1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
/**
* Copyright (c) 2013 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_common.h"
#if NRF_MODULE_ENABLED(SPIS)
#define ENABLED_SPIS_COUNT (SPIS0_ENABLED+SPIS1_ENABLED+SPIS2_ENABLED)
#if ENABLED_SPIS_COUNT
#include "nrf_drv_spis.h"
#include <stdbool.h>
#include <stdio.h>
#include "nrf.h"
#include "nrf_gpio.h"
#include "app_error.h"
#include "app_util_platform.h"
#include "nrf_drv_common.h"
#include "nrf_assert.h"
#define NRF_LOG_MODULE_NAME "SPIS"
#if SPIS_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL SPIS_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR SPIS_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR SPIS_CONFIG_DEBUG_COLOR
#define EVT_TO_STR(event) \
(event == NRF_SPIS_EVENT_ACQUIRED ? "NRF_SPIS_EVENT_ACQUIRED" : \
(event == NRF_SPIS_EVENT_END ? "NRF_SPIS_EVENT_END" : \
"UNKNOWN ERROR"))
#else //SPIS_CONFIG_LOG_ENABLED
#define EVT_TO_STR(event) ""
#define NRF_LOG_LEVEL 0
#endif //SPIS_CONFIG_LOG_ENABLED
#include "nrf_log.h"
#include "nrf_log_ctrl.h"
#if NRF_MODULE_ENABLED(SPIS_NRF52_ANOMALY_109_WORKAROUND)
#include "nrf_drv_gpiote.h"
#define USE_DMA_ISSUE_WORKAROUND
// This handler is called by the GPIOTE driver when a falling edge is detected
// on the CSN line. There is no need to do anything here. The handling of the
// interrupt itself provides a protection for DMA transfers.
static void csn_event_handler(nrf_drv_gpiote_pin_t pin,
nrf_gpiote_polarity_t action)
{
}
#endif
/**@brief States of the SPI transaction state machine. */
typedef enum
{
SPIS_STATE_INIT, /**< Initialization state. In this state the module waits for a call to @ref spi_slave_buffers_set. */
SPIS_BUFFER_RESOURCE_REQUESTED, /**< State where the configuration of the memory buffers, which are to be used in SPI transaction, has started. */
SPIS_BUFFER_RESOURCE_CONFIGURED, /**< State where the configuration of the memory buffers, which are to be used in SPI transaction, has completed. */
SPIS_XFER_COMPLETED /**< State where SPI transaction has been completed. */
} nrf_drv_spis_state_t;
#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
#define IRQ_HANDLER_NAME(n) irq_handler_for_instance_##n
#define IRQ_HANDLER(n) static void IRQ_HANDLER_NAME(n)(void)
#if NRF_MODULE_ENABLED(SPIS0)
IRQ_HANDLER(0);
#endif
#if NRF_MODULE_ENABLED(SPIS1)
IRQ_HANDLER(1);
#endif
#if NRF_MODULE_ENABLED(SPIS2)
IRQ_HANDLER(2);
#endif
static nrf_drv_irq_handler_t const m_irq_handlers[ENABLED_SPIS_COUNT] = {
#if NRF_MODULE_ENABLED(SPIS0)
IRQ_HANDLER_NAME(0),
#endif
#if NRF_MODULE_ENABLED(SPIS1)
IRQ_HANDLER_NAME(1),
#endif
#if NRF_MODULE_ENABLED(SPIS2)
IRQ_HANDLER_NAME(2),
#endif
};
#else
#define IRQ_HANDLER(n) void SPIS##n##_IRQ_HANDLER(void)
#endif // PERIPHERAL_RESOURCE_SHARING_ENABLED
#define SPIS_IRQHANDLER_TEMPLATE(NUM) \
IRQ_HANDLER(NUM) \
{ \
spis_irq_handler(NRF_SPIS##NUM, &m_cb[SPIS##NUM##_INSTANCE_INDEX]); \
}
/**@brief SPIS control block - driver instance local data. */
typedef struct
{
volatile uint32_t tx_buffer_size; //!< SPI slave TX buffer size in bytes.
volatile uint32_t rx_buffer_size; //!< SPI slave RX buffer size in bytes.
nrf_drv_spis_event_handler_t handler; //!< SPI event handler.
volatile const uint8_t * tx_buffer; //!< SPI slave TX buffer.
volatile uint8_t * rx_buffer; //!< SPI slave RX buffer.
nrf_drv_state_t state; //!< driver initialization state.
volatile nrf_drv_spis_state_t spi_state; //!< SPI slave state.
} spis_cb_t;
static spis_cb_t m_cb[ENABLED_SPIS_COUNT];
ret_code_t nrf_drv_spis_init(nrf_drv_spis_t const * const p_instance,
nrf_drv_spis_config_t const * p_config,
nrf_drv_spis_event_handler_t event_handler)
{
ASSERT(p_config);
spis_cb_t * p_cb = &m_cb[p_instance->instance_id];
ret_code_t err_code;
NRF_SPIS_Type * p_spis = p_instance->p_reg;
if (p_cb->state != NRF_DRV_STATE_UNINITIALIZED)
{
err_code = NRF_ERROR_INVALID_STATE;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
if ((uint32_t)p_config->mode > (uint32_t)NRF_DRV_SPIS_MODE_3)
{
err_code = NRF_ERROR_INVALID_PARAM;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
if (!event_handler)
{
err_code = NRF_ERROR_NULL;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
if (nrf_drv_common_per_res_acquire(p_spis,
m_irq_handlers[p_instance->instance_id]) != NRF_SUCCESS)
{
err_code = NRF_ERROR_BUSY;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
#endif
// Configure the SPI pins for input.
uint32_t mosi_pin;
uint32_t miso_pin;
if (p_config->miso_pin != NRF_DRV_SPIS_PIN_NOT_USED)
{
nrf_gpio_cfg(p_config->miso_pin,
NRF_GPIO_PIN_DIR_INPUT,
NRF_GPIO_PIN_INPUT_CONNECT,
NRF_GPIO_PIN_NOPULL,
p_config->miso_drive,
NRF_GPIO_PIN_NOSENSE);
miso_pin = p_config->miso_pin;
}
else
{
miso_pin = NRF_SPIS_PIN_NOT_CONNECTED;
}
if (p_config->mosi_pin != NRF_DRV_SPIS_PIN_NOT_USED)
{
nrf_gpio_cfg(p_config->mosi_pin,
NRF_GPIO_PIN_DIR_INPUT,
NRF_GPIO_PIN_INPUT_CONNECT,
NRF_GPIO_PIN_NOPULL,
NRF_GPIO_PIN_S0S1,
NRF_GPIO_PIN_NOSENSE);
mosi_pin = p_config->mosi_pin;
}
else
{
mosi_pin = NRF_SPIS_PIN_NOT_CONNECTED;
}
nrf_gpio_cfg(p_config->csn_pin,
NRF_GPIO_PIN_DIR_INPUT,
NRF_GPIO_PIN_INPUT_CONNECT,
p_config->csn_pullup,
NRF_GPIO_PIN_S0S1,
NRF_GPIO_PIN_NOSENSE);
nrf_gpio_cfg(p_config->sck_pin,
NRF_GPIO_PIN_DIR_INPUT,
NRF_GPIO_PIN_INPUT_CONNECT,
NRF_GPIO_PIN_NOPULL,
NRF_GPIO_PIN_S0S1,
NRF_GPIO_PIN_NOSENSE);
nrf_spis_pins_set(p_spis, p_config->sck_pin, mosi_pin, miso_pin, p_config->csn_pin);
nrf_spis_rx_buffer_set(p_spis, NULL, 0);
nrf_spis_tx_buffer_set(p_spis, NULL, 0);
// Configure SPI mode.
nrf_spis_configure(p_spis, (nrf_spis_mode_t) p_config->mode,
(nrf_spis_bit_order_t) p_config->bit_order);
// Configure DEF and ORC characters.
nrf_spis_def_set(p_spis, p_config->def);
nrf_spis_orc_set(p_spis, p_config->orc);
// Clear possible pending events.
nrf_spis_event_clear(p_spis, NRF_SPIS_EVENT_END);
nrf_spis_event_clear(p_spis, NRF_SPIS_EVENT_ACQUIRED);
// Enable END_ACQUIRE shortcut.
nrf_spis_shorts_enable(p_spis, NRF_SPIS_SHORT_END_ACQUIRE);
m_cb[p_instance->instance_id].spi_state = SPIS_STATE_INIT;
m_cb[p_instance->instance_id].handler = event_handler;
#if defined(USE_DMA_ISSUE_WORKAROUND)
// Configure a GPIOTE channel to generate interrupts on each falling edge
// on the CSN line. Handling of these interrupts will make the CPU active,
// and thus will protect the DMA transfers started by SPIS right after it
// is selected for communication.
// [the GPIOTE driver may be already initialized at this point (by this
// driver when another SPIS instance is used, or by an application code),
// so just ignore the returned value]
(void)nrf_drv_gpiote_init();
static nrf_drv_gpiote_in_config_t const csn_gpiote_config =
GPIOTE_CONFIG_IN_SENSE_HITOLO(true);
ret_code_t gpiote_err_code = nrf_drv_gpiote_in_init(p_config->csn_pin,
&csn_gpiote_config, csn_event_handler);
if (gpiote_err_code != NRF_SUCCESS)
{
err_code = NRF_ERROR_INTERNAL;
NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
nrf_drv_gpiote_in_event_enable(p_config->csn_pin, true);
#endif
// Enable IRQ.
nrf_spis_int_enable(p_spis, NRF_SPIS_INT_ACQUIRED_MASK | NRF_SPIS_INT_END_MASK);
nrf_drv_common_irq_enable(p_instance->irq, p_config->irq_priority);
p_cb->state = NRF_DRV_STATE_INITIALIZED;
// Enable SPI slave device.
nrf_spis_enable(p_spis);
err_code = NRF_SUCCESS;
NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrf_drv_spis_uninit(nrf_drv_spis_t const * const p_instance)
{
spis_cb_t * p_cb = &m_cb[p_instance->instance_id];
ASSERT(p_cb->state != NRF_DRV_STATE_UNINITIALIZED);
NRF_SPIS_Type * p_spis = p_instance->p_reg;
#define DISABLE_ALL 0xFFFFFFFF
nrf_spis_disable(p_spis);
nrf_drv_common_irq_disable(p_instance->irq);
nrf_spis_int_disable(p_spis, DISABLE_ALL);
#undef DISABLE_ALL
#if NRF_MODULE_ENABLED(PERIPHERAL_RESOURCE_SHARING)
nrf_drv_common_per_res_release(p_spis);
#endif
p_cb->state = NRF_DRV_STATE_UNINITIALIZED;
NRF_LOG_INFO("Initialized.\r\n");
}
/**@brief Function for executing the state entry action. */
static void spis_state_entry_action_execute(NRF_SPIS_Type * p_spis,
spis_cb_t * p_cb)
{
nrf_drv_spis_event_t event;
switch (p_cb->spi_state)
{
case SPIS_BUFFER_RESOURCE_REQUESTED:
nrf_spis_task_trigger(p_spis, NRF_SPIS_TASK_ACQUIRE);
break;
case SPIS_BUFFER_RESOURCE_CONFIGURED:
event.evt_type = NRF_DRV_SPIS_BUFFERS_SET_DONE;
event.rx_amount = 0;
event.tx_amount = 0;
APP_ERROR_CHECK_BOOL(p_cb->handler != NULL);
p_cb->handler(event);
break;
case SPIS_XFER_COMPLETED:
event.evt_type = NRF_DRV_SPIS_XFER_DONE;
event.rx_amount = nrf_spis_rx_amount_get(p_spis);
event.tx_amount = nrf_spis_tx_amount_get(p_spis);
NRF_LOG_INFO("Transfer rx_len:%d.\r\n", event.rx_amount);
NRF_LOG_DEBUG("Rx data:\r\n");
NRF_LOG_HEXDUMP_DEBUG((uint8_t *)p_cb->rx_buffer,
event.rx_amount * sizeof(p_cb->rx_buffer));
APP_ERROR_CHECK_BOOL(p_cb->handler != NULL);
p_cb->handler(event);
break;
default:
// No implementation required.
break;
}
}
/**@brief Function for changing the state of the SPI state machine.
*
* @param[in] p_spis SPIS instance register.
* @param[in] p_cb SPIS instance control block.
* @param[in] new_state State where the state machine transits to.
*/
static void spis_state_change(NRF_SPIS_Type * p_spis,
spis_cb_t * p_cb,
nrf_drv_spis_state_t new_state)
{
p_cb->spi_state = new_state;
spis_state_entry_action_execute(p_spis, p_cb);
}
ret_code_t nrf_drv_spis_buffers_set(nrf_drv_spis_t const * const p_instance,
const uint8_t * p_tx_buffer,
uint8_t tx_buffer_length,
uint8_t * p_rx_buffer,
uint8_t rx_buffer_length)
{
spis_cb_t * p_cb = &m_cb[p_instance->instance_id];
uint32_t err_code;
VERIFY_PARAM_NOT_NULL(p_rx_buffer);
VERIFY_PARAM_NOT_NULL(p_tx_buffer);
// EasyDMA requires that transfer buffers are placed in Data RAM region;
// signal error if they are not.
if ((p_tx_buffer != NULL && !nrf_drv_is_in_RAM(p_tx_buffer)) ||
(p_rx_buffer != NULL && !nrf_drv_is_in_RAM(p_rx_buffer)))
{
err_code = NRF_ERROR_INVALID_ADDR;
NRF_LOG_WARNING("Function: %s, error code: %s.\r\n",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
switch (p_cb->spi_state)
{
case SPIS_STATE_INIT:
case SPIS_XFER_COMPLETED:
case SPIS_BUFFER_RESOURCE_CONFIGURED:
p_cb->tx_buffer = p_tx_buffer;
p_cb->rx_buffer = p_rx_buffer;
p_cb->tx_buffer_size = tx_buffer_length;
p_cb->rx_buffer_size = rx_buffer_length;
err_code = NRF_SUCCESS;
spis_state_change(p_instance->p_reg, p_cb, SPIS_BUFFER_RESOURCE_REQUESTED);
break;
case SPIS_BUFFER_RESOURCE_REQUESTED:
err_code = NRF_ERROR_INVALID_STATE;
break;
default:
// @note: execution of this code path would imply internal error in the design.
err_code = NRF_ERROR_INTERNAL;
break;
}
NRF_LOG_INFO("Function: %s, error code: %s.\r\n",
(uint32_t)__func__,
(uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
static void spis_irq_handler(NRF_SPIS_Type * p_spis, spis_cb_t * p_cb)
{
// @note: as multiple events can be pending for processing, the correct event processing order
// is as follows:
// - SPI semaphore acquired event.
// - SPI transaction complete event.
// Check for SPI semaphore acquired event.
if (nrf_spis_event_check(p_spis, NRF_SPIS_EVENT_ACQUIRED))
{
nrf_spis_event_clear(p_spis, NRF_SPIS_EVENT_ACQUIRED);
NRF_LOG_DEBUG("SPIS: Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_SPIS_EVENT_ACQUIRED));
switch (p_cb->spi_state)
{
case SPIS_BUFFER_RESOURCE_REQUESTED:
nrf_spis_tx_buffer_set(p_spis, (uint8_t *)p_cb->tx_buffer, p_cb->tx_buffer_size);
nrf_spis_rx_buffer_set(p_spis, (uint8_t *)p_cb->rx_buffer, p_cb->rx_buffer_size);
nrf_spis_task_trigger(p_spis, NRF_SPIS_TASK_RELEASE);
spis_state_change(p_spis, p_cb, SPIS_BUFFER_RESOURCE_CONFIGURED);
break;
default:
// No implementation required.
break;
}
}
// Check for SPI transaction complete event.
if (nrf_spis_event_check(p_spis, NRF_SPIS_EVENT_END))
{
nrf_spis_event_clear(p_spis, NRF_SPIS_EVENT_END);
NRF_LOG_DEBUG("SPIS: Event: %s.\r\n", (uint32_t)EVT_TO_STR(NRF_SPIS_EVENT_END));
switch (p_cb->spi_state)
{
case SPIS_BUFFER_RESOURCE_CONFIGURED:
spis_state_change(p_spis, p_cb, SPIS_XFER_COMPLETED);
break;
default:
// No implementation required.
break;
}
}
}
#if NRF_MODULE_ENABLED(SPIS0)
SPIS_IRQHANDLER_TEMPLATE(0)
#endif
#if NRF_MODULE_ENABLED(SPIS1)
SPIS_IRQHANDLER_TEMPLATE(1)
#endif
#if NRF_MODULE_ENABLED(SPIS2)
SPIS_IRQHANDLER_TEMPLATE(2)
#endif
#endif // SPI_COUNT > 0
#endif // NRF_MODULE_ENABLED(SPIS)
|