1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
|
/**
* Copyright (c) 2016 - 2017, Nordic Semiconductor ASA
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form, except as embedded into a Nordic
* Semiconductor ASA integrated circuit in a product or a software update for
* such product, must reproduce the above copyright notice, this list of
* conditions and the following disclaimer in the documentation and/or other
* materials provided with the distribution.
*
* 3. Neither the name of Nordic Semiconductor ASA nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* 4. This software, with or without modification, must only be used with a
* Nordic Semiconductor ASA integrated circuit.
*
* 5. Any software provided in binary form under this license must not be reverse
* engineered, decompiled, modified and/or disassembled.
*
* THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "sdk_config.h"
#if USBD_ENABLED
#include "nrf_drv_usbd.h"
#include "nrf.h"
#include "nordic_common.h"
#include "nrf_drv_common.h"
#include "nrf_atomic.h"
#include "nrf_delay.h"
#include "nrf_drv_clock.h"
#include "app_util_platform.h"
#include <string.h>
#include <inttypes.h>
#define NRF_LOG_MODULE_NAME ""
#if NRF_USBD_DRV_LOG_ENABLED
#else //NRF_USBD_DRV_LOG_ENABLED
#define NRF_LOG_LEVEL 0
#endif //NRF_USBD_DRV_LOG_ENABLED
#include "nrf_log.h"
#ifndef NRF_DRV_USBD_EARLY_DMA_PROCESS
/* Try to process DMA request when endpoint transmission has been detected
* and just after last EasyDMA has been processed.
* It speeds up the transmission a little (about 10% measured)
* with a cost of more CPU power used.
*/
#define NRF_DRV_USBD_EARLY_DMA_PROCESS 1
#endif
#ifndef NRF_DRV_USBD_PROTO1_FIX
/* Fix event system */
#define NRF_DRV_USBD_PROTO1_FIX 1
#endif
#ifndef NRF_DRV_USBD_PROTO1_FIX_DEBUG
/* Debug information when events are fixed*/
#define NRF_DRV_USBD_PROTO1_FIX_DEBUG 1
#endif
#if NRF_DRV_USBD_PROTO1_FIX_DEBUG
#include "nrf_log.h"
#define NRF_DRV_USBD_LOG_PROTO1_FIX_PRINTF(...) NRF_LOG_DEBUG(__VA_ARGS__)
#else
#define NRF_DRV_USBD_LOG_PROTO1_FIX_PRINTF(...) do {} while (0)
#endif
#ifndef NRF_DRV_USBD_STARTED_EV_ENABLE
#define NRF_DRV_USBD_STARTED_EV_ENABLE 1
#endif
#ifndef NRF_USBD_ISO_DEBUG
/* Also generate information about ISOCHRONOUS events and transfers.
* Turn this off if no ISOCHRONOUS transfers are going to be debugged and this
* option generates a lot of useless messages. */
#define NRF_USBD_ISO_DEBUG 1
#endif
#ifndef NRF_USBD_FAILED_TRANSFERS_DEBUG
/* Also generate debug information for failed transfers.
* It might be useful but may generate a lot of useless debug messages
* in some library usages (for example when transfer is generated and the
* result is used to check whatever endpoint was busy. */
#define NRF_USBD_FAILED_TRANSFERS_DEBUG 1
#endif
#ifndef NRF_USBD_DMAREQ_PROCESS_DEBUG
/* Generate additional messages that mark the status inside
* @ref usbd_dmareq_process.
* It is useful to debug library internals but may generate a lot of
* useless debug messages. */
#define NRF_USBD_DMAREQ_PROCESS_DEBUG 1
#endif
#if NRF_DRV_USBD_PROTO1_FIX
#include "nrf_drv_systick.h"
#endif
/**
* @defgroup nrf_usbdraw_drv_int USB Device driver internal part
* @internal
* @ingroup nrf_usbdraw_drv
*
* This part contains auxiliary internal macros, variables and functions.
* @{
*/
/**
* @brief Assert endpoint number validity
*
* Internal macro to be used during program creation in debug mode.
* Generates assertion if endpoint number is not valid.
*
* @param ep Endpoint number to validity check
*/
#define USBD_ASSERT_EP_VALID(ep) ASSERT( \
((NRF_USBD_EPIN_CHECK(ep) && (NRF_USBD_EP_NR_GET(ep) < NRF_USBD_EPIN_CNT )) \
|| \
(NRF_USBD_EPOUT_CHECK(ep) && (NRF_USBD_EP_NR_GET(ep) < NRF_USBD_EPOUT_CNT))) \
);
/**
* @brief Lowest position of bit for IN endpoint
*
* The first bit position corresponding to IN endpoint.
* @sa ep2bit bit2ep
*/
#define USBD_EPIN_BITPOS_0 0
/**
* @brief Lowest position of bit for OUT endpoint
*
* The first bit position corresponding to OUT endpoint
* @sa ep2bit bit2ep
*/
#define USBD_EPOUT_BITPOS_0 16
/**
* @brief Input endpoint bits mask
*/
#define USBD_EPIN_BIT_MASK (0xFFFFU << USBD_EPIN_BITPOS_0)
/**
* @brief Output endpoint bits mask
*/
#define USBD_EPOUT_BIT_MASK (0xFFFFU << USBD_EPOUT_BITPOS_0)
/**
* @brief Auxiliary macro to change EP number into bit position
*
* This macro is used by @ref ep2bit function but also for statically check
* the bitpos values integrity during compilation.
*
* @param[in] ep Endpoint number.
* @return Endpoint bit position.
*/
#define USBD_EP_BITPOS(ep) \
((NRF_USBD_EPIN_CHECK(ep) ? USBD_EPIN_BITPOS_0 : USBD_EPOUT_BITPOS_0) + NRF_USBD_EP_NR_GET(ep))
/**
* @brief Helper macro for creating an endpoint transfer event.
*
* @param[in] name Name of the created transfer event variable.
* @param[in] endpoint Endpoint number.
* @param[in] ep_stat Endpoint state to report.
*
* @return Initialized event constant variable.
*/
#define NRF_DRV_USBD_EP_TRANSFER_EVENT(name, endpont, ep_stat) \
const nrf_drv_usbd_evt_t name = { \
NRF_DRV_USBD_EVT_EPTRANSFER, \
.data = { \
.eptransfer = { \
.ep = endpont, \
.status = ep_stat \
} \
} \
}
/* Check it the bit positions values match defined DATAEPSTATUS bit positions */
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPIN1) == USBD_EPDATASTATUS_EPIN1_Pos );
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPIN2) == USBD_EPDATASTATUS_EPIN2_Pos );
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPIN3) == USBD_EPDATASTATUS_EPIN3_Pos );
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPIN4) == USBD_EPDATASTATUS_EPIN4_Pos );
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPIN5) == USBD_EPDATASTATUS_EPIN5_Pos );
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPIN6) == USBD_EPDATASTATUS_EPIN6_Pos );
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPIN7) == USBD_EPDATASTATUS_EPIN7_Pos );
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPOUT1) == USBD_EPDATASTATUS_EPOUT1_Pos);
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPOUT2) == USBD_EPDATASTATUS_EPOUT2_Pos);
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPOUT3) == USBD_EPDATASTATUS_EPOUT3_Pos);
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPOUT4) == USBD_EPDATASTATUS_EPOUT4_Pos);
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPOUT5) == USBD_EPDATASTATUS_EPOUT5_Pos);
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPOUT6) == USBD_EPDATASTATUS_EPOUT6_Pos);
STATIC_ASSERT(USBD_EP_BITPOS(NRF_DRV_USBD_EPOUT7) == USBD_EPDATASTATUS_EPOUT7_Pos);
/**
* @name Internal auxiliary definitions for SETUP packet
*
* Definitions used to take out the information about last SETUP packet direction
* from @c bmRequestType.
* @{
*/
/** The position of DIR bit in bmRequestType inside SETUP packet */
#define USBD_DRV_REQUESTTYPE_DIR_BITPOS 7
/** The mask of DIR bit in bmRequestType inside SETUP packet */
#define USBD_DRV_REQUESTTYPE_DIR_MASK (1U << USBD_DRV_REQUESTTYPE_DIR_BITPOS)
/** The value of DIR bit for OUT direction (Host -> Device) */
#define USBD_DRV_REQUESTTYPE_DIR_OUT (0U << USBD_DRV_REQUESTTYPE_DIR_BITPOS)
/** The value of DIR bit for IN direction (Device -> Host) */
#define USBD_DRV_REQUESTTYPE_DIR_IN (1U << USBD_DRV_REQUESTTYPE_DIR_BITPOS)
/** @} */
/**
* @brief Current driver state
*/
static nrf_drv_state_t m_drv_state = NRF_DRV_STATE_UNINITIALIZED;
/**
* @brief Event handler for the library
*
* Event handler that would be called on events.
*
* @note Currently it cannot be null if any interrupt is activated.
*/
static nrf_drv_usbd_event_handler_t m_event_handler;
/**
* @brief Direction of last received Setup transfer
*
* This variable is used to redirect internal setup data event
* into selected endpoint (IN or OUT).
*/
static nrf_drv_usbd_ep_t m_last_setup_dir;
/**
* @brief Mark endpoint readiness for DMA transfer
*
* Bits in this variable are cleared and set in interrupts.
* 1 means that endpoint is ready for DMA transfer.
* 0 means that DMA transfer cannot be performed on selected endpoint.
*/
static uint32_t m_ep_ready;
/**
* @brief Mark endpoint with prepared data to transfer by DMA
*
* This variable can be from any place in the code (interrupt or main thread).
* It would be cleared only from USBD interrupt.
*
* Mask prepared USBD data for transmission.
* It is cleared when no more data to transmit left.
*/
static uint32_t m_ep_dma_waiting;
/**
* @brief Current EasyDMA state
*
* Single flag, updated only inside interrupts, that marks current EasyDMA state.
* In USBD there is only one DMA channel working in background, and new transfer
* cannot be started when there is ongoing transfer on any other channel.
*/
static uint8_t m_dma_pending;
#if NRF_DRV_USBD_PROTO1_FIX
static uint32_t m_simulated_dataepstatus;
#endif
/**
* @brief The structure that would hold transfer configuration to every endpoint
*
* The structure that holds all the data required by the endpoint to proceed
* with LIST functionality and generate quick callback directly when data
* buffer is ready.
*/
typedef struct
{
nrf_drv_usbd_handler_t handler; //!< Handler for current transfer, function pointer
void * p_context; //!< Context for transfer handler
size_t transfer_cnt; //!< Number of transferred bytes in the current transfer
uint16_t max_packet_size; //!< Configured endpoint size
nrf_drv_usbd_ep_status_t status; //!< NRF_SUCCESS or error code, never NRF_ERROR_BUSY - this one is calculated
}usbd_drv_ep_state_t;
/**
* @brief The array of transfer configurations for the endpoints.
*
* The status of the transfer on each endpoint.
*/
static struct
{
usbd_drv_ep_state_t ep_out[NRF_USBD_EPOUT_CNT]; //!< Status for OUT endpoints.
usbd_drv_ep_state_t ep_in [NRF_USBD_EPIN_CNT ]; //!< Status for IN endpoints.
}m_ep_state;
/**
* @brief Status variables for integrated feeders.
*
* Current status for integrated feeders (IN transfers).
* Integrated feeders are used for default transfers:
* 1. Simple RAM transfer
* 2. Simple flash transfer
* 3. RAM transfer with automatic ZLP
* 4. Flash transfer with automatic ZLP
*/
nrf_drv_usbd_transfer_t m_ep_feeder_state[NRF_USBD_EPIN_CNT];
/**
* @brief Status variables for integrated consumers
*
* Current status for integrated consumers
* Currently one type of transfer is supported:
* 1. Transfer to RAM
*
* Transfer is finished automatically when received data block is smaller
* than the endpoint buffer or all the required data is received.
*/
nrf_drv_usbd_transfer_t m_ep_consumer_state[NRF_USBD_EPOUT_CNT];
/**
* @brief Buffer used to send data directly from FLASH
*
* This is internal buffer that would be used to emulate the possibility
* to transfer data directly from FLASH.
* We do not have to care about the source of data when calling transfer functions.
*
* We do not need more buffers that one, because only one transfer can be pending
* at once.
*/
static uint32_t m_tx_buffer[CEIL_DIV(
NRF_DRV_USBD_FEEDER_BUFFER_SIZE, sizeof(uint32_t))];
/* Early declaration. Documentation above definition. */
static void usbd_dmareq_process(void);
#if NRF_DRV_USBD_PROTO1_FIX
static inline nrf_usbd_event_t nrf_drv_usbd_ep_to_endevent(nrf_drv_usbd_ep_t ep)
{
USBD_ASSERT_EP_VALID(ep);
static const nrf_usbd_event_t epin_endev[] =
{
NRF_USBD_EVENT_ENDEPIN0,
NRF_USBD_EVENT_ENDEPIN1,
NRF_USBD_EVENT_ENDEPIN2,
NRF_USBD_EVENT_ENDEPIN3,
NRF_USBD_EVENT_ENDEPIN4,
NRF_USBD_EVENT_ENDEPIN5,
NRF_USBD_EVENT_ENDEPIN6,
NRF_USBD_EVENT_ENDEPIN7,
NRF_USBD_EVENT_ENDISOIN0
};
static const nrf_usbd_event_t epout_endev[] =
{
NRF_USBD_EVENT_ENDEPOUT0,
NRF_USBD_EVENT_ENDEPOUT1,
NRF_USBD_EVENT_ENDEPOUT2,
NRF_USBD_EVENT_ENDEPOUT3,
NRF_USBD_EVENT_ENDEPOUT4,
NRF_USBD_EVENT_ENDEPOUT5,
NRF_USBD_EVENT_ENDEPOUT6,
NRF_USBD_EVENT_ENDEPOUT7,
NRF_USBD_EVENT_ENDISOOUT0
};
return (NRF_USBD_EPIN_CHECK(ep) ? epin_endev : epout_endev)[NRF_USBD_EP_NR_GET(ep)];
}
#endif
/**
* @brief Get interrupt mask for selected endpoint
*
* @param[in] ep Endpoint number
*
* @return Interrupt mask related to the EasyDMA transfer end for the
* chosen endpoint.
*/
static inline uint32_t nrf_drv_usbd_ep_to_int(nrf_drv_usbd_ep_t ep)
{
USBD_ASSERT_EP_VALID(ep);
static const uint8_t epin_bitpos[] =
{
USBD_INTEN_ENDEPIN0_Pos,
USBD_INTEN_ENDEPIN1_Pos,
USBD_INTEN_ENDEPIN2_Pos,
USBD_INTEN_ENDEPIN3_Pos,
USBD_INTEN_ENDEPIN4_Pos,
USBD_INTEN_ENDEPIN5_Pos,
USBD_INTEN_ENDEPIN6_Pos,
USBD_INTEN_ENDEPIN7_Pos,
USBD_INTEN_ENDISOIN_Pos
};
static const uint8_t epout_bitpos[] =
{
USBD_INTEN_ENDEPOUT0_Pos,
USBD_INTEN_ENDEPOUT1_Pos,
USBD_INTEN_ENDEPOUT2_Pos,
USBD_INTEN_ENDEPOUT3_Pos,
USBD_INTEN_ENDEPOUT4_Pos,
USBD_INTEN_ENDEPOUT5_Pos,
USBD_INTEN_ENDEPOUT6_Pos,
USBD_INTEN_ENDEPOUT7_Pos,
USBD_INTEN_ENDISOOUT_Pos
};
return 1UL << (NRF_USBD_EPIN_CHECK(ep) ? epin_bitpos : epout_bitpos)[NRF_USBD_EP_NR_GET(ep)];
}
/**
* @name Integrated feeders and consumers
*
* Internal, default functions for transfer processing.
* @{
*/
/**
* @brief Integrated consumer to RAM buffer.
*
* @param p_next See @ref nrf_drv_usbd_consumer_t documentation.
* @param p_context See @ref nrf_drv_usbd_consumer_t documentation.
* @param ep_size See @ref nrf_drv_usbd_consumer_t documentation.
* @param data_size See @ref nrf_drv_usbd_consumer_t documentation.
*
* @retval true Continue transfer.
* @retval false This was the last transfer.
*/
bool nrf_drv_usbd_consumer(
nrf_drv_usbd_ep_transfer_t * p_next,
void * p_context,
size_t ep_size,
size_t data_size)
{
nrf_drv_usbd_transfer_t * p_transfer = p_context;
ASSERT(ep_size >= data_size);
ASSERT((p_transfer->p_data.rx == NULL) ||
nrf_drv_is_in_RAM((const void*)(p_transfer->p_data.ptr)));
size_t size = p_transfer->size;
if (size < data_size)
{
/* Buffer size to small */
p_next->size = 0;
p_next->p_data = p_transfer->p_data;
}
else
{
p_next->size = data_size;
p_next->p_data = p_transfer->p_data;
size -= data_size;
p_transfer->size = size;
p_transfer->p_data.ptr += data_size;
}
return (ep_size == data_size) && (size != 0);
}
/**
* @brief Integrated feeder from RAM source.
*
* @param[out] p_next See @ref nrf_drv_usbd_feeder_t documentation.
* @param[in,out] p_context See @ref nrf_drv_usbd_feeder_t documentation.
* @param[in] ep_size See @ref nrf_drv_usbd_feeder_t documentation.
*
* @retval true Continue transfer.
* @retval false This was the last transfer.
*/
bool nrf_drv_usbd_feeder_ram(
nrf_drv_usbd_ep_transfer_t * p_next,
void * p_context,
size_t ep_size)
{
nrf_drv_usbd_transfer_t * p_transfer = p_context;
ASSERT(nrf_drv_is_in_RAM((const void*)(p_transfer->p_data.ptr)));
size_t tx_size = p_transfer->size;
if (tx_size > ep_size)
{
tx_size = ep_size;
}
p_next->p_data = p_transfer->p_data;
p_next->size = tx_size;
p_transfer->size -= tx_size;
p_transfer->p_data.ptr += tx_size;
return (p_transfer->size != 0);
}
/**
* @brief Integrated feeder from RAM source with ZLP.
*
* @param[out] p_next See @ref nrf_drv_usbd_feeder_t documentation.
* @param[in,out] p_context See @ref nrf_drv_usbd_feeder_t documentation.
* @param[in] ep_size See @ref nrf_drv_usbd_feeder_t documentation.
*
* @retval true Continue transfer.
* @retval false This was the last transfer.
*/
bool nrf_drv_usbd_feeder_ram_zlp(
nrf_drv_usbd_ep_transfer_t * p_next,
void * p_context,
size_t ep_size)
{
nrf_drv_usbd_transfer_t * p_transfer = p_context;
ASSERT(nrf_drv_is_in_RAM((const void*)(p_transfer->p_data.ptr)));
size_t tx_size = p_transfer->size;
if (tx_size > ep_size)
{
tx_size = ep_size;
}
p_next->p_data.tx = (tx_size == 0) ? NULL : p_transfer->p_data.tx;
p_next->size = tx_size;
p_transfer->size -= tx_size;
p_transfer->p_data.ptr += tx_size;
return (tx_size != 0);
}
/**
* @brief Integrated feeder from a flash source.
*
* @param[out] p_next See @ref nrf_drv_usbd_feeder_t documentation.
* @param[in,out] p_context See @ref nrf_drv_usbd_feeder_t documentation.
* @param[in] ep_size See @ref nrf_drv_usbd_feeder_t documentation.
*
* @retval true Continue transfer.
* @retval false This was the last transfer.
*/
bool nrf_drv_usbd_feeder_flash(
nrf_drv_usbd_ep_transfer_t * p_next,
void * p_context,
size_t ep_size)
{
nrf_drv_usbd_transfer_t * p_transfer = p_context;
ASSERT(!nrf_drv_is_in_RAM((const void*)(p_transfer->p_data.ptr)));
size_t tx_size = p_transfer->size;
void * p_buffer = nrf_drv_usbd_feeder_buffer_get();
if (tx_size > ep_size)
{
tx_size = ep_size;
}
ASSERT(tx_size <= NRF_DRV_USBD_FEEDER_BUFFER_SIZE);
memcpy(p_buffer, (p_transfer->p_data.tx), tx_size);
p_next->p_data.tx = p_buffer;
p_next->size = tx_size;
p_transfer->size -= tx_size;
p_transfer->p_data.ptr += tx_size;
return (p_transfer->size != 0);
}
/**
* @brief Integrated feeder from a flash source with ZLP.
*
* @param[out] p_next See @ref nrf_drv_usbd_feeder_t documentation.
* @param[in,out] p_context See @ref nrf_drv_usbd_feeder_t documentation.
* @param[in] ep_size See @ref nrf_drv_usbd_feeder_t documentation.
*
* @retval true Continue transfer.
* @retval false This was the last transfer.
*/
bool nrf_drv_usbd_feeder_flash_zlp(
nrf_drv_usbd_ep_transfer_t * p_next,
void * p_context,
size_t ep_size)
{
nrf_drv_usbd_transfer_t * p_transfer = p_context;
ASSERT(!nrf_drv_is_in_RAM((const void*)(p_transfer->p_data.ptr)));
size_t tx_size = p_transfer->size;
void * p_buffer = nrf_drv_usbd_feeder_buffer_get();
if (tx_size > ep_size)
{
tx_size = ep_size;
}
ASSERT(tx_size <= NRF_DRV_USBD_FEEDER_BUFFER_SIZE);
if (tx_size != 0)
{
memcpy(p_buffer, (p_transfer->p_data.tx), tx_size);
p_next->p_data.tx = p_buffer;
}
else
{
p_next->p_data.tx = NULL;
}
p_next->size = tx_size;
p_transfer->size -= tx_size;
p_transfer->p_data.ptr += tx_size;
return (tx_size != 0);
}
/** @} */
/**
* @brief Change Driver endpoint number to HAL endpoint number
*
* @param ep Driver endpoint identifier
*
* @return Endpoint identifier in HAL
*
* @sa nrf_drv_usbd_ep_from_hal
*/
static inline uint8_t ep_to_hal(nrf_drv_usbd_ep_t ep)
{
USBD_ASSERT_EP_VALID(ep);
return (uint8_t)ep;
}
/**
* @brief Generate start task number for selected endpoint index
*
* @param ep Endpoint number
*
* @return Task for starting EasyDMA transfer on selected endpoint.
*/
static inline nrf_usbd_task_t task_start_ep(nrf_drv_usbd_ep_t ep)
{
USBD_ASSERT_EP_VALID(ep);
return (nrf_usbd_task_t)(
(NRF_USBD_EPIN_CHECK(ep) ? NRF_USBD_TASK_STARTEPIN0 : NRF_USBD_TASK_STARTEPOUT0) +
(NRF_USBD_EP_NR_GET(ep) * sizeof(uint32_t)));
}
/**
* @brief Access selected endpoint state structure
*
* Function used to change or just read the state of selected endpoint.
* It is used for internal transmission state.
*
* @param ep Endpoint number
*/
static inline usbd_drv_ep_state_t* ep_state_access(nrf_drv_usbd_ep_t ep)
{
USBD_ASSERT_EP_VALID(ep);
return ((NRF_USBD_EPIN_CHECK(ep) ? m_ep_state.ep_in : m_ep_state.ep_out) +
NRF_USBD_EP_NR_GET(ep));
}
/**
* @brief Change endpoint number to bit position
*
* Bit positions are defined the same way as they are placed in DATAEPSTATUS register,
* but bits for endpoint 0 are included.
*
* @param ep Endpoint number
*
* @return Bit position related to the given endpoint number
*
* @sa bit2ep
*/
static inline uint8_t ep2bit(nrf_drv_usbd_ep_t ep)
{
USBD_ASSERT_EP_VALID(ep);
return USBD_EP_BITPOS(ep);
}
/**
* @brief Change bit position to endpoint number
*
* @param bitpos Bit position
*
* @return Endpoint number corresponding to given bit position.
*
* @sa ep2bit
*/
static inline nrf_drv_usbd_ep_t bit2ep(uint8_t bitpos)
{
STATIC_ASSERT(USBD_EPOUT_BITPOS_0 > USBD_EPIN_BITPOS_0);
return (nrf_drv_usbd_ep_t)((bitpos >= USBD_EPOUT_BITPOS_0) ?
NRF_USBD_EPOUT(bitpos - USBD_EPOUT_BITPOS_0) : NRF_USBD_EPIN(bitpos));
}
/**
* @brief Start selected EasyDMA transmission
*
* This is internal auxiliary function.
* No checking is made if EasyDMA is ready for new transmission.
*
* @param[in] ep Number of endpoint for transmission.
* If it is OUT endpoint transmission would be directed from endpoint to RAM.
* If it is in endpoint transmission would be directed from RAM to endpoint.
*/
static inline void usbd_dma_start(nrf_drv_usbd_ep_t ep)
{
nrf_usbd_task_trigger(task_start_ep(ep));
}
/**
* @brief Abort pending transfer on selected endpoint
*
* @param ep Endpoint number.
*
* @note
* This function locks interrupts that may be costly.
* It is good idea to test if the endpoint is still busy before calling this function:
* @code
(m_ep_dma_waiting & (1U << ep2bit(ep)))
* @endcode
* This function would check it again, but it makes it inside critical section.
*/
static inline void usbd_ep_abort(nrf_drv_usbd_ep_t ep)
{
CRITICAL_REGION_ENTER();
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
if (NRF_USBD_EPOUT_CHECK(ep))
{
/* Host -> Device */
if ((~m_ep_dma_waiting) & (1U<<ep2bit(ep)))
{
/* If the bit in m_ep_dma_waiting in cleared - nothing would be
* processed inside transfer processing */
nrf_drv_usbd_transfer_out_drop(ep);
}
else
{
p_state->handler.consumer = NULL;
m_ep_dma_waiting &= ~(1U<<ep2bit(ep));
m_ep_ready &= ~(1U<<ep2bit(ep));
}
/* Aborted */
p_state->status = NRF_USBD_EP_ABORTED;
}
else
{
if ((m_ep_dma_waiting | (~m_ep_ready)) & (1U<<ep2bit(ep)))
{
/* Device -> Host */
m_ep_dma_waiting &= ~(1U<<ep2bit(ep));
m_ep_ready |= 1U<<ep2bit(ep) ;
p_state->handler.feeder = NULL;
p_state->status = NRF_USBD_EP_ABORTED;
NRF_DRV_USBD_EP_TRANSFER_EVENT(evt, ep, NRF_USBD_EP_ABORTED);
m_event_handler(&evt);
}
}
CRITICAL_REGION_EXIT();
}
void usbd_drv_ep_abort(nrf_drv_usbd_ep_t ep)
{
usbd_ep_abort(ep);
}
/**
* @brief Abort all pending endpoints
*
* Function aborts all pending endpoint transfers.
*/
static void usbd_ep_abort_all(void)
{
uint32_t ep_waiting = m_ep_dma_waiting | (m_ep_ready & USBD_EPOUT_BIT_MASK);
while (0 != ep_waiting)
{
uint8_t bitpos = __CLZ(__RBIT(ep_waiting));
usbd_ep_abort(bit2ep(bitpos));
ep_waiting &= ~(1U << bitpos);
}
m_ep_ready = (((1U<<NRF_USBD_EPIN_CNT) - 1U) << USBD_EPIN_BITPOS_0);
}
/**
* @brief Force the USBD interrupt into pending state
*
* This function is used to force USBD interrupt to be processed right now.
* It makes it possible to process all EasyDMA access on one thread priority level.
*/
static inline void usbd_int_rise(void)
{
NVIC_SetPendingIRQ(USBD_IRQn);
}
/**
* @name USBD interrupt runtimes
*
* Interrupt runtimes that would be vectorized using @ref m_ivec_isr
* @{
*/
static void USBD_ISR_Usbreset(void)
{
m_last_setup_dir = NRF_DRV_USBD_EPOUT0;
usbd_ep_abort_all();
const nrf_drv_usbd_evt_t evt = {
.type = NRF_DRV_USBD_EVT_RESET
};
m_event_handler(&evt);
}
static void USBD_ISR_Started(void)
{
#if NRF_DRV_USBD_STARTED_EV_ENABLE
uint32_t epstatus = nrf_usbd_epstatus_get_and_clear();
/* All finished endpoint have to be marked as busy */
// #warning Check this one
// ASSERT(epstatus == ((~m_ep_ready) & epstatus));
while (epstatus)
{
uint8_t bitpos = __CLZ(__RBIT(epstatus));
nrf_drv_usbd_ep_t ep = bit2ep(bitpos);
epstatus &= ~(1UL << bitpos);
UNUSED_VARIABLE(ep);
}
#endif
}
/**
* @brief Handler for EasyDMA event without endpoint clearing.
*
* This handler would be called when EasyDMA transfer for endpoints that does not require clearing.
* All in endpoints are cleared automatically when new EasyDMA transfer is initialized.
* For endpoint 0 see @ref nrf_usbd_ep0out_dma_handler
*
* @param[in] ep Endpoint number
*/
static inline void nrf_usbd_ep0in_dma_handler(void)
{
const nrf_drv_usbd_ep_t ep = NRF_DRV_USBD_EPIN0;
NRF_LOG_DEBUG("USB event: DMA ready IN0\r\n");
m_dma_pending = 0;
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
if (NRF_USBD_EP_ABORTED == p_state->status)
{
/* Nothing to do - just ignore */
}
else if (p_state->handler.feeder == NULL)
{
UNUSED_RETURN_VALUE(nrf_atomic_u32_and(&m_ep_dma_waiting, ~(1U<<ep2bit(ep))));
}
}
/**
* @brief Handler for EasyDMA event without endpoint clearing.
*
* This handler would be called when EasyDMA transfer for endpoints that does not require clearing.
* All in endpoints are cleared automatically when new EasyDMA transfer is initialized.
* For endpoint 0 see @ref nrf_usbd_ep0out_dma_handler
*
* @param[in] ep Endpoint number
*/
static inline void nrf_usbd_epin_dma_handler(nrf_drv_usbd_ep_t ep)
{
NRF_LOG_DEBUG("USB event: DMA ready IN: %x\r\n", ep);
ASSERT(NRF_USBD_EPIN_CHECK(ep));
ASSERT(!NRF_USBD_EPISO_CHECK(ep));
ASSERT(NRF_USBD_EP_NR_GET(ep) > 0);
m_dma_pending = 0;
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
if (NRF_USBD_EP_ABORTED == p_state->status)
{
/* Nothing to do - just ignore */
}
else if (p_state->handler.feeder == NULL)
{
UNUSED_RETURN_VALUE(nrf_atomic_u32_and(&m_ep_dma_waiting, ~(1U<<ep2bit(ep))));
}
}
/**
* @brief Handler for EasyDMA event from in isochronous endpoint
*
* @todo RK documentation
*/
static inline void nrf_usbd_epiniso_dma_handler(nrf_drv_usbd_ep_t ep)
{
if (NRF_USBD_ISO_DEBUG)
{
NRF_LOG_DEBUG("USB event: DMA ready ISOIN: %x\r\n", ep);
}
ASSERT(NRF_USBD_EPIN_CHECK(ep));
ASSERT(NRF_USBD_EPISO_CHECK(ep));
m_dma_pending = 0;
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
if (NRF_USBD_EP_ABORTED == p_state->status)
{
/* Nothing to do - just ignore */
}
else if (p_state->handler.feeder == NULL)
{
UNUSED_RETURN_VALUE(nrf_atomic_u32_and(&m_ep_dma_waiting, ~(1U<<ep2bit(ep))));
/* Send event to the user - for an ISO IN endpoint, the whole transfer is finished in this moment */
NRF_DRV_USBD_EP_TRANSFER_EVENT(evt, ep, NRF_USBD_EP_OK);
m_event_handler(&evt);
}
}
/**
* @brief Handler for EasyDMA event for OUT endpoint 0.
*
* EP0 OUT have to be cleared automatically in special way - only in the middle of the transfer.
* It cannot be cleared when required transfer is finished because it means the same that accepting the comment.
*/
static inline void nrf_usbd_ep0out_dma_handler(void)
{
const nrf_drv_usbd_ep_t ep = NRF_DRV_USBD_EPOUT0;
NRF_LOG_DEBUG("USB event: DMA ready OUT0\r\n");
m_dma_pending = 0;
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
if (NRF_USBD_EP_ABORTED == p_state->status)
{
/* Nothing to do - just ignore */
}
else if (p_state->handler.consumer == NULL)
{
UNUSED_RETURN_VALUE(nrf_atomic_u32_and(&m_ep_dma_waiting, ~(1U<<ep2bit(ep))));
/* Send event to the user - for an OUT endpoint, the whole transfer is finished in this moment */
NRF_DRV_USBD_EP_TRANSFER_EVENT(evt, ep, NRF_USBD_EP_OK);
m_event_handler(&evt);
return;
}
nrf_drv_usbd_setup_data_clear();
}
/**
* @brief Handler for EasyDMA event from endpoinpoint that requires clearing.
*
* This handler would be called when EasyDMA transfer for OUT endpoint has been finished.
*
* @param[in] ep Endpoint number
*
*/
static inline void nrf_usbd_epout_dma_handler(nrf_drv_usbd_ep_t ep)
{
NRF_LOG_DEBUG("USB drv: DMA ready OUT: %x\r\n", ep);
ASSERT(NRF_USBD_EPOUT_CHECK(ep));
ASSERT(!NRF_USBD_EPISO_CHECK(ep));
ASSERT(NRF_USBD_EP_NR_GET(ep) > 0);
m_dma_pending = 0;
nrf_usbd_epout_clear(ep);
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
if (NRF_USBD_EP_ABORTED == p_state->status)
{
/* Nothing to do - just ignore */
}
else if (p_state->handler.consumer == NULL)
{
UNUSED_RETURN_VALUE(nrf_atomic_u32_and(&m_ep_dma_waiting, ~(1U<<ep2bit(ep))));
/* Send event to the user - for an OUT endpoint, the whole transfer is finished in this moment */
NRF_DRV_USBD_EP_TRANSFER_EVENT(evt, ep, NRF_USBD_EP_OK);
m_event_handler(&evt);
}
#if NRF_DRV_USBD_EARLY_DMA_PROCESS
/* Speed up */
usbd_dmareq_process();
#endif
}
/**
* @brief Handler for EasyDMA event from out isochronous endpoint
*
* @todo RK documentation
*/
static inline void nrf_usbd_epoutiso_dma_handler(nrf_drv_usbd_ep_t ep)
{
if (NRF_USBD_ISO_DEBUG)
{
NRF_LOG_DEBUG("USB drv: DMA ready ISOOUT: %x\r\n", ep);
}
ASSERT(NRF_USBD_EPISO_CHECK(ep));
m_dma_pending = 0;
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
if (NRF_USBD_EP_ABORTED == p_state->status)
{
/* Nothing to do - just ignore */
}
else if (p_state->handler.consumer == NULL)
{
UNUSED_RETURN_VALUE(nrf_atomic_u32_and(&m_ep_dma_waiting, ~(1U<<ep2bit(ep))));
/* Send event to the user - for an OUT endpoint, the whole transfer is finished in this moment */
NRF_DRV_USBD_EP_TRANSFER_EVENT(evt, ep, NRF_USBD_EP_OK);
m_event_handler(&evt);
}
}
static void USBD_ISR_dma_epin0(void) { nrf_usbd_ep0in_dma_handler(); }
static void USBD_ISR_dma_epin1(void) { nrf_usbd_epin_dma_handler(NRF_DRV_USBD_EPIN1 ); }
static void USBD_ISR_dma_epin2(void) { nrf_usbd_epin_dma_handler(NRF_DRV_USBD_EPIN2 ); }
static void USBD_ISR_dma_epin3(void) { nrf_usbd_epin_dma_handler(NRF_DRV_USBD_EPIN3 ); }
static void USBD_ISR_dma_epin4(void) { nrf_usbd_epin_dma_handler(NRF_DRV_USBD_EPIN4 ); }
static void USBD_ISR_dma_epin5(void) { nrf_usbd_epin_dma_handler(NRF_DRV_USBD_EPIN5 ); }
static void USBD_ISR_dma_epin6(void) { nrf_usbd_epin_dma_handler(NRF_DRV_USBD_EPIN6 ); }
static void USBD_ISR_dma_epin7(void) { nrf_usbd_epin_dma_handler(NRF_DRV_USBD_EPIN7 ); }
static void USBD_ISR_dma_epin8(void) { nrf_usbd_epiniso_dma_handler(NRF_DRV_USBD_EPIN8 ); }
static void USBD_ISR_dma_epout0(void) { nrf_usbd_ep0out_dma_handler(); }
static void USBD_ISR_dma_epout1(void) { nrf_usbd_epout_dma_handler(NRF_DRV_USBD_EPOUT1); }
static void USBD_ISR_dma_epout2(void) { nrf_usbd_epout_dma_handler(NRF_DRV_USBD_EPOUT2); }
static void USBD_ISR_dma_epout3(void) { nrf_usbd_epout_dma_handler(NRF_DRV_USBD_EPOUT3); }
static void USBD_ISR_dma_epout4(void) { nrf_usbd_epout_dma_handler(NRF_DRV_USBD_EPOUT4); }
static void USBD_ISR_dma_epout5(void) { nrf_usbd_epout_dma_handler(NRF_DRV_USBD_EPOUT5); }
static void USBD_ISR_dma_epout6(void) { nrf_usbd_epout_dma_handler(NRF_DRV_USBD_EPOUT6); }
static void USBD_ISR_dma_epout7(void) { nrf_usbd_epout_dma_handler(NRF_DRV_USBD_EPOUT7); }
static void USBD_ISR_dma_epout8(void) { nrf_usbd_epoutiso_dma_handler(NRF_DRV_USBD_EPOUT8); }
static void USBD_ISR_Sof(void)
{
nrf_drv_usbd_evt_t evt = {
NRF_DRV_USBD_EVT_SOF,
.data = { .sof = { .framecnt = nrf_usbd_framecntr_get() }}
};
/* Process isochronous endpoints */
m_ep_ready |=
(1U << ep2bit(NRF_DRV_USBD_EPIN8 )) |
(1U << ep2bit(NRF_DRV_USBD_EPOUT8));
m_event_handler(&evt);
}
/**
* @brief React on data transfer finished
*
* Auxiliary internal function.
* @param ep Endpoint number
* @param bitpos Bit position for selected endpoint number
*/
static void usbd_ep_data_handler(nrf_drv_usbd_ep_t ep, uint8_t bitpos)
{
NRF_LOG_DEBUG("USBD event: EndpointData: %x\r\n", ep);
/* Mark endpoint ready for next DMA access */
m_ep_ready |= (1U<<bitpos);
if (NRF_USBD_EPIN_CHECK(ep))
{
/* IN endpoint (Device -> Host) */
if (0 == (m_ep_dma_waiting & (1U<<bitpos)))
{
NRF_LOG_DEBUG("USBD event: EndpointData: In finished\r\n");
/* No more data to be send - transmission finished */
NRF_DRV_USBD_EP_TRANSFER_EVENT(evt, ep, NRF_USBD_EP_OK);
m_event_handler(&evt);
}
}
else
{
/* OUT endpoint (Host -> Device) */
if (0 == (m_ep_dma_waiting & (1U<<bitpos)))
{
NRF_LOG_DEBUG("USBD event: EndpointData: Out waiting\r\n");
/* No buffer prepared - send event to the application */
NRF_DRV_USBD_EP_TRANSFER_EVENT(evt, ep, NRF_USBD_EP_WAITING);
m_event_handler(&evt);
}
}
}
static void USBD_ISR_SetupData(void)
{
usbd_ep_data_handler(m_last_setup_dir, ep2bit(m_last_setup_dir));
}
static void USBD_ISR_Setup(void)
{
nrf_usbd_shorts_disable(NRF_USBD_SHORT_EP0DATADONE_EP0STATUS_MASK);
NRF_LOG_DEBUG("USBD event: Setup (rt:%.2x r:%.2x v:%.4x i:%.4x l:%u )\r\n",
nrf_usbd_setup_bmrequesttype_get(),
nrf_usbd_setup_brequest_get(),
nrf_usbd_setup_wvalue_get(),
nrf_usbd_setup_windex_get(),
nrf_usbd_setup_wlength_get());
uint8_t bmRequestType = nrf_usbd_setup_bmrequesttype_get();
if ((m_ep_dma_waiting | ((~m_ep_ready) & USBD_EPIN_BIT_MASK)) & (1U <<ep2bit(m_last_setup_dir)))
{
NRF_LOG_DEBUG("USBD drv: Trying to abort last transfer on EP0\r\n");
usbd_ep_abort(m_last_setup_dir);
}
m_last_setup_dir =
((bmRequestType & USBD_DRV_REQUESTTYPE_DIR_MASK) == USBD_DRV_REQUESTTYPE_DIR_OUT) ?
NRF_DRV_USBD_EPOUT0 : NRF_DRV_USBD_EPIN0;
UNUSED_RETURN_VALUE(nrf_atomic_u32_and(
&m_ep_dma_waiting,
~((1U<<ep2bit(NRF_DRV_USBD_EPOUT0)) | (1U<<ep2bit(NRF_DRV_USBD_EPIN0)))));
m_ep_ready |= 1U<<ep2bit(NRF_DRV_USBD_EPIN0);
const nrf_drv_usbd_evt_t evt = {
.type = NRF_DRV_USBD_EVT_SETUP
};
m_event_handler(&evt);
}
static void USBD_ISR_Event(void)
{
uint32_t event = nrf_usbd_eventcause_get_and_clear();
if (event & NRF_USBD_EVENTCAUSE_ISOOUTCRC_MASK)
{
/* Currently no support */
}
if (event & NRF_USBD_EVENTCAUSE_SUSPEND_MASK)
{
const nrf_drv_usbd_evt_t evt = {
.type = NRF_DRV_USBD_EVT_SUSPEND
};
m_event_handler(&evt);
}
if (event & NRF_USBD_EVENTCAUSE_RESUME_MASK)
{
const nrf_drv_usbd_evt_t evt = {
.type = NRF_DRV_USBD_EVT_RESUME
};
m_event_handler(&evt);
}
}
static void USBD_ISR_EpDataStatus(void)
{
/* Get all endpoints that have acknowledged transfer */
uint32_t dataepstatus = nrf_usbd_epdatastatus_get_and_clear();
#if NRF_DRV_USBD_PROTO1_FIX
dataepstatus |= (m_simulated_dataepstatus &
~((1U<<USBD_EPOUT_BITPOS_0) | (1U<<USBD_EPIN_BITPOS_0)));
m_simulated_dataepstatus &=
((1U<<USBD_EPOUT_BITPOS_0) | (1U<<USBD_EPIN_BITPOS_0));
#endif
NRF_LOG_DEBUG("USBD event: EndpointEPStatus: %x\r\n", dataepstatus);
/* All finished endpoint have to be marked as busy */
while (dataepstatus)
{
uint8_t bitpos = __CLZ(__RBIT(dataepstatus));
nrf_drv_usbd_ep_t ep = bit2ep(bitpos);
dataepstatus &= ~(1UL << bitpos);
UNUSED_RETURN_VALUE(usbd_ep_data_handler(ep, bitpos));
}
#if NRF_DRV_USBD_EARLY_DMA_PROCESS
/* Speed up */
usbd_dmareq_process();
#endif
}
static void USBD_ISR_AccessFault(void)
{
/** @todo RK Currently do nothing about it.
* Implement it when accessfault would be better documented */
// ASSERT(0);
}
/**
* @brief Function to select the endpoint to start
*
* Function that realizes algorithm to schedule right channel for EasyDMA transfer.
* It gets a variable with flags for the endpoints currently requiring transfer.
*
* @param[in] req Bit flags for channels currently requiring transfer.
* Bits 0...8 used for IN endpoints.
* Bits 16...24 used for OUT endpoints.
* @note
* This function would be never called with 0 as a @c req argument.
* @return The bit number of the endpoint that should be processed now.
*/
static uint8_t usbd_dma_scheduler_algorithm(uint32_t req)
{
/** @todo RK This is just simple algorithm for testing and should be updated */
return __CLZ(__RBIT(req));
}
/**
* @brief Get the size of isochronous endpoint
*
* The size of isochronous endpoint is configurable.
* This function returns the size of isochronous buffer taking into account
* current configuration.
*
* @param[in] ep Endpoint number.
*
* @return The size of endpoint buffer.
*/
static inline size_t usbd_ep_iso_capacity(nrf_drv_usbd_ep_t ep)
{
UNUSED_PARAMETER(ep);
nrf_usbd_isosplit_t split = nrf_usbd_isosplit_get();
if (NRF_USBD_ISOSPLIT_Half == split)
{
return NRF_DRV_USBD_ISOSIZE / 2;
}
return NRF_DRV_USBD_ISOSIZE;
}
/**
* @brief Process all DMA requests
*
* Function that have to be called from USBD interrupt handler.
* It have to be called when all the interrupts connected with endpoints transfer
* and DMA transfer are already handled.
*/
static void usbd_dmareq_process(void)
{
if (0 == m_dma_pending)
{
uint32_t req;
while (0 != (req = m_ep_dma_waiting & m_ep_ready))
{
uint8_t pos = usbd_dma_scheduler_algorithm(req);
nrf_drv_usbd_ep_t ep = bit2ep(pos);
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
nrf_drv_usbd_ep_transfer_t transfer;
bool continue_transfer;
STATIC_ASSERT(offsetof(usbd_drv_ep_state_t, handler.feeder) ==
offsetof(usbd_drv_ep_state_t, handler.consumer));
ASSERT((p_state->handler.feeder) != NULL);
if (NRF_USBD_EPIN_CHECK(ep))
{
/* Device -> Host */
continue_transfer = p_state->handler.feeder(
&transfer,
p_state->p_context,
p_state->max_packet_size);
if (!continue_transfer)
{
p_state->handler.feeder = NULL;
if (ep == NRF_DRV_USBD_EPIN0)
{
/** Configure short right now - now if the last data is transferred,
* when host tries another data transfer, the endpoint will stall. */
NRF_LOG_DEBUG("USB DMA process: Enable status short\r\n");
nrf_usbd_shorts_enable(NRF_USBD_SHORT_EP0DATADONE_EP0STATUS_MASK);
}
}
}
else
{
/* Host -> Device */
const size_t rx_size = nrf_drv_usbd_epout_size_get(ep);
continue_transfer = p_state->handler.consumer(
&transfer,
p_state->p_context,
p_state->max_packet_size,
rx_size);
if (transfer.p_data.rx == NULL)
{
/* Dropping transfer - allow processing */
ASSERT(transfer.size == 0);
}
else if (transfer.size < rx_size)
{
p_state->status = NRF_USBD_EP_OVERLOAD;
UNUSED_RETURN_VALUE(nrf_atomic_u32_and(&m_ep_dma_waiting, ~(1U<<pos)));
NRF_DRV_USBD_EP_TRANSFER_EVENT(evt, ep, NRF_USBD_EP_OVERLOAD);
m_event_handler(&evt);
/* This endpoint will not be transmitted now, repeat the loop */
continue;
}
else
{
/* Nothing to do */
}
if (!continue_transfer)
{
p_state->handler.consumer = NULL;
}
ASSERT(transfer.size == rx_size);
}
m_dma_pending = 1;
m_ep_ready &= ~(1U << pos);
if (NRF_USBD_ISO_DEBUG || (!NRF_USBD_EPISO_CHECK(ep)))
{
NRF_LOG_DEBUG(
"USB DMA process: Starting transfer on EP: %x, size: %u\r\n",
ep,
transfer.size);
}
/* Update number of currently transferred bytes */
p_state->transfer_cnt += transfer.size;
/* Start transfer to the endpoint buffer */
nrf_usbd_ep_easydma_set(ep, transfer.p_data.ptr, (uint32_t)transfer.size);
#if NRF_DRV_USBD_PROTO1_FIX
uint32_t cnt_end = (uint32_t)(-1);
do
{
uint32_t cnt = (uint32_t)(-1);
do
{
nrf_usbd_event_clear(NRF_USBD_EVENT_STARTED);
usbd_dma_start(ep);
nrf_drv_systick_delay_us(2);
++cnt;
}while (!nrf_usbd_event_check(NRF_USBD_EVENT_STARTED));
if (cnt)
{
NRF_DRV_USBD_LOG_PROTO1_FIX_PRINTF(" DMA restarted: %u times\r\n", cnt);
}
nrf_drv_systick_delay_us(20);
while (0 == (0x20 & *((volatile uint32_t *)(NRF_USBD_BASE + 0x474))))
{
nrf_drv_systick_delay_us(2);
}
nrf_drv_systick_delay_us(1);
++cnt_end;
} while (!nrf_usbd_event_check(nrf_drv_usbd_ep_to_endevent(ep)));
if (cnt_end)
{
NRF_DRV_USBD_LOG_PROTO1_FIX_PRINTF(" DMA fully restarted: %u times\r\n", cnt_end);
}
#else
usbd_dma_start(ep);
#endif
if (NRF_USBD_DMAREQ_PROCESS_DEBUG)
{
NRF_LOG_DEBUG("USB DMA process - finishing\r\n");
}
/* Transfer started - exit the loop */
break;
}
}
else
{
if (NRF_USBD_DMAREQ_PROCESS_DEBUG)
{
NRF_LOG_DEBUG("USB DMA process - EasyDMA busy\r\n");
}
}
}
/** @} */
typedef void (*nrf_drv_usbd_isr_t)(void);
/**
* @brief USBD interrupt service runtimes
*
*/
static const nrf_drv_usbd_isr_t m_isr[] =
{
[USBD_INTEN_USBRESET_Pos ] = USBD_ISR_Usbreset,
[USBD_INTEN_STARTED_Pos ] = USBD_ISR_Started,
[USBD_INTEN_ENDEPIN0_Pos ] = USBD_ISR_dma_epin0,
[USBD_INTEN_ENDEPIN1_Pos ] = USBD_ISR_dma_epin1,
[USBD_INTEN_ENDEPIN2_Pos ] = USBD_ISR_dma_epin2,
[USBD_INTEN_ENDEPIN3_Pos ] = USBD_ISR_dma_epin3,
[USBD_INTEN_ENDEPIN4_Pos ] = USBD_ISR_dma_epin4,
[USBD_INTEN_ENDEPIN5_Pos ] = USBD_ISR_dma_epin5,
[USBD_INTEN_ENDEPIN6_Pos ] = USBD_ISR_dma_epin6,
[USBD_INTEN_ENDEPIN7_Pos ] = USBD_ISR_dma_epin7,
[USBD_INTEN_EP0DATADONE_Pos] = USBD_ISR_SetupData,
[USBD_INTEN_ENDISOIN_Pos ] = USBD_ISR_dma_epin8,
[USBD_INTEN_ENDEPOUT0_Pos ] = USBD_ISR_dma_epout0,
[USBD_INTEN_ENDEPOUT1_Pos ] = USBD_ISR_dma_epout1,
[USBD_INTEN_ENDEPOUT2_Pos ] = USBD_ISR_dma_epout2,
[USBD_INTEN_ENDEPOUT3_Pos ] = USBD_ISR_dma_epout3,
[USBD_INTEN_ENDEPOUT4_Pos ] = USBD_ISR_dma_epout4,
[USBD_INTEN_ENDEPOUT5_Pos ] = USBD_ISR_dma_epout5,
[USBD_INTEN_ENDEPOUT6_Pos ] = USBD_ISR_dma_epout6,
[USBD_INTEN_ENDEPOUT7_Pos ] = USBD_ISR_dma_epout7,
[USBD_INTEN_ENDISOOUT_Pos ] = USBD_ISR_dma_epout8,
[USBD_INTEN_SOF_Pos ] = USBD_ISR_Sof,
[USBD_INTEN_USBEVENT_Pos ] = USBD_ISR_Event,
[USBD_INTEN_EP0SETUP_Pos ] = USBD_ISR_Setup,
[USBD_INTEN_EPDATA_Pos ] = USBD_ISR_EpDataStatus,
[USBD_INTEN_ACCESSFAULT_Pos] = USBD_ISR_AccessFault
};
/**
* @name Interrupt handlers
*
* @{
*/
void USBD_IRQHandler(void)
{
const uint32_t enabled = nrf_usbd_int_enable_get();
uint32_t to_process = enabled;
uint32_t active = 0;
/* Check all enabled interrupts */
while (to_process)
{
uint8_t event_nr = __CLZ(__RBIT(to_process));
if (nrf_usbd_event_get_and_clear((nrf_usbd_event_t)nrf_drv_bitpos_to_event(event_nr)))
{
active |= 1UL << event_nr;
}
to_process &= ~(1UL << event_nr);
}
#if NRF_DRV_USBD_PROTO1_FIX
/* Event correcting */
if ((0 == m_dma_pending) && (0 != (active & (USBD_INTEN_SOF_Msk))))
{
uint8_t usbi, uoi, uii;
/* Testing */
*((volatile uint32_t *)(NRF_USBD_BASE + 0x800)) = 0x7A9;
uii = (uint8_t)(*((volatile uint32_t *)(NRF_USBD_BASE + 0x804)));
if (0 != uii)
{
uii &= (uint8_t)(*((volatile uint32_t *)(NRF_USBD_BASE + 0x804)));
}
*((volatile uint32_t *)(NRF_USBD_BASE + 0x800)) = 0x7AA;
uoi = (uint8_t)(*((volatile uint32_t *)(NRF_USBD_BASE + 0x804)));
if (0 != uoi)
{
uoi &= (uint8_t)(*((volatile uint32_t *)(NRF_USBD_BASE + 0x804)));
}
*((volatile uint32_t *)(NRF_USBD_BASE + 0x800)) = 0x7AB;
usbi = (uint8_t)(*((volatile uint32_t *)(NRF_USBD_BASE + 0x804)));
if (0 != usbi)
{
usbi &= (uint8_t)(*((volatile uint32_t *)(NRF_USBD_BASE + 0x804)));
}
/* Processing */
*((volatile uint32_t *)(NRF_USBD_BASE + 0x800)) = 0x7AC;
uii &= (uint8_t)*((volatile uint32_t *)(NRF_USBD_BASE + 0x804));
if (0 != uii)
{
uint8_t rb;
m_simulated_dataepstatus |= ((uint32_t)uii)<<USBD_EPIN_BITPOS_0;
*((volatile uint32_t *)(NRF_USBD_BASE + 0x800)) = 0x7A9;
*((volatile uint32_t *)(NRF_USBD_BASE + 0x804)) = uii;
rb = (uint8_t)*((volatile uint32_t *)(NRF_USBD_BASE + 0x804));
UNUSED_VARIABLE(rb);
NRF_DRV_USBD_LOG_PROTO1_FIX_PRINTF(" uii: 0x%.2x (0x%.2x)\r\n", uii, rb);
}
*((volatile uint32_t *)(NRF_USBD_BASE + 0x800)) = 0x7AD;
uoi &= (uint8_t)*((volatile uint32_t *)(NRF_USBD_BASE + 0x804));
if (0 != uoi)
{
uint8_t rb;
m_simulated_dataepstatus |= ((uint32_t)uoi)<<USBD_EPOUT_BITPOS_0;
*((volatile uint32_t *)(NRF_USBD_BASE + 0x800)) = 0x7AA;
*((volatile uint32_t *)(NRF_USBD_BASE + 0x804)) = uoi;
rb = (uint8_t)*((volatile uint32_t *)(NRF_USBD_BASE + 0x804));
UNUSED_VARIABLE(rb);
NRF_DRV_USBD_LOG_PROTO1_FIX_PRINTF(" uoi: 0x%.2u (0x%.2x)\r\n", uoi, rb);
}
*((volatile uint32_t *)(NRF_USBD_BASE + 0x800)) = 0x7AE;
usbi &= (uint8_t)*((volatile uint32_t *)(NRF_USBD_BASE + 0x804));
if (0 != usbi)
{
uint8_t rb;
if (usbi & 0x01)
{
active |= USBD_INTEN_EP0SETUP_Msk;
}
if (usbi & 0x10)
{
active |= USBD_INTEN_USBRESET_Msk;
}
*((volatile uint32_t *)(NRF_USBD_BASE + 0x800)) = 0x7AB;
*((volatile uint32_t *)(NRF_USBD_BASE + 0x804)) = usbi;
rb = (uint8_t)*((volatile uint32_t *)(NRF_USBD_BASE + 0x804));
UNUSED_VARIABLE(rb);
NRF_DRV_USBD_LOG_PROTO1_FIX_PRINTF(" usbi: 0x%.2u (0x%.2x)\r\n", usbi, rb);
}
if (0 != (m_simulated_dataepstatus &
~((1U<<USBD_EPOUT_BITPOS_0) | (1U<<USBD_EPIN_BITPOS_0))))
{
active |= enabled & NRF_USBD_INT_DATAEP_MASK;
}
if (0 != (m_simulated_dataepstatus &
((1U<<USBD_EPOUT_BITPOS_0) | (1U<<USBD_EPIN_BITPOS_0))))
{
if (0 != (enabled & NRF_USBD_INT_EP0DATADONE_MASK))
{
m_simulated_dataepstatus &=
~((1U<<USBD_EPOUT_BITPOS_0) | (1U<<USBD_EPIN_BITPOS_0));
active |= NRF_USBD_INT_EP0DATADONE_MASK;
}
}
}
#endif
/* Process the active interrupts */
bool setup_active = 0 != (active & NRF_USBD_INT_EP0SETUP_MASK);
active &= ~NRF_USBD_INT_EP0SETUP_MASK;
while (active)
{
uint8_t event_nr = __CLZ(__RBIT(active));
m_isr[event_nr]();
active &= ~(1UL << event_nr);
}
usbd_dmareq_process();
if (setup_active)
{
m_isr[USBD_INTEN_EP0SETUP_Pos]();
}
}
/** @} */
/** @} */
ret_code_t nrf_drv_usbd_init(nrf_drv_usbd_event_handler_t const event_handler)
{
UNUSED_VARIABLE(usbd_ep_iso_capacity);
#if NRF_DRV_USBD_PROTO1_FIX
nrf_drv_systick_init();
#endif
if (NULL == event_handler)
{
return NRF_ERROR_INVALID_PARAM;
}
if ( m_drv_state != NRF_DRV_STATE_UNINITIALIZED)
{
return NRF_ERROR_INVALID_STATE;
}
nrf_drv_clock_hfclk_request(NULL);
while (!nrf_drv_clock_hfclk_is_running())
{
/* Just waiting */
}
m_event_handler = event_handler;
m_drv_state = NRF_DRV_STATE_INITIALIZED;
uint8_t n;
for (n=0; n<NRF_USBD_EPIN_CNT; ++n)
{
nrf_drv_usbd_ep_t ep = NRF_DRV_USBD_EPIN(n);
nrf_drv_usbd_ep_max_packet_size_set(ep, NRF_USBD_EPISO_CHECK(ep) ?
(NRF_DRV_USBD_ISOSIZE / 2) : NRF_DRV_USBD_EPSIZE);
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
p_state->status = NRF_USBD_EP_OK;
p_state->handler.feeder = NULL;
p_state->transfer_cnt = 0;
}
for (n=0; n<NRF_USBD_EPOUT_CNT; ++n)
{
nrf_drv_usbd_ep_t ep = NRF_DRV_USBD_EPOUT(n);
nrf_drv_usbd_ep_max_packet_size_set(ep, NRF_USBD_EPISO_CHECK(ep) ?
(NRF_DRV_USBD_ISOSIZE / 2) : NRF_DRV_USBD_EPSIZE);
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
p_state->status = NRF_USBD_EP_OK;
p_state->handler.consumer = NULL;
p_state->transfer_cnt = 0;
}
return NRF_SUCCESS;
}
ret_code_t nrf_drv_usbd_uninit(void)
{
if (m_drv_state != NRF_DRV_STATE_INITIALIZED)
{
return NRF_ERROR_INVALID_STATE;
}
nrf_drv_clock_hfclk_release();
m_event_handler = NULL;
m_drv_state = NRF_DRV_STATE_UNINITIALIZED;
return NRF_SUCCESS;
}
void nrf_drv_usbd_enable(void)
{
ASSERT(m_drv_state == NRF_DRV_STATE_INITIALIZED);
/* Prepare for READY event receiving */
nrf_usbd_eventcause_clear(NRF_USBD_EVENTCAUSE_READY_MASK);
/* Enable the peripheral */
nrf_usbd_enable();
/* Waiting for peripheral to enable, this should take a few us */
while (0 == (NRF_USBD_EVENTCAUSE_READY_MASK & nrf_usbd_eventcause_get()))
{
/* Empty loop */
}
nrf_usbd_eventcause_clear(NRF_USBD_EVENTCAUSE_READY_MASK);
nrf_usbd_isosplit_set(NRF_USBD_ISOSPLIT_Half);
m_ep_ready = (((1U<<NRF_USBD_EPIN_CNT) - 1U) << USBD_EPIN_BITPOS_0);
m_ep_dma_waiting = 0;
m_dma_pending = 0;
m_last_setup_dir = NRF_DRV_USBD_EPOUT0;
m_drv_state = NRF_DRV_STATE_POWERED_ON;
}
void nrf_drv_usbd_disable(void)
{
ASSERT(m_drv_state != NRF_DRV_STATE_UNINITIALIZED);
/* Stop just in case */
nrf_drv_usbd_stop();
/* Disable all parts */
nrf_usbd_int_disable(nrf_usbd_int_enable_get());
nrf_usbd_disable();
m_dma_pending = 0;
m_drv_state = NRF_DRV_STATE_INITIALIZED;
}
void nrf_drv_usbd_start(bool enable_sof)
{
ASSERT(m_drv_state == NRF_DRV_STATE_POWERED_ON);
uint32_t ints_to_enable =
NRF_USBD_INT_USBRESET_MASK |
NRF_USBD_INT_STARTED_MASK |
NRF_USBD_INT_ENDEPIN0_MASK |
NRF_USBD_INT_EP0DATADONE_MASK |
NRF_USBD_INT_ENDEPOUT0_MASK |
NRF_USBD_INT_USBEVENT_MASK |
NRF_USBD_INT_EP0SETUP_MASK |
NRF_USBD_INT_DATAEP_MASK |
NRF_USBD_INT_ACCESSFAULT_MASK;
if (enable_sof || NRF_DRV_USBD_PROTO1_FIX)
{
ints_to_enable |= NRF_USBD_INT_SOF_MASK;
}
/* Enable all required interrupts */
nrf_usbd_int_enable(ints_to_enable);
/* Enable interrupt globally */
nrf_drv_common_irq_enable(USBD_IRQn, USBD_CONFIG_IRQ_PRIORITY);
/* Enable pullups */
nrf_usbd_pullup_enable();
}
void nrf_drv_usbd_stop(void)
{
ASSERT(m_drv_state == NRF_DRV_STATE_POWERED_ON);
/* Abort transfers */
usbd_ep_abort_all();
/* Disable pullups */
nrf_usbd_pullup_disable();
/* Disable interrupt globally */
nrf_drv_common_irq_disable(USBD_IRQn);
}
bool nrf_drv_usbd_is_initialized(void)
{
return (m_drv_state >= NRF_DRV_STATE_INITIALIZED);
}
bool nrf_drv_usbd_is_enabled(void)
{
return (m_drv_state >= NRF_DRV_STATE_POWERED_ON);
}
bool nrf_drv_usbd_is_started(void)
{
return (nrf_drv_usbd_is_enabled() && nrf_drv_common_irq_enable_check(USBD_IRQn));
}
void nrf_drv_usbd_ep_max_packet_size_set(nrf_drv_usbd_ep_t ep, uint16_t size)
{
/* Only power of 2 size allowed */
ASSERT((size != 0) && (size & (size - 1)) == 0);
/* Packet size cannot be higher than maximum buffer size */
ASSERT( ( NRF_USBD_EPISO_CHECK(ep) && (size <= usbd_ep_iso_capacity(ep)))
||
((!NRF_USBD_EPISO_CHECK(ep)) && (size <= NRF_DRV_USBD_EPSIZE)));
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
p_state->max_packet_size = size;
}
uint16_t nrf_drv_usbd_ep_max_packet_size_get(nrf_drv_usbd_ep_t ep)
{
usbd_drv_ep_state_t const * p_state = ep_state_access(ep);
return p_state->max_packet_size;
}
bool nrf_drv_usbd_ep_enable_check(nrf_drv_usbd_ep_t ep)
{
return nrf_usbd_ep_enable_check(ep_to_hal(ep));
}
void nrf_drv_usbd_ep_enable(nrf_drv_usbd_ep_t ep)
{
nrf_usbd_ep_enable(ep_to_hal(ep));
nrf_usbd_int_enable(nrf_drv_usbd_ep_to_int(ep));
if ((NRF_USBD_EP_NR_GET(ep) != 0) && NRF_USBD_EPOUT_CHECK(ep))
{
CRITICAL_REGION_ENTER();
m_ep_ready |= 1U<<ep2bit(ep);
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
if (!NRF_USBD_EPISO_CHECK(ep))
{
ret_code_t ret;
NRF_DRV_USBD_TRANSFER_OUT(transfer, 0, 0);
ret = nrf_drv_usbd_ep_transfer(ep, &transfer);
ASSERT(ret == NRF_SUCCESS);
UNUSED_VARIABLE(ret);
}
p_state->status = NRF_USBD_EP_ABORTED;
CRITICAL_REGION_EXIT();
}
}
void nrf_drv_usbd_ep_disable(nrf_drv_usbd_ep_t ep)
{
nrf_usbd_ep_disable(ep_to_hal(ep));
nrf_usbd_int_disable(nrf_drv_usbd_ep_to_int(ep));
}
ret_code_t nrf_drv_usbd_ep_transfer(
nrf_drv_usbd_ep_t ep,
nrf_drv_usbd_transfer_t const * const p_transfer)
{
ret_code_t ret;
const uint8_t ep_bitpos = ep2bit(ep);
ASSERT(NULL != p_transfer);
CRITICAL_REGION_ENTER();
/* Setup data transaction can go only in one direction at a time */
if ((NRF_USBD_EP_NR_GET(ep) == 0) && (ep != m_last_setup_dir))
{
ret = NRF_ERROR_INVALID_ADDR;
if (NRF_USBD_FAILED_TRANSFERS_DEBUG)
{
NRF_LOG_DEBUG("USB driver: Transfer failed: Invalid EPr\n");
}
}
else if ((m_ep_dma_waiting | ((~m_ep_ready) & USBD_EPIN_BIT_MASK)) & (1U << ep_bitpos))
{
/* IN (Device -> Host) transfer has to be transmitted out to allow new transmission */
ret = NRF_ERROR_BUSY;
if (NRF_USBD_FAILED_TRANSFERS_DEBUG)
{
NRF_LOG_DEBUG("USB driver: Transfer failed: EP is busy\r\n");\
}
}
else if (nrf_usbd_ep_is_stall(ep))
{
ret = NRF_ERROR_FORBIDDEN;
if (NRF_USBD_FAILED_TRANSFERS_DEBUG)
{
NRF_LOG_DEBUG("USB driver: Transfer failed: EP is stalled\r\n");
}
}
else
{
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
/* Prepare transfer context and handler description */
nrf_drv_usbd_transfer_t * p_context;
if (NRF_USBD_EPIN_CHECK(ep))
{
p_context = m_ep_feeder_state + NRF_USBD_EP_NR_GET(ep);
if (nrf_drv_is_in_RAM(p_transfer->p_data.tx))
{
/* RAM */
if (0 == (p_transfer->flags & NRF_DRV_USBD_TRANSFER_ZLP_FLAG))
{
p_state->handler.feeder = nrf_drv_usbd_feeder_ram;
if (NRF_USBD_ISO_DEBUG || (!NRF_USBD_EPISO_CHECK(ep)))
{
NRF_LOG_DEBUG(
"USB driver: Transfer called on endpoint %x, size: %u, mode: "
"RAM\r\n",
ep,
p_transfer->size);
}
}
else
{
p_state->handler.feeder = nrf_drv_usbd_feeder_ram_zlp;
if (NRF_USBD_ISO_DEBUG || (!NRF_USBD_EPISO_CHECK(ep)))
{
NRF_LOG_DEBUG(
"USB driver: Transfer called on endpoint %x, size: %u, mode: "
"RAM_ZLP\r\n",
ep,
p_transfer->size);
}
}
}
else
{
/* Flash */
if (0 == (p_transfer->flags & NRF_DRV_USBD_TRANSFER_ZLP_FLAG))
{
p_state->handler.feeder = nrf_drv_usbd_feeder_flash;
if (NRF_USBD_ISO_DEBUG || (!NRF_USBD_EPISO_CHECK(ep)))
{
NRF_LOG_DEBUG(
"USB driver: Transfer called on endpoint %x, size: %u, mode: "
"FLASH\r\n",
ep,
p_transfer->size);
}
}
else
{
p_state->handler.feeder = nrf_drv_usbd_feeder_flash_zlp;
if (NRF_USBD_ISO_DEBUG || (!NRF_USBD_EPISO_CHECK(ep)))
{
NRF_LOG_DEBUG(
"USB driver: Transfer called on endpoint %x, size: %u, mode: "
"FLASH_ZLP\r\n",
ep,
p_transfer->size);
}
}
}
}
else
{
p_context = m_ep_consumer_state + NRF_USBD_EP_NR_GET(ep);
ASSERT((p_transfer->p_data.rx == NULL) || (nrf_drv_is_in_RAM(p_transfer->p_data.rx)));
p_state->handler.consumer = nrf_drv_usbd_consumer;
}
*p_context = *p_transfer;
p_state->p_context = p_context;
p_state->transfer_cnt = 0;
p_state->status = NRF_USBD_EP_OK;
m_ep_dma_waiting |= 1U << ep_bitpos;
ret = NRF_SUCCESS;
usbd_int_rise();
}
CRITICAL_REGION_EXIT();
return ret;
}
ret_code_t nrf_drv_usbd_ep_handled_transfer(
nrf_drv_usbd_ep_t ep,
nrf_drv_usbd_handler_desc_t const * const p_handler)
{
ret_code_t ret;
const uint8_t ep_bitpos = ep2bit(ep);
ASSERT(NULL != p_handler);
CRITICAL_REGION_ENTER();
/* Setup data transaction can go only in one direction at a time */
if ((NRF_USBD_EP_NR_GET(ep) == 0) && (ep != m_last_setup_dir))
{
ret = NRF_ERROR_INVALID_ADDR;
if (NRF_USBD_FAILED_TRANSFERS_DEBUG)
{
NRF_LOG_DEBUG("USB driver: Transfer failed: Invalid EPr\n");
}
}
else if ((m_ep_dma_waiting | ((~m_ep_ready) & USBD_EPIN_BIT_MASK)) & (1U << ep_bitpos))
{
/* IN (Device -> Host) transfer has to be transmitted out to allow a new transmission */
ret = NRF_ERROR_BUSY;
if (NRF_USBD_FAILED_TRANSFERS_DEBUG)
{
NRF_LOG_DEBUG("USB driver: Transfer failed: EP is busy\r\n");\
}
}
else if (nrf_usbd_ep_is_stall(ep))
{
ret = NRF_ERROR_FORBIDDEN;
if (NRF_USBD_FAILED_TRANSFERS_DEBUG)
{
NRF_LOG_DEBUG("USB driver: Transfer failed: EP is stalled\r\n");
}
}
else
{
/* Transfer can be configured now */
usbd_drv_ep_state_t * p_state = ep_state_access(ep);
p_state->transfer_cnt = 0;
p_state->handler = p_handler->handler;
p_state->p_context = p_handler->p_context;
p_state->status = NRF_USBD_EP_OK;
m_ep_dma_waiting |= 1U << ep_bitpos;
ret = NRF_SUCCESS;
if (NRF_USBD_ISO_DEBUG || (!NRF_USBD_EPISO_CHECK(ep)))
{
NRF_LOG_DEBUG("USB driver: Transfer called on endpoint %x, mode: Handler\r\n", ep);
}
usbd_int_rise();
}
CRITICAL_REGION_EXIT();
return ret;
}
void * nrf_drv_usbd_feeder_buffer_get(void)
{
return m_tx_buffer;
}
ret_code_t nrf_drv_usbd_ep_status_get(nrf_drv_usbd_ep_t ep, size_t * p_size)
{
ret_code_t ret;
usbd_drv_ep_state_t const * p_state = ep_state_access(ep);
CRITICAL_REGION_ENTER();
*p_size = p_state->transfer_cnt;
ret = (p_state->handler.consumer == NULL) ? p_state->status : NRF_ERROR_BUSY;
CRITICAL_REGION_EXIT();
return ret;
}
size_t nrf_drv_usbd_epout_size_get(nrf_drv_usbd_ep_t ep)
{
return nrf_usbd_epout_size_get(ep_to_hal(ep));
}
bool nrf_drv_usbd_ep_is_busy(nrf_drv_usbd_ep_t ep)
{
return (0 != (m_ep_dma_waiting & (1UL << ep2bit(ep))));
}
void nrf_drv_usbd_ep_stall(nrf_drv_usbd_ep_t ep)
{
NRF_LOG_DEBUG("USB: EP %x stalled.\r\n", ep);
nrf_usbd_ep_stall(ep_to_hal(ep));
}
void nrf_drv_usbd_ep_stall_clear(nrf_drv_usbd_ep_t ep)
{
nrf_usbd_ep_unstall(ep_to_hal(ep));
}
bool nrf_drv_usbd_ep_stall_check(nrf_drv_usbd_ep_t ep)
{
return nrf_usbd_ep_is_stall(ep_to_hal(ep));
}
void nrf_drv_usbd_setup_get(nrf_drv_usbd_setup_t * const p_setup)
{
memset(p_setup, 0, sizeof(nrf_drv_usbd_setup_t));
p_setup->bmRequestType = nrf_usbd_setup_bmrequesttype_get();
p_setup->bmRequest = nrf_usbd_setup_brequest_get();
p_setup->wValue = nrf_usbd_setup_wvalue_get();
p_setup->wIndex = nrf_usbd_setup_windex_get();
p_setup->wLength = nrf_usbd_setup_wlength_get();
}
void nrf_drv_usbd_setup_data_clear(void)
{
#if NRF_DRV_USBD_PROTO1_FIX
/* For this fix to work properly, it must be ensured that the task is
* executed twice one after another - blocking ISR. This is however a temporary
* solution to be used only before production typeout. */
uint32_t primask_copy = __get_PRIMASK();
__disable_irq();
nrf_usbd_task_trigger(NRF_USBD_TASK_EP0RCVOUT);
nrf_usbd_task_trigger(NRF_USBD_TASK_EP0RCVOUT);
__set_PRIMASK(primask_copy);
#else
nrf_usbd_task_trigger(NRF_USBD_TASK_EP0RCVOUT);
#endif
}
void nrf_drv_usbd_setup_clear(void)
{
nrf_usbd_task_trigger(NRF_USBD_TASK_EP0STATUS);
}
void nrf_drv_usbd_setup_stall(void)
{
NRF_LOG_DEBUG("Setup stalled.\r\n");
nrf_usbd_task_trigger(NRF_USBD_TASK_EP0STALL);
}
nrf_drv_usbd_ep_t nrf_drv_usbd_last_setup_dir_get(void)
{
return m_last_setup_dir;
}
void nrf_drv_usbd_transfer_out_drop(nrf_drv_usbd_ep_t ep)
{
ASSERT(NRF_USBD_EPOUT_CHECK(ep));
if (m_ep_ready & (1U << ep2bit(ep)))
{
if (!NRF_USBD_EPISO_CHECK(ep))
{
ret_code_t ret;
NRF_DRV_USBD_TRANSFER_OUT(transfer, 0, 0);
ret = nrf_drv_usbd_ep_transfer(ep, &transfer);
ASSERT(ret == NRF_SUCCESS);
UNUSED_VARIABLE(ret);
}
}
}
#endif // USBD_ENABLED
|