added presented demo files
parent
6395d1d18b
commit
3ee38d2e74
@ -0,0 +1,474 @@
|
||||
// Digilent Waveforms
|
||||
// Custom signal:
|
||||
// 4096 samples, X from 0 to 4095
|
||||
// sin(PI/8000*X*770)+sin(PI/8000*X*1336)
|
||||
|
||||
#include <cstdint>
|
||||
using float32_t = float;
|
||||
|
||||
typedef struct
|
||||
{
|
||||
uint16_t numTaps; /**< number of filter coefficients in the filter. */
|
||||
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
||||
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
||||
} arm_fir_instance_f32;
|
||||
|
||||
static void arm_fir_f32(const arm_fir_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize);
|
||||
|
||||
adcsample_t *process_data(adcsample_t *samples, unsigned int size)
|
||||
{
|
||||
// 1. Define our array sizes (Be sure to set Run > Set buffer size... to below value!)
|
||||
constexpr unsigned int buffer_size = 500;
|
||||
constexpr unsigned int filter_size = 100;
|
||||
|
||||
// 2. Define our filter and the working arrays
|
||||
static float filter[filter_size] = {
|
||||
0.0004387887025183802,0.000832200098857514,0.0015307184662295217,0.0025082006379108486,0.0037734534845577567,0.005298545881839843,0.007011536790726042,0.008794237700486741,0.0104866537299476,0.011898670086639574,0.01282927474471195,0.013091387203266143,0.012539923791204348,0.011099382508792464,0.008786721087738127,0.005724922305741446,0.002144437816471804,-0.0016305355316754216,-0.005210998401135279,-0.00818522521443848,-0.0101701012867913,-0.010865871085906236,-0.01010594970823667,-0.007895785082463622,-0.00443176063435828,-0.00009684904191641966,0.004570418146137933,0.008932018058761999,0.012326603606274784,0.014157852725048914,0.013983789156387687,0.011595484863822138,0.007073052408314296,0.0008096544104778903,-0.006503129471685042,-0.013929880283520692,-0.020382390416343286,-0.024738365522063946,-0.02597487538349127,-0.02330063345756659,-0.016270714607748243,-0.004868040016583383,0.010460249064783475,0.028818398768187533,0.04893049916926163,0.06925561893929223,0.0881379889511425,0.10397551230005074,0.11538733811709222,0.12136089030896859,0.12136089030896859,0.11538733811709222,0.10397551230005074,0.0881379889511425,0.06925561893929223,0.04893049916926163,0.028818398768187533,0.010460249064783475,-0.004868040016583383,-0.016270714607748243,-0.02330063345756659,-0.02597487538349127,-0.024738365522063946,-0.020382390416343286,-0.013929880283520692,-0.006503129471685042,0.0008096544104778903,0.007073052408314296,0.011595484863822138,0.013983789156387687,0.014157852725048914,0.012326603606274784,0.008932018058761999,0.004570418146137933,-0.00009684904191641966,-0.00443176063435828,-0.007895785082463622,-0.01010594970823667,-0.010865871085906236,-0.0101701012867913,-0.00818522521443848,-0.005210998401135279,-0.0016305355316754216,0.002144437816471804,0.005724922305741446,0.008786721087738127,0.011099382508792464,0.012539923791204348,0.013091387203266143,0.01282927474471195,0.011898670086639574,0.0104866537299476,0.008794237700486741,0.007011536790726042,0.005298545881839843,0.0037734534845577567,0.0025082006379108486,0.0015307184662295217,0.000832200098857514,0.0004387887025183802
|
||||
};
|
||||
static float input[buffer_size];
|
||||
static float output[buffer_size];
|
||||
static float working[buffer_size + filter_size];
|
||||
|
||||
// 3. Scale 0-4095 interger sample values to +/- 1.0 floats
|
||||
for (unsigned int i = 0; i < size; i++)
|
||||
input[i] = (samples[i] - 2048) / 2048.f;
|
||||
|
||||
// 4. Compute the FIR
|
||||
arm_fir_instance_f32 fir { filter_size, working, filter };
|
||||
arm_fir_f32(&fir, input, output, size);
|
||||
|
||||
// 5. Convert float results back to 0-4095 range for output
|
||||
for (unsigned int i = 0; i < size; i++)
|
||||
samples[i] = output[i] * 2048.f + 2048;
|
||||
|
||||
return samples;
|
||||
}
|
||||
|
||||
// Below taken from the CMSIS DSP Library (find it on GitHub)
|
||||
void arm_fir_f32(
|
||||
const arm_fir_instance_f32 * S,
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
float32_t *pState = S->pState; /* State pointer */
|
||||
float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
||||
float32_t *pStateCurnt; /* Points to the current sample of the state */
|
||||
float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
|
||||
float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
|
||||
float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
|
||||
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
|
||||
uint32_t i, tapCnt, blkCnt; /* Loop counters */
|
||||
float32_t p0,p1,p2,p3,p4,p5,p6,p7; /* Temporary product values */
|
||||
|
||||
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
||||
/* pStateCurnt points to the location where the new input data should be written */
|
||||
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
||||
|
||||
/* Apply loop unrolling and compute 8 output values simultaneously.
|
||||
* The variables acc0 ... acc7 hold output values that are being computed:
|
||||
*
|
||||
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
|
||||
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
|
||||
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
|
||||
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
|
||||
*/
|
||||
blkCnt = blockSize >> 3;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 8 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 7 samples. */
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy four new input samples into the state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set all accumulators to zero */
|
||||
acc0 = 0.0f;
|
||||
acc1 = 0.0f;
|
||||
acc2 = 0.0f;
|
||||
acc3 = 0.0f;
|
||||
acc4 = 0.0f;
|
||||
acc5 = 0.0f;
|
||||
acc6 = 0.0f;
|
||||
acc7 = 0.0f;
|
||||
|
||||
/* Initialize state pointer */
|
||||
px = pState;
|
||||
|
||||
/* Initialize coeff pointer */
|
||||
pb = (pCoeffs);
|
||||
|
||||
/* This is separated from the others to avoid
|
||||
* a call to __aeabi_memmove which would be slower
|
||||
*/
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Read the first seven samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
|
||||
x0 = *px++;
|
||||
x1 = *px++;
|
||||
x2 = *px++;
|
||||
x3 = *px++;
|
||||
x4 = *px++;
|
||||
x5 = *px++;
|
||||
x6 = *px++;
|
||||
|
||||
/* Loop unrolling. Process 8 taps at a time. */
|
||||
tapCnt = numTaps >> 3u;
|
||||
|
||||
/* Loop over the number of taps. Unroll by a factor of 8.
|
||||
** Repeat until we've computed numTaps-8 coefficients. */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
/* Read the b[numTaps-1] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-3] sample */
|
||||
x7 = *(px++);
|
||||
|
||||
/* acc0 += b[numTaps-1] * x[n-numTaps] */
|
||||
p0 = x0 * c0;
|
||||
|
||||
/* acc1 += b[numTaps-1] * x[n-numTaps-1] */
|
||||
p1 = x1 * c0;
|
||||
|
||||
/* acc2 += b[numTaps-1] * x[n-numTaps-2] */
|
||||
p2 = x2 * c0;
|
||||
|
||||
/* acc3 += b[numTaps-1] * x[n-numTaps-3] */
|
||||
p3 = x3 * c0;
|
||||
|
||||
/* acc4 += b[numTaps-1] * x[n-numTaps-4] */
|
||||
p4 = x4 * c0;
|
||||
|
||||
/* acc1 += b[numTaps-1] * x[n-numTaps-5] */
|
||||
p5 = x5 * c0;
|
||||
|
||||
/* acc2 += b[numTaps-1] * x[n-numTaps-6] */
|
||||
p6 = x6 * c0;
|
||||
|
||||
/* acc3 += b[numTaps-1] * x[n-numTaps-7] */
|
||||
p7 = x7 * c0;
|
||||
|
||||
/* Read the b[numTaps-2] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-4] sample */
|
||||
x0 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
|
||||
/* Perform the multiply-accumulate */
|
||||
p0 = x1 * c0;
|
||||
p1 = x2 * c0;
|
||||
p2 = x3 * c0;
|
||||
p3 = x4 * c0;
|
||||
p4 = x5 * c0;
|
||||
p5 = x6 * c0;
|
||||
p6 = x7 * c0;
|
||||
p7 = x0 * c0;
|
||||
|
||||
/* Read the b[numTaps-3] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-5] sample */
|
||||
x1 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x2 * c0;
|
||||
p1 = x3 * c0;
|
||||
p2 = x4 * c0;
|
||||
p3 = x5 * c0;
|
||||
p4 = x6 * c0;
|
||||
p5 = x7 * c0;
|
||||
p6 = x0 * c0;
|
||||
p7 = x1 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x2 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x3 * c0;
|
||||
p1 = x4 * c0;
|
||||
p2 = x5 * c0;
|
||||
p3 = x6 * c0;
|
||||
p4 = x7 * c0;
|
||||
p5 = x0 * c0;
|
||||
p6 = x1 * c0;
|
||||
p7 = x2 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x3 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x4 * c0;
|
||||
p1 = x5 * c0;
|
||||
p2 = x6 * c0;
|
||||
p3 = x7 * c0;
|
||||
p4 = x0 * c0;
|
||||
p5 = x1 * c0;
|
||||
p6 = x2 * c0;
|
||||
p7 = x3 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x4 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x5 * c0;
|
||||
p1 = x6 * c0;
|
||||
p2 = x7 * c0;
|
||||
p3 = x0 * c0;
|
||||
p4 = x1 * c0;
|
||||
p5 = x2 * c0;
|
||||
p6 = x3 * c0;
|
||||
p7 = x4 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x5 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x6 * c0;
|
||||
p1 = x7 * c0;
|
||||
p2 = x0 * c0;
|
||||
p3 = x1 * c0;
|
||||
p4 = x2 * c0;
|
||||
p5 = x3 * c0;
|
||||
p6 = x4 * c0;
|
||||
p7 = x5 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x6 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x7 * c0;
|
||||
p1 = x0 * c0;
|
||||
p2 = x1 * c0;
|
||||
p3 = x2 * c0;
|
||||
p4 = x3 * c0;
|
||||
p5 = x4 * c0;
|
||||
p6 = x5 * c0;
|
||||
p7 = x6 * c0;
|
||||
|
||||
tapCnt--;
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
}
|
||||
|
||||
/* If the filter length is not a multiple of 8, compute the remaining filter taps */
|
||||
tapCnt = numTaps % 0x8u;
|
||||
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
/* Read coefficients */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Fetch 1 state variable */
|
||||
x7 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x0 * c0;
|
||||
p1 = x1 * c0;
|
||||
p2 = x2 * c0;
|
||||
p3 = x3 * c0;
|
||||
p4 = x4 * c0;
|
||||
p5 = x5 * c0;
|
||||
p6 = x6 * c0;
|
||||
p7 = x7 * c0;
|
||||
|
||||
/* Reuse the present sample states for next sample */
|
||||
x0 = x1;
|
||||
x1 = x2;
|
||||
x2 = x3;
|
||||
x3 = x4;
|
||||
x4 = x5;
|
||||
x5 = x6;
|
||||
x6 = x7;
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
/* Advance the state pointer by 8 to process the next group of 8 samples */
|
||||
pState = pState + 8;
|
||||
|
||||
/* The results in the 8 accumulators, store in the destination buffer. */
|
||||
*pDst++ = acc0;
|
||||
*pDst++ = acc1;
|
||||
*pDst++ = acc2;
|
||||
*pDst++ = acc3;
|
||||
*pDst++ = acc4;
|
||||
*pDst++ = acc5;
|
||||
*pDst++ = acc6;
|
||||
*pDst++ = acc7;
|
||||
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 8, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x8u;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy one sample at a time into state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set the accumulator to zero */
|
||||
acc0 = 0.0f;
|
||||
|
||||
/* Initialize state pointer */
|
||||
px = pState;
|
||||
|
||||
/* Initialize Coefficient pointer */
|
||||
pb = (pCoeffs);
|
||||
|
||||
i = numTaps;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
do
|
||||
{
|
||||
acc0 += *px++ * *pb++;
|
||||
i--;
|
||||
|
||||
} while(i > 0u);
|
||||
|
||||
/* The result is store in the destination buffer. */
|
||||
*pDst++ = acc0;
|
||||
|
||||
/* Advance state pointer by 1 for the next sample */
|
||||
pState = pState + 1;
|
||||
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* Processing is complete.
|
||||
** Now copy the last numTaps - 1 samples to the start of the state buffer.
|
||||
** This prepares the state buffer for the next function call. */
|
||||
|
||||
/* Points to the start of the state buffer */
|
||||
pStateCurnt = S->pState;
|
||||
|
||||
tapCnt = (numTaps - 1u) >> 2u;
|
||||
|
||||
/* copy data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
/* Calculate remaining number of copies */
|
||||
tapCnt = (numTaps - 1u) % 0x4u;
|
||||
|
||||
/* Copy the remaining q31_t data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
}
|
@ -0,0 +1,22 @@
|
||||
adcsample_t *process_data(adcsample_t *samples, unsigned int size)
|
||||
{
|
||||
constexpr float alpha = 0.7;
|
||||
constexpr unsigned int D = 2000;
|
||||
|
||||
static adcsample_t output[SIZE];
|
||||
static adcsample_t prev[D]; // prev[0] = output[0 - D]
|
||||
|
||||
// Do calculations with previous output
|
||||
for (unsigned int i = 0; i < D; i++)
|
||||
output[i] = samples[i] + alpha * (prev[i] - 2048);
|
||||
|
||||
// Do calculations with current samples
|
||||
for (unsigned int i = D; i < size; i++)
|
||||
output[i] = samples[i] + alpha * (output[i - D] - 2048);
|
||||
|
||||
// Save outputs for next computation
|
||||
for (unsigned int i = 0; i < D; i++)
|
||||
prev[i] = output[size - (D - i)];
|
||||
|
||||
return output;
|
||||
}
|
Loading…
Reference in New Issue