1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
/**
* Copyright (c) 2015 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "nrf_drv_common.h"
#include "nrf_error.h"
#include "nrf_assert.h"
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include "nrf_drv_swi.h"
#include "app_util_platform.h"
#define NRF_LOG_MODULE_NAME "SWI"
#if EGU_ENABLED
#if SWI_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL SWI_CONFIG_LOG_LEVEL
#define NRF_LOG_INFO_COLOR SWI_CONFIG_INFO_COLOR
#define NRF_LOG_DEBUG_COLOR SWI_CONFIG_DEBUG_COLOR
#else //SWI_CONFIG_LOG_ENABLED
#define NRF_LOG_LEVEL 0
#endif //SWI_CONFIG_LOG_ENABLED
#endif //EGU_ENABLED
#include "nrf_log.h"
#include "nrf_log_ctrl.h"
STATIC_ASSERT(SWI_COUNT > 0);
STATIC_ASSERT(SWI_COUNT <= SWI_MAX);
#ifdef SWI_DISABLE0
#undef SWI_DISABLE0
#define SWI_DISABLE0 1uL
#else
#if SWI_COUNT > 0
#define SWI_DISABLE0 0uL
#else
#define SWI_DISABLE0 1uL
#endif
#endif
#ifdef SWI_DISABLE1
#undef SWI_DISABLE1
#define SWI_DISABLE1 1uL
#else
#if SWI_COUNT > 1
#define SWI_DISABLE1 0uL
#else
#define SWI_DISABLE1 1uL
#endif
#endif
#ifdef SWI_DISABLE2
#undef SWI_DISABLE2
#define SWI_DISABLE2 1uL
#else
#if SWI_COUNT > 2
#define SWI_DISABLE2 0uL
#else
#define SWI_DISABLE2 1uL
#endif
#endif
#ifdef SWI_DISABLE3
#undef SWI_DISABLE3
#define SWI_DISABLE3 1uL
#else
#if SWI_COUNT > 3
#define SWI_DISABLE3 0uL
#else
#define SWI_DISABLE3 1uL
#endif
#endif
#ifdef SWI_DISABLE4
#undef SWI_DISABLE4
#define SWI_DISABLE4 1uL
#else
#if SWI_COUNT > 4
#define SWI_DISABLE4 0uL
#else
#define SWI_DISABLE4 1uL
#endif
#endif
#ifdef SWI_DISABLE5
#undef SWI_DISABLE5
#define SWI_DISABLE5 1uL
#else
#if SWI_COUNT > 5
#define SWI_DISABLE5 0uL
#else
#define SWI_DISABLE5 1uL
#endif
#endif
#define SWI_START_NUMBER ( (SWI_DISABLE0) \
+ (SWI_DISABLE0 * SWI_DISABLE1) \
+ (SWI_DISABLE0 * SWI_DISABLE1 * SWI_DISABLE2) \
+ (SWI_DISABLE0 * SWI_DISABLE1 * SWI_DISABLE2 * SWI_DISABLE3) \
+ (SWI_DISABLE0 * SWI_DISABLE1 * SWI_DISABLE2 * SWI_DISABLE3 * SWI_DISABLE4) \
+ (SWI_DISABLE0 * SWI_DISABLE1 * SWI_DISABLE2 * SWI_DISABLE3 * SWI_DISABLE4 \
* SWI_DISABLE5) )
#define SWI_ARRAY_SIZE (SWI_COUNT - SWI_START_NUMBER)
#if (SWI_COUNT <= SWI_START_NUMBER)
#undef SWI_ARRAY_SIZE
#define SWI_ARRAY_SIZE 1
#endif
static nrf_drv_state_t m_drv_state = NRF_DRV_STATE_UNINITIALIZED;
static nrf_swi_handler_t m_swi_handlers[SWI_ARRAY_SIZE];
#if !EGU_ENABLED
static nrf_swi_flags_t m_swi_flags[SWI_ARRAY_SIZE];
#endif
/**@brief Function for getting max channel number of given SWI.
*
* @param[in] swi SWI number.
* @return number of available channels.
*/
#if NRF_MODULE_ENABLED(EGU)
__STATIC_INLINE uint32_t swi_channel_number(nrf_swi_t swi)
{
uint32_t retval = 0;
switch(swi){
case 0:
retval = EGU0_CH_NUM;
break;
case 1:
retval = EGU1_CH_NUM;
break;
case 2:
retval = EGU2_CH_NUM;
break;
case 3:
retval = EGU3_CH_NUM;
break;
case 4:
retval = EGU4_CH_NUM;
break;
case 5:
retval = EGU5_CH_NUM;
break;
default:
retval = 0;
}
return retval;
}
#else
#define swi_channel_number(swi) SWI_MAX_FLAGS
#endif
#if NRF_MODULE_ENABLED(EGU)
/**@brief Get the specific EGU instance. */
__STATIC_INLINE NRF_EGU_Type * egu_instance_get(nrf_swi_t swi)
{
return (NRF_EGU_Type*) (NRF_EGU0_BASE + (((uint32_t) swi) * (NRF_EGU1_BASE - NRF_EGU0_BASE)));
}
/**@brief Software interrupt handler (using EGU). */
static void nrf_drv_swi_process(nrf_swi_t swi)
{
ASSERT(m_swi_handlers[swi - SWI_START_NUMBER]);
nrf_swi_flags_t flags = 0;
NRF_EGU_Type * NRF_EGUx = egu_instance_get(swi);
for (uint8_t i = 0; i < swi_channel_number(swi); ++i)
{
nrf_egu_event_t egu_event = nrf_egu_event_triggered_get(NRF_EGUx, i);
if (nrf_egu_event_check(NRF_EGUx, egu_event))
{
flags |= (1u << i);
nrf_egu_event_clear(NRF_EGUx, egu_event);
}
}
m_swi_handlers[swi - SWI_START_NUMBER](swi, flags);
}
#define SWI_HANDLER_TEMPLATE(NUM) void SWI##NUM##_EGU##NUM##_IRQHandler(void) \
{ \
nrf_drv_swi_process(NUM); \
}
#else
/**@brief Software interrupt handler (without EGU). */
static void nrf_drv_swi_process(nrf_swi_t swi, nrf_swi_flags_t flags)
{
ASSERT(m_swi_handlers[swi - SWI_START_NUMBER]);
m_swi_flags[swi - SWI_START_NUMBER] &= ~flags;
m_swi_handlers[swi - SWI_START_NUMBER](swi, flags);
}
#define SWI_HANDLER_TEMPLATE(NUM) void SWI##NUM##_IRQHandler(void) \
{ \
nrf_drv_swi_process((NUM), m_swi_flags[(NUM) - SWI_START_NUMBER]); \
}
#endif
#if SWI_DISABLE0 == 0
SWI_HANDLER_TEMPLATE(0)
#endif
#if SWI_DISABLE1 == 0
SWI_HANDLER_TEMPLATE(1)
#endif
#if SWI_DISABLE2 == 0
SWI_HANDLER_TEMPLATE(2)
#endif
#if SWI_DISABLE3 == 0
SWI_HANDLER_TEMPLATE(3)
#endif
#if SWI_DISABLE4 == 0
SWI_HANDLER_TEMPLATE(4)
#endif
#if SWI_DISABLE5 == 0
SWI_HANDLER_TEMPLATE(5)
#endif
#define AVAILABLE_SWI (0x3FuL & ~( \
(SWI_DISABLE0 << 0) | (SWI_DISABLE1 << 1) | (SWI_DISABLE2 << 2) \
| (SWI_DISABLE3 << 3) | (SWI_DISABLE4 << 4) | (SWI_DISABLE5 << 5) \
))
#if (AVAILABLE_SWI == 0)
#warning No available SWIs.
#endif
/**@brief Function for converting SWI number to system interrupt number.
*
* @param[in] swi SWI number.
*
* @retval IRQ number.
*/
__STATIC_INLINE IRQn_Type nrf_drv_swi_irq_of(nrf_swi_t swi)
{
return (IRQn_Type)((uint32_t)SWI0_IRQn + (uint32_t)swi);
}
/**@brief Function for checking if given SWI is allocated.
*
* @param[in] swi SWI number.
*/
__STATIC_INLINE bool swi_is_allocated(nrf_swi_t swi)
{
ASSERT(swi < SWI_COUNT);
#if SWI_START_NUMBER > 0
if (swi < SWI_START_NUMBER)
{
return false;
}
#endif
/*lint -e(661) out of range case handled by assert above*/
return m_swi_handlers[swi - SWI_START_NUMBER];
}
ret_code_t nrf_drv_swi_init(void)
{
ret_code_t err_code;
if (m_drv_state == NRF_DRV_STATE_UNINITIALIZED)
{
m_drv_state = NRF_DRV_STATE_INITIALIZED;
err_code = NRF_SUCCESS;
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
err_code = NRF_ERROR_MODULE_ALREADY_INITIALIZED;
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrf_drv_swi_uninit(void)
{
ASSERT(m_drv_state != NRF_DRV_STATE_UNINITIALIZED)
for (uint32_t i = SWI_START_NUMBER; i < SWI_COUNT; ++i)
{
m_swi_handlers[i - SWI_START_NUMBER] = NULL;
nrf_drv_common_irq_disable(nrf_drv_swi_irq_of((nrf_swi_t) i));
#if NRF_MODULE_ENABLED(EGU)
NRF_EGU_Type * NRF_EGUx = egu_instance_get(i);
nrf_egu_int_disable(NRF_EGUx, NRF_EGU_INT_ALL);
#endif
}
m_drv_state = NRF_DRV_STATE_UNINITIALIZED;
return;
}
void nrf_drv_swi_free(nrf_swi_t * p_swi)
{
ASSERT(swi_is_allocated(*p_swi));
nrf_drv_common_irq_disable(nrf_drv_swi_irq_of(*p_swi));
m_swi_handlers[(*p_swi) - SWI_START_NUMBER] = NULL;
*p_swi = NRF_SWI_UNALLOCATED;
}
ret_code_t nrf_drv_swi_alloc(nrf_swi_t * p_swi, nrf_swi_handler_t event_handler, uint32_t priority)
{
#if !NRF_MODULE_ENABLED(EGU)
ASSERT(event_handler);
#endif
uint32_t err_code = NRF_ERROR_NO_MEM;
for (uint32_t i = SWI_START_NUMBER; i < SWI_COUNT; i++)
{
CRITICAL_REGION_ENTER();
if ((!swi_is_allocated(i)) && (AVAILABLE_SWI & (1 << i)))
{
m_swi_handlers[i - SWI_START_NUMBER] = event_handler;
*p_swi = (nrf_swi_t) i;
nrf_drv_common_irq_enable(nrf_drv_swi_irq_of(*p_swi), priority);
#if NRF_MODULE_ENABLED(EGU)
if(event_handler != NULL)
{
NRF_EGU_Type * NRF_EGUx = egu_instance_get(i);
nrf_egu_int_enable(NRF_EGUx, NRF_EGU_INT_ALL);
}
#endif
err_code = NRF_SUCCESS;
}
CRITICAL_REGION_EXIT();
if (err_code == NRF_SUCCESS)
{
NRF_LOG_INFO("SWI channel allocated: %d.\r\n", (*p_swi));
break;
}
}
NRF_LOG_INFO("Function: %s, error code: %s.\r\n", (uint32_t)__func__, (uint32_t)NRF_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrf_drv_swi_trigger(nrf_swi_t swi, uint8_t flag_number)
{
ASSERT(swi_is_allocated((uint32_t) swi));
ASSERT(flag_number < swi_channel_number(swi));
#if NRF_MODULE_ENABLED(EGU)
NRF_EGU_Type * NRF_EGUx = egu_instance_get(swi);
nrf_egu_task_trigger(NRF_EGUx, nrf_egu_task_trigger_get(NRF_EGUx, flag_number));
#else
m_swi_flags[swi - SWI_START_NUMBER] |= (1 << flag_number);
NVIC_SetPendingIRQ(nrf_drv_swi_irq_of(swi));
#endif
}
#if NRF_MODULE_ENABLED(EGU)
uint32_t nrf_drv_swi_task_trigger_address_get(nrf_swi_t swi, uint8_t channel)
{
NRF_EGU_Type * NRF_EGUx = egu_instance_get(swi);
return (uint32_t) nrf_egu_task_trigger_address_get(NRF_EGUx, channel);
}
uint32_t nrf_drv_swi_event_triggered_address_get(nrf_swi_t swi, uint8_t channel)
{
NRF_EGU_Type * NRF_EGUx = egu_instance_get(swi);
return (uint32_t) nrf_egu_event_triggered_address_get(NRF_EGUx, channel);
}
#endif
|