_t           * p_cb,
                     nrf_drv_spi_xfer_desc_t const * p_xfer_desc)
{
    p_cb->bytes_transferred = 0;
    nrf_spi_int_disable(p_spi, NRF_SPI_INT_READY_MASK);

    nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);

    // Start the transfer by writing some byte to the TXD register;
    // if TX buffer is not empty, take the first byte from this buffer,
    // otherwise - use over-run character.
    nrf_spi_txd_set(p_spi,
        (p_xfer_desc->tx_length > 0 ?  p_xfer_desc->p_tx_buffer[0] : p_cb->orc));

    // TXD register is double buffered, so next byte to be transmitted can
    // be written immediately, if needed, i.e. if TX or RX transfer is to
    // be more that 1 byte long. Again - if there is something more in TX
    // buffer send it, otherwise use over-run character.
    if (p_xfer_desc->tx_length > 1)
    {
        nrf_spi_txd_set(p_spi, p_xfer_desc->p_tx_buffer[1]);
    }
    else if (p_xfer_desc->rx_length > 1)
    {
        nrf_spi_txd_set(p_spi, p_cb->orc);
    }

    // For blocking mode (user handler not provided) wait here for READY
    // events (indicating that the byte from TXD register was transmitted
    // and a new incoming byte was moved to the RXD register) and continue
    // transaction until all requested bytes are transferred.
    // In non-blocking mode - IRQ service routine will do this stuff.
    if (p_cb->handler)
    {
        nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK);
    }
    else
    {
        do {
            while (!nrf_spi_event_check(p_spi, NRF_SPI_EVENT_READY)) {}
            nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
            NRF_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY.\r\n");
        } while (transfer_byte(p_spi, p_cb));
        if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
        {
            nrf_gpio_pin_set(p_cb->ss_pin);
        }
    }
}
#endif // SPI_IN_USE

#ifdef SPIM_IN_USE
__STATIC_INLINE void spim_int_enable(NRF_SPIM_Type * p_spim, bool enable)
{
    if (!enable)
    {
        nrf_spim_int_disable(p_spim, END_INT_MASK);
    }
    else
    {
        nrf_spim_int_enable(p_spim, END_INT_MASK);
    }
}

__STATIC_INLINE void spim_list_enable_handle(NRF_SPIM_Type * p_spim, uint32_t flags)
{
    if (NRF_DRV_SPI_FLAG_TX_POSTINC & flags)
    {
        nrf_spim_tx_list_enable(p_spim);
    }
    else
    {
        nrf_spim_tx_list_disable(p_spim);
    }

    if (NRF_DRV_SPI_FLAG_RX_POSTINC & flags)
    {
        nrf_spim_rx_list_enable(p_spim);
    }
    else
    {
        nrf_spim_rx_list_disable(p_spim);
    }
}

static ret_code_t spim_xfer(NRF_SPIM_Type                * p_spim,
                           spi_control_block_t           * p_cb,
                           nrf_drv_spi_xfer_desc_t const * p_xfer_desc,
                           uint32_t                        flags)
{
    ret_code_t err_code;
    // EasyDMA requires that transfer buffers are placed in Data RAM region;
    // signal error if they are not.
    if ((p_xfer_desc->p_tx_buffer != NULL && !nrf_drv_is_in_RAM(p_xfer_desc->p_tx_buffer)) ||
        (p_xfer_desc->p_rx_buffer != NULL && !nrf_drv_is_in_RAM(p_xfer_desc->p_rx_buffer)))
    {
        p_cb->transfer_in_progress = false;
        err_code = NRF_ERROR_INVALID_ADDR;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
                        (uint32_t)__func__,
                        (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }

#if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND)
    p_cb->tx_length = 0;
    p_cb->rx_length = 0;
#endif

    nrf_spim_tx_buffer_set(p_spim, p_xfer_desc->p_tx_buffer, p_xfer_desc->tx_length);
    nrf_spim_rx_buffer_set(p_spim, p_xfer_desc->p_rx_buffer, p_xfer_desc->rx_length);

    nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END);

    spim_list_enable_handle(p_spim, flags);

    if (!(flags & NRF_DRV_SPI_FLAG_HOLD_XFER))
    {
        nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START);
    }
#if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND)
    if (flags & NRF_DRV_SPI_FLAG_HOLD_XFER)
    {
        nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_STARTED);
        p_cb->tx_length = p_xfer_desc->tx_length;
        p_cb->rx_length = p_xfer_desc->rx_length;
        nrf_spim_tx_buffer_set(p_spim, p_xfer_desc->p_tx_buffer, 0);
        nrf_spim_rx_buffer_set(p_spim, p_xfer_desc->p_rx_buffer, 0);
        nrf_spim_int_enable(p_spim, NRF_SPIM_INT_STARTED_MASK);
    }
#endif

    if (!p_cb->handler)
    {
        while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END)){}
        if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
        {
            nrf_gpio_pin_set(p_cb->ss_pin);
        }
    }
    else
    {
        spim_int_enable(p_spim, !(flags & NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER));
    }
    err_code = NRF_SUCCESS;
    NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
                 (uint32_t)__func__,
                 (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
    return err_code;
}
#endif

ret_code_t nrf_drv_spi_xfer(nrf_drv_spi_t     const * const p_instance,
                            nrf_drv_spi_xfer_desc_t const * p_xfer_desc,
                            uint32_t                        flags)
{
    spi_control_block_t * p_cb  = &m_cb[p_instance->drv_inst_idx];
    ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);
    ASSERT(p_xfer_desc->p_tx_buffer != NULL || p_xfer_desc->tx_length == 0);
    ASSERT(p_xfer_desc->p_rx_buffer != NULL || p_xfer_desc->rx_length == 0);

    ret_code_t err_code = NRF_SUCCESS;

    if (p_cb->transfer_in_progress)
    {
        err_code = NRF_ERROR_BUSY;
        NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
                        (uint32_t)__func__,
                        (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    }
    else
    {
        if (p_cb->handler && !(flags & (NRF_DRV_SPI_FLAG_REPEATED_XFER |
                                        NRF_DRV_SPI_FLAG_NO_XFER_EVT_HANDLER)))
        {
            p_cb->transfer_in_progress = true;
        }
    }

    p_cb->evt.data.done = *p_xfer_desc;
    p_cb->tx_done = false;
    p_cb->rx_done = false;
    p_cb->abort   = false;

    if (p_cb->ss_pin != NRF_DRV_SPI_PIN_NOT_USED)
    {
        nrf_gpio_pin_clear(p_cb->ss_pin);
    }
    CODE_FOR_SPIM
    (
        return spim_xfer(p_instance->p_registers, p_cb,  p_xfer_desc, flags);
    )
    CODE_FOR_SPI
    (
        if (flags)
        {
            p_cb->transfer_in_progress = false;
            err_code = NRF_ERROR_NOT_SUPPORTED;
        }
        else
        {
            spi_xfer(p_instance->p_registers, p_cb, p_xfer_desc);
        }
        NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
                     (uint32_t)__func__,
                     (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
        return err_code;
    )
}


void nrf_drv_spi_abort(nrf_drv_spi_t const * p_instance)
{
    spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
    ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);

    CODE_FOR_SPIM
    (
        nrf_spim_task_trigger(p_instance->p_registers, NRF_SPIM_TASK_STOP);
        while (!nrf_spim_event_check(p_instance->p_registers, NRF_SPIM_EVENT_STOPPED)) {}
        p_cb->transfer_in_progress = false;
    )
    CODE_FOR_SPI
    (
        p_cb->abort = true;
    )
}


#ifdef SPIM_IN_USE
static void irq_handler_spim(NRF_SPIM_Type * p_spim, spi_control_block_t * p_cb)
{

#if NRF_MODULE_ENABLED(SPIM_NRF52_ANOMALY_109_WORKAROUND)
    if ((nrf_spim_int_enable_check(p_spim, NRF_SPIM_INT_STARTED_MASK)) &&
        (nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STARTED)) )
    {
        /* Handle first, zero-length, auxiliary transmission. */
        nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_STARTED);
        nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END);

        ASSERT(p_spim->TXD.MAXCNT == 0);
        p_spim->TXD.MAXCNT = p_cb->tx_length;

        ASSERT(p_spim->RXD.MAXCNT == 0);
        p_spim->RXD.MAXCNT = p_cb->rx_length;

        /* Disable STARTED interrupt, used only in auxiliary transmission. */
        nrf_spim_int_disable(p_spim, NRF_SPIM_INT_STARTED_MASK);

        /* Start the actual, glitch-free transmission. */
        nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START);
        return;
    }
#endif

    if (nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END))
    {
        nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END);
        ASSERT(p_cb->handler);
        NRF_LOG_DEBUG("SPIM: Event: NRF_SPIM_EVENT_END.\r\n");
        finish_transfer(p_cb);
    }
}

uint32_t nrf_drv_spi_start_task_get(nrf_drv_spi_t const * p_instance)
{
    NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers;
    return nrf_spim_task_address_get(p_spim, NRF_SPIM_TASK_START);
}

uint32_t nrf_drv_spi_end_event_get(nrf_drv_spi_t const * p_instance)
{
    NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_registers;
    return nrf_spim_event_address_get(p_spim, NRF_SPIM_EVENT_END);
}
#endif // SPIM_IN_USE

#ifdef SPI_IN_USE
static void irq_handler_spi(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb)
{
    ASSERT(p_cb->handler);

    nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
    NRF_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY.\r\n");

    if (!transfer_byte(p_spi, p_cb))
    {
        finish_transfer(p_cb);
    }
}
#endif // SPI_IN_USE

#if NRF_MODULE_ENABLED(SPI0)
IRQ_HANDLER(0)
{
    spi_control_block_t * p_cb  = &m_cb[SPI0_INSTANCE_INDEX];
    #if SPI0_USE_EASY_DMA
        irq_handler_spim(NRF_SPIM0, p_cb);
    #else
        irq_handler_spi(NRF_SPI0, p_cb);
    #endif
}
#endif // NRF_MODULE_ENABLED(SPI0)

#if NRF_MODULE_ENABLED(SPI1)
IRQ_HANDLER(1)
{
    spi_control_block_t * p_cb  = &m_cb[SPI1_INSTANCE_INDEX];
    #if SPI1_USE_EASY_DMA
        irq_handler_spim(NRF_SPIM1, p_cb);
    #else
        irq_handler_spi(NRF_SPI1, p_cb);
    #endif
}
#endif // NRF_MODULE_ENABLED(SPI1)

#if NRF_MODULE_ENABLED(SPI2)
IRQ_HANDLER(2)
{
    spi_control_block_t * p_cb  = &m_cb[SPI2_INSTANCE_INDEX];
    #if SPI2_USE_EASY_DMA
        irq_handler_spim(NRF_SPIM2, p_cb);
    #else
        irq_handler_spi(NRF_SPI2, p_cb);
    #endif
}
#endif // NRF_MODULE_ENABLED(SPI2)
#endif // ENABLED_SPI_COUNT
#endif // NRF_MODULE_ENABLED(SPI)