include dsp lib; split timers; user message
parent
4a0fb43d37
commit
d2f50fb925
@ -0,0 +1,647 @@
|
||||
/* ----------------------------------------------------------------------------
|
||||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 19. March 2015
|
||||
* $Revision: V.1.4.5
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_conv_f32.c
|
||||
*
|
||||
* Description: Convolution of floating-point sequences.
|
||||
*
|
||||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* - Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* - Neither the name of ARM LIMITED nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup Conv Convolution
|
||||
*
|
||||
* Convolution is a mathematical operation that operates on two finite length vectors to generate a finite length output vector.
|
||||
* Convolution is similar to correlation and is frequently used in filtering and data analysis.
|
||||
* The CMSIS DSP library contains functions for convolving Q7, Q15, Q31, and floating-point data types.
|
||||
* The library also provides fast versions of the Q15 and Q31 functions on Cortex-M4 and Cortex-M3.
|
||||
*
|
||||
* \par Algorithm
|
||||
* Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.
|
||||
* Then the convolution
|
||||
*
|
||||
* <pre>
|
||||
* c[n] = a[n] * b[n]
|
||||
* </pre>
|
||||
*
|
||||
* \par
|
||||
* is defined as
|
||||
* \image html ConvolutionEquation.gif
|
||||
* \par
|
||||
* Note that <code>c[n]</code> is of length <code>srcALen + srcBLen - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., srcALen + srcBLen - 2</code>.
|
||||
* <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and
|
||||
* <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.
|
||||
* The output result is written to <code>pDst</code> and the calling function must allocate <code>srcALen+srcBLen-1</code> words for the result.
|
||||
*
|
||||
* \par
|
||||
* Conceptually, when two signals <code>a[n]</code> and <code>b[n]</code> are convolved,
|
||||
* the signal <code>b[n]</code> slides over <code>a[n]</code>.
|
||||
* For each offset \c n, the overlapping portions of a[n] and b[n] are multiplied and summed together.
|
||||
*
|
||||
* \par
|
||||
* Note that convolution is a commutative operation:
|
||||
*
|
||||
* <pre>
|
||||
* a[n] * b[n] = b[n] * a[n].
|
||||
* </pre>
|
||||
*
|
||||
* \par
|
||||
* This means that switching the A and B arguments to the convolution functions has no effect.
|
||||
*
|
||||
* <b>Fixed-Point Behavior</b>
|
||||
*
|
||||
* \par
|
||||
* Convolution requires summing up a large number of intermediate products.
|
||||
* As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.
|
||||
* Refer to the function specific documentation below for further details of the particular algorithm used.
|
||||
*
|
||||
*
|
||||
* <b>Fast Versions</b>
|
||||
*
|
||||
* \par
|
||||
* Fast versions are supported for Q31 and Q15. Cycles for Fast versions are less compared to Q31 and Q15 of conv and the design requires
|
||||
* the input signals should be scaled down to avoid intermediate overflows.
|
||||
*
|
||||
*
|
||||
* <b>Opt Versions</b>
|
||||
*
|
||||
* \par
|
||||
* Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation.
|
||||
* These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Conv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Convolution of floating-point sequences.
|
||||
* @param[in] *pSrcA points to the first input sequence.
|
||||
* @param[in] srcALen length of the first input sequence.
|
||||
* @param[in] *pSrcB points to the second input sequence.
|
||||
* @param[in] srcBLen length of the second input sequence.
|
||||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_conv_f32(
|
||||
float32_t * pSrcA,
|
||||
uint32_t srcALen,
|
||||
float32_t * pSrcB,
|
||||
uint32_t srcBLen,
|
||||
float32_t * pDst)
|
||||
{
|
||||
|
||||
|
||||
#ifndef ARM_MATH_CM0_FAMILY
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
float32_t *pIn1; /* inputA pointer */
|
||||
float32_t *pIn2; /* inputB pointer */
|
||||
float32_t *pOut = pDst; /* output pointer */
|
||||
float32_t *px; /* Intermediate inputA pointer */
|
||||
float32_t *py; /* Intermediate inputB pointer */
|
||||
float32_t *pSrc1, *pSrc2; /* Intermediate pointers */
|
||||
float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
|
||||
float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
|
||||
uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counters */
|
||||
|
||||
/* The algorithm implementation is based on the lengths of the inputs. */
|
||||
/* srcB is always made to slide across srcA. */
|
||||
/* So srcBLen is always considered as shorter or equal to srcALen */
|
||||
if(srcALen >= srcBLen)
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = pSrcA;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = pSrcB;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = pSrcB;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = pSrcA;
|
||||
|
||||
/* srcBLen is always considered as shorter or equal to srcALen */
|
||||
j = srcBLen;
|
||||
srcBLen = srcALen;
|
||||
srcALen = j;
|
||||
}
|
||||
|
||||
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
|
||||
/* The function is internally
|
||||
* divided into three stages according to the number of multiplications that has to be
|
||||
* taken place between inputA samples and inputB samples. In the first stage of the
|
||||
* algorithm, the multiplications increase by one for every iteration.
|
||||
* In the second stage of the algorithm, srcBLen number of multiplications are done.
|
||||
* In the third stage of the algorithm, the multiplications decrease by one
|
||||
* for every iteration. */
|
||||
|
||||
/* The algorithm is implemented in three stages.
|
||||
The loop counters of each stage is initiated here. */
|
||||
blockSize1 = srcBLen - 1u;
|
||||
blockSize2 = srcALen - (srcBLen - 1u);
|
||||
blockSize3 = blockSize1;
|
||||
|
||||
/* --------------------------
|
||||
* initializations of stage1
|
||||
* -------------------------*/
|
||||
|
||||
/* sum = x[0] * y[0]
|
||||
* sum = x[0] * y[1] + x[1] * y[0]
|
||||
* ....
|
||||
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
|
||||
*/
|
||||
|
||||
/* In this stage the MAC operations are increased by 1 for every iteration.
|
||||
The count variable holds the number of MAC operations performed */
|
||||
count = 1u;
|
||||
|
||||
/* Working pointer of inputA */
|
||||
px = pIn1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
py = pIn2;
|
||||
|
||||
|
||||
/* ------------------------
|
||||
* Stage1 process
|
||||
* ----------------------*/
|
||||
|
||||
/* The first stage starts here */
|
||||
while(blockSize1 > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0.0f;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = count >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while(k > 0u)
|
||||
{
|
||||
/* x[0] * y[srcBLen - 1] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* x[1] * y[srcBLen - 2] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* x[2] * y[srcBLen - 3] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* x[3] * y[srcBLen - 4] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the count is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = count % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = sum;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
py = pIn2 + count;
|
||||
px = pIn1;
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize1--;
|
||||
}
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage2
|
||||
* ------------------------*/
|
||||
|
||||
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
|
||||
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
|
||||
* ....
|
||||
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
|
||||
*/
|
||||
|
||||
/* Working pointer of inputA */
|
||||
px = pIn1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
pSrc2 = pIn2 + (srcBLen - 1u);
|
||||
py = pSrc2;
|
||||
|
||||
/* count is index by which the pointer pIn1 to be incremented */
|
||||
count = 0u;
|
||||
|
||||
/* -------------------
|
||||
* Stage2 process
|
||||
* ------------------*/
|
||||
|
||||
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
|
||||
* So, to loop unroll over blockSize2,
|
||||
* srcBLen should be greater than or equal to 4 */
|
||||
if(srcBLen >= 4u)
|
||||
{
|
||||
/* Loop unroll over blockSize2, by 4 */
|
||||
blkCnt = blockSize2 >> 2u;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Set all accumulators to zero */
|
||||
acc0 = 0.0f;
|
||||
acc1 = 0.0f;
|
||||
acc2 = 0.0f;
|
||||
acc3 = 0.0f;
|
||||
|
||||
/* read x[0], x[1], x[2] samples */
|
||||
x0 = *(px++);
|
||||
x1 = *(px++);
|
||||
x2 = *(px++);
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = srcBLen >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
do
|
||||
{
|
||||
/* Read y[srcBLen - 1] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[3] sample */
|
||||
x3 = *(px);
|
||||
|
||||
/* Perform the multiply-accumulate */
|
||||
/* acc0 += x[0] * y[srcBLen - 1] */
|
||||
acc0 += x0 * c0;
|
||||
|
||||
/* acc1 += x[1] * y[srcBLen - 1] */
|
||||
acc1 += x1 * c0;
|
||||
|
||||
/* acc2 += x[2] * y[srcBLen - 1] */
|
||||
acc2 += x2 * c0;
|
||||
|
||||
/* acc3 += x[3] * y[srcBLen - 1] */
|
||||
acc3 += x3 * c0;
|
||||
|
||||
/* Read y[srcBLen - 2] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[4] sample */
|
||||
x0 = *(px + 1u);
|
||||
|
||||
/* Perform the multiply-accumulate */
|
||||
/* acc0 += x[1] * y[srcBLen - 2] */
|
||||
acc0 += x1 * c0;
|
||||
/* acc1 += x[2] * y[srcBLen - 2] */
|
||||
acc1 += x2 * c0;
|
||||
/* acc2 += x[3] * y[srcBLen - 2] */
|
||||
acc2 += x3 * c0;
|
||||
/* acc3 += x[4] * y[srcBLen - 2] */
|
||||
acc3 += x0 * c0;
|
||||
|
||||
/* Read y[srcBLen - 3] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[5] sample */
|
||||
x1 = *(px + 2u);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[2] * y[srcBLen - 3] */
|
||||
acc0 += x2 * c0;
|
||||
/* acc1 += x[3] * y[srcBLen - 2] */
|
||||
acc1 += x3 * c0;
|
||||
/* acc2 += x[4] * y[srcBLen - 2] */
|
||||
acc2 += x0 * c0;
|
||||
/* acc3 += x[5] * y[srcBLen - 2] */
|
||||
acc3 += x1 * c0;
|
||||
|
||||
/* Read y[srcBLen - 4] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[6] sample */
|
||||
x2 = *(px + 3u);
|
||||
px += 4u;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[3] * y[srcBLen - 4] */
|
||||
acc0 += x3 * c0;
|
||||
/* acc1 += x[4] * y[srcBLen - 4] */
|
||||
acc1 += x0 * c0;
|
||||
/* acc2 += x[5] * y[srcBLen - 4] */
|
||||
acc2 += x1 * c0;
|
||||
/* acc3 += x[6] * y[srcBLen - 4] */
|
||||
acc3 += x2 * c0;
|
||||
|
||||
|
||||
} while(--k);
|
||||
|
||||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcBLen % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Read y[srcBLen - 5] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[7] sample */
|
||||
x3 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[4] * y[srcBLen - 5] */
|
||||
acc0 += x0 * c0;
|
||||
/* acc1 += x[5] * y[srcBLen - 5] */
|
||||
acc1 += x1 * c0;
|
||||
/* acc2 += x[6] * y[srcBLen - 5] */
|
||||
acc2 += x2 * c0;
|
||||
/* acc3 += x[7] * y[srcBLen - 5] */
|
||||
acc3 += x3 * c0;
|
||||
|
||||
/* Reuse the present samples for the next MAC */
|
||||
x0 = x1;
|
||||
x1 = x2;
|
||||
x2 = x3;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = acc0;
|
||||
*pOut++ = acc1;
|
||||
*pOut++ = acc2;
|
||||
*pOut++ = acc3;
|
||||
|
||||
/* Increment the pointer pIn1 index, count by 4 */
|
||||
count += 4u;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
|
||||
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize2 % 0x4u;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0.0f;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = srcBLen >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
sum += *px++ * *py--;
|
||||
sum += *px++ * *py--;
|
||||
sum += *px++ * *py--;
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcBLen % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = sum;
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* If the srcBLen is not a multiple of 4,
|
||||
* the blockSize2 loop cannot be unrolled by 4 */
|
||||
blkCnt = blockSize2;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0.0f;
|
||||
|
||||
/* srcBLen number of MACS should be performed */
|
||||
k = srcBLen;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = sum;
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage3
|
||||
* -------------------------*/
|
||||
|
||||
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
|
||||
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
|
||||
* ....
|
||||
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
|
||||
* sum += x[srcALen-1] * y[srcBLen-1]
|
||||
*/
|
||||
|
||||
/* In this stage the MAC operations are decreased by 1 for every iteration.
|
||||
The blockSize3 variable holds the number of MAC operations performed */
|
||||
|
||||
/* Working pointer of inputA */
|
||||
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
|
||||
px = pSrc1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
pSrc2 = pIn2 + (srcBLen - 1u);
|
||||
py = pSrc2;
|
||||
|
||||
/* -------------------
|
||||
* Stage3 process
|
||||
* ------------------*/
|
||||
|
||||
while(blockSize3 > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0.0f;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = blockSize3 >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while(k > 0u)
|
||||
{
|
||||
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = blockSize3 % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
/* sum += x[srcALen-1] * y[srcBLen-1] */
|
||||
sum += *px++ * *py--;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = sum;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = ++pSrc1;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize3--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
float32_t *pIn1 = pSrcA; /* inputA pointer */
|
||||
float32_t *pIn2 = pSrcB; /* inputB pointer */
|
||||
float32_t sum; /* Accumulator */
|
||||
uint32_t i, j; /* loop counters */
|
||||
|
||||
/* Loop to calculate convolution for output length number of times */
|
||||
for (i = 0u; i < ((srcALen + srcBLen) - 1u); i++)
|
||||
{
|
||||
/* Initialize sum with zero to carry out MAC operations */
|
||||
sum = 0.0f;
|
||||
|
||||
/* Loop to perform MAC operations according to convolution equation */
|
||||
for (j = 0u; j <= i; j++)
|
||||
{
|
||||
/* Check the array limitations */
|
||||
if((((i - j) < srcBLen) && (j < srcALen)))
|
||||
{
|
||||
/* z[i] += x[i-j] * y[j] */
|
||||
sum += pIn1[j] * pIn2[i - j];
|
||||
}
|
||||
}
|
||||
/* Store the output in the destination buffer */
|
||||
pDst[i] = sum;
|
||||
}
|
||||
|
||||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Conv group
|
||||
*/
|
@ -0,0 +1,734 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 19. March 2015
|
||||
* $Revision: V.1.4.5
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_conv_q15.c
|
||||
*
|
||||
* Description: Convolution of Q15 sequences.
|
||||
*
|
||||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* - Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* - Neither the name of ARM LIMITED nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Conv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Convolution of Q15 sequences.
|
||||
* @param[in] *pSrcA points to the first input sequence.
|
||||
* @param[in] srcALen length of the first input sequence.
|
||||
* @param[in] *pSrcB points to the second input sequence.
|
||||
* @param[in] srcBLen length of the second input sequence.
|
||||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
|
||||
* @return none.
|
||||
*
|
||||
* @details
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
*
|
||||
* \par
|
||||
* The function is implemented using a 64-bit internal accumulator.
|
||||
* Both inputs are in 1.15 format and multiplications yield a 2.30 result.
|
||||
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
|
||||
* This approach provides 33 guard bits and there is no risk of overflow.
|
||||
* The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
|
||||
*
|
||||
* \par
|
||||
* Refer to <code>arm_conv_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
|
||||
*
|
||||
* \par
|
||||
* Refer the function <code>arm_conv_opt_q15()</code> for a faster implementation of this function using scratch buffers.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_conv_q15(
|
||||
q15_t * pSrcA,
|
||||
uint32_t srcALen,
|
||||
q15_t * pSrcB,
|
||||
uint32_t srcBLen,
|
||||
q15_t * pDst)
|
||||
{
|
||||
|
||||
#if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
q15_t *pIn1; /* inputA pointer */
|
||||
q15_t *pIn2; /* inputB pointer */
|
||||
q15_t *pOut = pDst; /* output pointer */
|
||||
q63_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
|
||||
q15_t *px; /* Intermediate inputA pointer */
|
||||
q15_t *py; /* Intermediate inputB pointer */
|
||||
q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
|
||||
q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
|
||||
uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */
|
||||
|
||||
/* The algorithm implementation is based on the lengths of the inputs. */
|
||||
/* srcB is always made to slide across srcA. */
|
||||
/* So srcBLen is always considered as shorter or equal to srcALen */
|
||||
if(srcALen >= srcBLen)
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = pSrcA;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = pSrcB;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = pSrcB;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = pSrcA;
|
||||
|
||||
/* srcBLen is always considered as shorter or equal to srcALen */
|
||||
j = srcBLen;
|
||||
srcBLen = srcALen;
|
||||
srcALen = j;
|
||||
}
|
||||
|
||||
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
|
||||
/* The function is internally
|
||||
* divided into three stages according to the number of multiplications that has to be
|
||||
* taken place between inputA samples and inputB samples. In the first stage of the
|
||||
* algorithm, the multiplications increase by one for every iteration.
|
||||
* In the second stage of the algorithm, srcBLen number of multiplications are done.
|
||||
* In the third stage of the algorithm, the multiplications decrease by one
|
||||
* for every iteration. */
|
||||
|
||||
/* The algorithm is implemented in three stages.
|
||||
The loop counters of each stage is initiated here. */
|
||||
blockSize1 = srcBLen - 1u;
|
||||
blockSize2 = srcALen - (srcBLen - 1u);
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage1
|
||||
* -------------------------*/
|
||||
|
||||
/* sum = x[0] * y[0]
|
||||
* sum = x[0] * y[1] + x[1] * y[0]
|
||||
* ....
|
||||
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
|
||||
*/
|
||||
|
||||
/* In this stage the MAC operations are increased by 1 for every iteration.
|
||||
The count variable holds the number of MAC operations performed */
|
||||
count = 1u;
|
||||
|
||||
/* Working pointer of inputA */
|
||||
px = pIn1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
py = pIn2;
|
||||
|
||||
|
||||
/* ------------------------
|
||||
* Stage1 process
|
||||
* ----------------------*/
|
||||
|
||||
/* For loop unrolling by 4, this stage is divided into two. */
|
||||
/* First part of this stage computes the MAC operations less than 4 */
|
||||
/* Second part of this stage computes the MAC operations greater than or equal to 4 */
|
||||
|
||||
/* The first part of the stage starts here */
|
||||
while((count < 4u) && (blockSize1 > 0u))
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Loop over number of MAC operations between
|
||||
* inputA samples and inputB samples */
|
||||
k = count;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
sum = __SMLALD(*px++, *py--, sum);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
py = pIn2 + count;
|
||||
px = pIn1;
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize1--;
|
||||
}
|
||||
|
||||
/* The second part of the stage starts here */
|
||||
/* The internal loop, over count, is unrolled by 4 */
|
||||
/* To, read the last two inputB samples using SIMD:
|
||||
* y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
|
||||
py = py - 1;
|
||||
|
||||
while(blockSize1 > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = count >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
/* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
|
||||
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
|
||||
/* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
|
||||
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* For the next MAC operations, the pointer py is used without SIMD
|
||||
* So, py is incremented by 1 */
|
||||
py = py + 1u;
|
||||
|
||||
/* If the count is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = count % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
sum = __SMLALD(*px++, *py--, sum);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
py = pIn2 + (count - 1u);
|
||||
px = pIn1;
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize1--;
|
||||
}
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage2
|
||||
* ------------------------*/
|
||||
|
||||
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
|
||||
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
|
||||
* ....
|
||||
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
|
||||
*/
|
||||
|
||||
/* Working pointer of inputA */
|
||||
px = pIn1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
pSrc2 = pIn2 + (srcBLen - 1u);
|
||||
py = pSrc2;
|
||||
|
||||
/* count is the index by which the pointer pIn1 to be incremented */
|
||||
count = 0u;
|
||||
|
||||
|
||||
/* --------------------
|
||||
* Stage2 process
|
||||
* -------------------*/
|
||||
|
||||
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
|
||||
* So, to loop unroll over blockSize2,
|
||||
* srcBLen should be greater than or equal to 4 */
|
||||
if(srcBLen >= 4u)
|
||||
{
|
||||
/* Loop unroll over blockSize2, by 4 */
|
||||
blkCnt = blockSize2 >> 2u;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
py = py - 1u;
|
||||
|
||||
/* Set all accumulators to zero */
|
||||
acc0 = 0;
|
||||
acc1 = 0;
|
||||
acc2 = 0;
|
||||
acc3 = 0;
|
||||
|
||||
|
||||
/* read x[0], x[1] samples */
|
||||
x0 = *__SIMD32(px);
|
||||
/* read x[1], x[2] samples */
|
||||
x1 = _SIMD32_OFFSET(px+1);
|
||||
px+= 2u;
|
||||
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = srcBLen >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
do
|
||||
{
|
||||
/* Read the last two inputB samples using SIMD:
|
||||
* y[srcBLen - 1] and y[srcBLen - 2] */
|
||||
c0 = *__SIMD32(py)--;
|
||||
|
||||
/* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
|
||||
acc0 = __SMLALDX(x0, c0, acc0);
|
||||
|
||||
/* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
|
||||
acc1 = __SMLALDX(x1, c0, acc1);
|
||||
|
||||
/* Read x[2], x[3] */
|
||||
x2 = *__SIMD32(px);
|
||||
|
||||
/* Read x[3], x[4] */
|
||||
x3 = _SIMD32_OFFSET(px+1);
|
||||
|
||||
/* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
|
||||
acc2 = __SMLALDX(x2, c0, acc2);
|
||||
|
||||
/* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
|
||||
acc3 = __SMLALDX(x3, c0, acc3);
|
||||
|
||||
/* Read y[srcBLen - 3] and y[srcBLen - 4] */
|
||||
c0 = *__SIMD32(py)--;
|
||||
|
||||
/* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
|
||||
acc0 = __SMLALDX(x2, c0, acc0);
|
||||
|
||||
/* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
|
||||
acc1 = __SMLALDX(x3, c0, acc1);
|
||||
|
||||
/* Read x[4], x[5] */
|
||||
x0 = _SIMD32_OFFSET(px+2);
|
||||
|
||||
/* Read x[5], x[6] */
|
||||
x1 = _SIMD32_OFFSET(px+3);
|
||||
px += 4u;
|
||||
|
||||
/* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
|
||||
acc2 = __SMLALDX(x0, c0, acc2);
|
||||
|
||||
/* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
|
||||
acc3 = __SMLALDX(x1, c0, acc3);
|
||||
|
||||
} while(--k);
|
||||
|
||||
/* For the next MAC operations, SIMD is not used
|
||||
* So, the 16 bit pointer if inputB, py is updated */
|
||||
|
||||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcBLen % 0x4u;
|
||||
|
||||
if(k == 1u)
|
||||
{
|
||||
/* Read y[srcBLen - 5] */
|
||||
c0 = *(py+1);
|
||||
|
||||
#ifdef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
c0 = c0 << 16u;
|
||||
|
||||
#else
|
||||
|
||||
c0 = c0 & 0x0000FFFF;
|
||||
|
||||
#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
|
||||
/* Read x[7] */
|
||||
x3 = *__SIMD32(px);
|
||||
px++;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 = __SMLALD(x0, c0, acc0);
|
||||
acc1 = __SMLALD(x1, c0, acc1);
|
||||
acc2 = __SMLALDX(x1, c0, acc2);
|
||||
acc3 = __SMLALDX(x3, c0, acc3);
|
||||
}
|
||||
|
||||
if(k == 2u)
|
||||
{
|
||||
/* Read y[srcBLen - 5], y[srcBLen - 6] */
|
||||
c0 = _SIMD32_OFFSET(py);
|
||||
|
||||
/* Read x[7], x[8] */
|
||||
x3 = *__SIMD32(px);
|
||||
|
||||
/* Read x[9] */
|
||||
x2 = _SIMD32_OFFSET(px+1);
|
||||
px += 2u;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 = __SMLALDX(x0, c0, acc0);
|
||||
acc1 = __SMLALDX(x1, c0, acc1);
|
||||
acc2 = __SMLALDX(x3, c0, acc2);
|
||||
acc3 = __SMLALDX(x2, c0, acc3);
|
||||
}
|
||||
|
||||
if(k == 3u)
|
||||
{
|
||||
/* Read y[srcBLen - 5], y[srcBLen - 6] */
|
||||
c0 = _SIMD32_OFFSET(py);
|
||||
|
||||
/* Read x[7], x[8] */
|
||||
x3 = *__SIMD32(px);
|
||||
|
||||
/* Read x[9] */
|
||||
x2 = _SIMD32_OFFSET(px+1);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 = __SMLALDX(x0, c0, acc0);
|
||||
acc1 = __SMLALDX(x1, c0, acc1);
|
||||
acc2 = __SMLALDX(x3, c0, acc2);
|
||||
acc3 = __SMLALDX(x2, c0, acc3);
|
||||
|
||||
c0 = *(py-1);
|
||||
|
||||
#ifdef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
c0 = c0 << 16u;
|
||||
#else
|
||||
|
||||
c0 = c0 & 0x0000FFFF;
|
||||
#endif /* #ifdef ARM_MATH_BIG_ENDIAN */
|
||||
/* Read x[10] */
|
||||
x3 = _SIMD32_OFFSET(px+2);
|
||||
px += 3u;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 = __SMLALDX(x1, c0, acc0);
|
||||
acc1 = __SMLALD(x2, c0, acc1);
|
||||
acc2 = __SMLALDX(x2, c0, acc2);
|
||||
acc3 = __SMLALDX(x3, c0, acc3);
|
||||
}
|
||||
|
||||
|
||||
/* Store the results in the accumulators in the destination buffer. */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
*__SIMD32(pOut)++ =
|
||||
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
|
||||
*__SIMD32(pOut)++ =
|
||||
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
|
||||
|
||||
#else
|
||||
|
||||
*__SIMD32(pOut)++ =
|
||||
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
|
||||
*__SIMD32(pOut)++ =
|
||||
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* Increment the pointer pIn1 index, count by 4 */
|
||||
count += 4u;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize2 % 0x4u;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = srcBLen >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
sum += (q63_t) ((q31_t) * px++ * *py--);
|
||||
sum += (q63_t) ((q31_t) * px++ * *py--);
|
||||
sum += (q63_t) ((q31_t) * px++ * *py--);
|
||||
sum += (q63_t) ((q31_t) * px++ * *py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcBLen % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
sum += (q63_t) ((q31_t) * px++ * *py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
|
||||
|
||||
/* Increment the pointer pIn1 index, count by 1 */
|
||||
count++;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* If the srcBLen is not a multiple of 4,
|
||||
* the blockSize2 loop cannot be unrolled by 4 */
|
||||
blkCnt = blockSize2;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* srcBLen number of MACS should be performed */
|
||||
k = srcBLen;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum += (q63_t) ((q31_t) * px++ * *py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage3
|
||||
* -------------------------*/
|
||||
|
||||
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
|
||||
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
|
||||
* ....
|
||||
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
|
||||
* sum += x[srcALen-1] * y[srcBLen-1]
|
||||
*/
|
||||
|
||||
/* In this stage the MAC operations are decreased by 1 for every iteration.
|
||||
The blockSize3 variable holds the number of MAC operations performed */
|
||||
|
||||
blockSize3 = srcBLen - 1u;
|
||||
|
||||
/* Working pointer of inputA */
|
||||
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
|
||||
px = pSrc1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
pSrc2 = pIn2 + (srcBLen - 1u);
|
||||
pIn2 = pSrc2 - 1u;
|
||||
py = pIn2;
|
||||
|
||||
/* -------------------
|
||||
* Stage3 process
|
||||
* ------------------*/
|
||||
|
||||
/* For loop unrolling by 4, this stage is divided into two. */
|
||||
/* First part of this stage computes the MAC operations greater than 4 */
|
||||
/* Second part of this stage computes the MAC operations less than or equal to 4 */
|
||||
|
||||
/* The first part of the stage starts here */
|
||||
j = blockSize3 >> 2u;
|
||||
|
||||
while((j > 0u) && (blockSize3 > 0u))
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = blockSize3 >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while(k > 0u)
|
||||
{
|
||||
/* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
|
||||
* with y[srcBLen - 1], y[srcBLen - 2] respectively */
|
||||
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
|
||||
/* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
|
||||
* with y[srcBLen - 3], y[srcBLen - 4] respectively */
|
||||
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* For the next MAC operations, the pointer py is used without SIMD
|
||||
* So, py is incremented by 1 */
|
||||
py = py + 1u;
|
||||
|
||||
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = blockSize3 % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
|
||||
sum = __SMLALD(*px++, *py--, sum);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = ++pSrc1;
|
||||
py = pIn2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize3--;
|
||||
|
||||
j--;
|
||||
}
|
||||
|
||||
/* The second part of the stage starts here */
|
||||
/* SIMD is not used for the next MAC operations,
|
||||
* so pointer py is updated to read only one sample at a time */
|
||||
py = py + 1u;
|
||||
|
||||
while(blockSize3 > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = blockSize3;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
/* sum += x[srcALen-1] * y[srcBLen-1] */
|
||||
sum = __SMLALD(*px++, *py--, sum);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = ++pSrc1;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize3--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
q15_t *pIn1 = pSrcA; /* input pointer */
|
||||
q15_t *pIn2 = pSrcB; /* coefficient pointer */
|
||||
q63_t sum; /* Accumulator */
|
||||
uint32_t i, j; /* loop counter */
|
||||
|
||||
/* Loop to calculate output of convolution for output length number of times */
|
||||
for (i = 0; i < (srcALen + srcBLen - 1); i++)
|
||||
{
|
||||
/* Initialize sum with zero to carry on MAC operations */
|
||||
sum = 0;
|
||||
|
||||
/* Loop to perform MAC operations according to convolution equation */
|
||||
for (j = 0; j <= i; j++)
|
||||
{
|
||||
/* Check the array limitations */
|
||||
if(((i - j) < srcBLen) && (j < srcALen))
|
||||
{
|
||||
/* z[i] += x[i-j] * y[j] */
|
||||
sum += (q31_t) pIn1[j] * (pIn2[i - j]);
|
||||
}
|
||||
}
|
||||
|
||||
/* Store the output in the destination buffer */
|
||||
pDst[i] = (q15_t) __SSAT((sum >> 15u), 16u);
|
||||
}
|
||||
|
||||
#endif /* #if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)*/
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Conv group
|
||||
*/
|
@ -0,0 +1,565 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 19. March 2015
|
||||
* $Revision: V.1.4.5
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_conv_q31.c
|
||||
*
|
||||
* Description: Convolution of Q31 sequences.
|
||||
*
|
||||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* - Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* - Neither the name of ARM LIMITED nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Conv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Convolution of Q31 sequences.
|
||||
* @param[in] *pSrcA points to the first input sequence.
|
||||
* @param[in] srcALen length of the first input sequence.
|
||||
* @param[in] *pSrcB points to the second input sequence.
|
||||
* @param[in] srcBLen length of the second input sequence.
|
||||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
|
||||
* @return none.
|
||||
*
|
||||
* @details
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
*
|
||||
* \par
|
||||
* The function is implemented using an internal 64-bit accumulator.
|
||||
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
|
||||
* There is no saturation on intermediate additions.
|
||||
* Thus, if the accumulator overflows it wraps around and distorts the result.
|
||||
* The input signals should be scaled down to avoid intermediate overflows.
|
||||
* Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows,
|
||||
* as maximum of min(srcALen, srcBLen) number of additions are carried internally.
|
||||
* The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
|
||||
*
|
||||
* \par
|
||||
* See <code>arm_conv_fast_q31()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4.
|
||||
*/
|
||||
|
||||
void arm_conv_q31(
|
||||
q31_t * pSrcA,
|
||||
uint32_t srcALen,
|
||||
q31_t * pSrcB,
|
||||
uint32_t srcBLen,
|
||||
q31_t * pDst)
|
||||
{
|
||||
|
||||
|
||||
#ifndef ARM_MATH_CM0_FAMILY
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
q31_t *pIn1; /* inputA pointer */
|
||||
q31_t *pIn2; /* inputB pointer */
|
||||
q31_t *pOut = pDst; /* output pointer */
|
||||
q31_t *px; /* Intermediate inputA pointer */
|
||||
q31_t *py; /* Intermediate inputB pointer */
|
||||
q31_t *pSrc1, *pSrc2; /* Intermediate pointers */
|
||||
q63_t sum; /* Accumulator */
|
||||
q63_t acc0, acc1, acc2; /* Accumulator */
|
||||
q31_t x0, x1, x2, c0; /* Temporary variables to hold state and coefficient values */
|
||||
uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */
|
||||
|
||||
/* The algorithm implementation is based on the lengths of the inputs. */
|
||||
/* srcB is always made to slide across srcA. */
|
||||
/* So srcBLen is always considered as shorter or equal to srcALen */
|
||||
if(srcALen >= srcBLen)
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = pSrcA;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = pSrcB;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = (q31_t *) pSrcB;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = (q31_t *) pSrcA;
|
||||
|
||||
/* srcBLen is always considered as shorter or equal to srcALen */
|
||||
j = srcBLen;
|
||||
srcBLen = srcALen;
|
||||
srcALen = j;
|
||||
}
|
||||
|
||||
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
|
||||
/* The function is internally
|
||||
* divided into three stages according to the number of multiplications that has to be
|
||||
* taken place between inputA samples and inputB samples. In the first stage of the
|
||||
* algorithm, the multiplications increase by one for every iteration.
|
||||
* In the second stage of the algorithm, srcBLen number of multiplications are done.
|
||||
* In the third stage of the algorithm, the multiplications decrease by one
|
||||
* for every iteration. */
|
||||
|
||||
/* The algorithm is implemented in three stages.
|
||||
The loop counters of each stage is initiated here. */
|
||||
blockSize1 = srcBLen - 1u;
|
||||
blockSize2 = srcALen - (srcBLen - 1u);
|
||||
blockSize3 = blockSize1;
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage1
|
||||
* -------------------------*/
|
||||
|
||||
/* sum = x[0] * y[0]
|
||||
* sum = x[0] * y[1] + x[1] * y[0]
|
||||
* ....
|
||||
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
|
||||
*/
|
||||
|
||||
/* In this stage the MAC operations are increased by 1 for every iteration.
|
||||
The count variable holds the number of MAC operations performed */
|
||||
count = 1u;
|
||||
|
||||
/* Working pointer of inputA */
|
||||
px = pIn1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
py = pIn2;
|
||||
|
||||
|
||||
/* ------------------------
|
||||
* Stage1 process
|
||||
* ----------------------*/
|
||||
|
||||
/* The first stage starts here */
|
||||
while(blockSize1 > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = count >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while(k > 0u)
|
||||
{
|
||||
/* x[0] * y[srcBLen - 1] */
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
/* x[1] * y[srcBLen - 2] */
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
/* x[2] * y[srcBLen - 3] */
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
/* x[3] * y[srcBLen - 4] */
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the count is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = count % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q31_t) (sum >> 31);
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
py = pIn2 + count;
|
||||
px = pIn1;
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize1--;
|
||||
}
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage2
|
||||
* ------------------------*/
|
||||
|
||||
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
|
||||
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
|
||||
* ....
|
||||
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
|
||||
*/
|
||||
|
||||
/* Working pointer of inputA */
|
||||
px = pIn1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
pSrc2 = pIn2 + (srcBLen - 1u);
|
||||
py = pSrc2;
|
||||
|
||||
/* count is index by which the pointer pIn1 to be incremented */
|
||||
count = 0u;
|
||||
|
||||
/* -------------------
|
||||
* Stage2 process
|
||||
* ------------------*/
|
||||
|
||||
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
|
||||
* So, to loop unroll over blockSize2,
|
||||
* srcBLen should be greater than or equal to 4 */
|
||||
if(srcBLen >= 4u)
|
||||
{
|
||||
/* Loop unroll by 3 */
|
||||
blkCnt = blockSize2 / 3;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Set all accumulators to zero */
|
||||
acc0 = 0;
|
||||
acc1 = 0;
|
||||
acc2 = 0;
|
||||
|
||||
/* read x[0], x[1], x[2] samples */
|
||||
x0 = *(px++);
|
||||
x1 = *(px++);
|
||||
|
||||
/* Apply loop unrolling and compute 3 MACs simultaneously. */
|
||||
k = srcBLen / 3;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 3 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 2 samples. */
|
||||
do
|
||||
{
|
||||
/* Read y[srcBLen - 1] sample */
|
||||
c0 = *(py);
|
||||
|
||||
/* Read x[3] sample */
|
||||
x2 = *(px);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[0] * y[srcBLen - 1] */
|
||||
acc0 += ((q63_t) x0 * c0);
|
||||
/* acc1 += x[1] * y[srcBLen - 1] */
|
||||
acc1 += ((q63_t) x1 * c0);
|
||||
/* acc2 += x[2] * y[srcBLen - 1] */
|
||||
acc2 += ((q63_t) x2 * c0);
|
||||
|
||||
/* Read y[srcBLen - 2] sample */
|
||||
c0 = *(py - 1u);
|
||||
|
||||
/* Read x[4] sample */
|
||||
x0 = *(px + 1u);
|
||||
|
||||
/* Perform the multiply-accumulate */
|
||||
/* acc0 += x[1] * y[srcBLen - 2] */
|
||||
acc0 += ((q63_t) x1 * c0);
|
||||
/* acc1 += x[2] * y[srcBLen - 2] */
|
||||
acc1 += ((q63_t) x2 * c0);
|
||||
/* acc2 += x[3] * y[srcBLen - 2] */
|
||||
acc2 += ((q63_t) x0 * c0);
|
||||
|
||||
/* Read y[srcBLen - 3] sample */
|
||||
c0 = *(py - 2u);
|
||||
|
||||
/* Read x[5] sample */
|
||||
x1 = *(px + 2u);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[2] * y[srcBLen - 3] */
|
||||
acc0 += ((q63_t) x2 * c0);
|
||||
/* acc1 += x[3] * y[srcBLen - 2] */
|
||||
acc1 += ((q63_t) x0 * c0);
|
||||
/* acc2 += x[4] * y[srcBLen - 2] */
|
||||
acc2 += ((q63_t) x1 * c0);
|
||||
|
||||
/* update scratch pointers */
|
||||
px += 3u;
|
||||
py -= 3u;
|
||||
|
||||
} while(--k);
|
||||
|
||||
/* If the srcBLen is not a multiple of 3, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcBLen - (3 * (srcBLen / 3));
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Read y[srcBLen - 5] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[7] sample */
|
||||
x2 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[4] * y[srcBLen - 5] */
|
||||
acc0 += ((q63_t) x0 * c0);
|
||||
/* acc1 += x[5] * y[srcBLen - 5] */
|
||||
acc1 += ((q63_t) x1 * c0);
|
||||
/* acc2 += x[6] * y[srcBLen - 5] */
|
||||
acc2 += ((q63_t) x2 * c0);
|
||||
|
||||
/* Reuse the present samples for the next MAC */
|
||||
x0 = x1;
|
||||
x1 = x2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the results in the accumulators in the destination buffer. */
|
||||
*pOut++ = (q31_t) (acc0 >> 31);
|
||||
*pOut++ = (q31_t) (acc1 >> 31);
|
||||
*pOut++ = (q31_t) (acc2 >> 31);
|
||||
|
||||
/* Increment the pointer pIn1 index, count by 3 */
|
||||
count += 3u;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize2 is not a multiple of 3, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize2 - 3 * (blockSize2 / 3);
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = srcBLen >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcBLen % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q31_t) (sum >> 31);
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* If the srcBLen is not a multiple of 4,
|
||||
* the blockSize2 loop cannot be unrolled by 4 */
|
||||
blkCnt = blockSize2;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* srcBLen number of MACS should be performed */
|
||||
k = srcBLen;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q31_t) (sum >> 31);
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage3
|
||||
* -------------------------*/
|
||||
|
||||
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
|
||||
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
|
||||
* ....
|
||||
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
|
||||
* sum += x[srcALen-1] * y[srcBLen-1]
|
||||
*/
|
||||
|
||||
/* In this stage the MAC operations are decreased by 1 for every iteration.
|
||||
The blockSize3 variable holds the number of MAC operations performed */
|
||||
|
||||
/* Working pointer of inputA */
|
||||
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
|
||||
px = pSrc1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
pSrc2 = pIn2 + (srcBLen - 1u);
|
||||
py = pSrc2;
|
||||
|
||||
/* -------------------
|
||||
* Stage3 process
|
||||
* ------------------*/
|
||||
|
||||
while(blockSize3 > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = blockSize3 >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while(k > 0u)
|
||||
{
|
||||
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = blockSize3 % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum += (q63_t) * px++ * (*py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q31_t) (sum >> 31);
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = ++pSrc1;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize3--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
q31_t *pIn1 = pSrcA; /* input pointer */
|
||||
q31_t *pIn2 = pSrcB; /* coefficient pointer */
|
||||
q63_t sum; /* Accumulator */
|
||||
uint32_t i, j; /* loop counter */
|
||||
|
||||
/* Loop to calculate output of convolution for output length number of times */
|
||||
for (i = 0; i < (srcALen + srcBLen - 1); i++)
|
||||
{
|
||||
/* Initialize sum with zero to carry on MAC operations */
|
||||
sum = 0;
|
||||
|
||||
/* Loop to perform MAC operations according to convolution equation */
|
||||
for (j = 0; j <= i; j++)
|
||||
{
|
||||
/* Check the array limitations */
|
||||
if(((i - j) < srcBLen) && (j < srcALen))
|
||||
{
|
||||
/* z[i] += x[i-j] * y[j] */
|
||||
sum += ((q63_t) pIn1[j] * (pIn2[i - j]));
|
||||
}
|
||||
}
|
||||
|
||||
/* Store the output in the destination buffer */
|
||||
pDst[i] = (q31_t) (sum >> 31u);
|
||||
}
|
||||
|
||||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Conv group
|
||||
*/
|
@ -0,0 +1,690 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 19. March 2015
|
||||
* $Revision: V.1.4.5
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_conv_q7.c
|
||||
*
|
||||
* Description: Convolution of Q7 sequences.
|
||||
*
|
||||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* - Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* - Neither the name of ARM LIMITED nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup Conv
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Convolution of Q7 sequences.
|
||||
* @param[in] *pSrcA points to the first input sequence.
|
||||
* @param[in] srcALen length of the first input sequence.
|
||||
* @param[in] *pSrcB points to the second input sequence.
|
||||
* @param[in] srcBLen length of the second input sequence.
|
||||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
|
||||
* @return none.
|
||||
*
|
||||
* @details
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
*
|
||||
* \par
|
||||
* The function is implemented using a 32-bit internal accumulator.
|
||||
* Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result.
|
||||
* The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
|
||||
* This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>.
|
||||
* The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and then saturated to 1.7 format.
|
||||
*
|
||||
* \par
|
||||
* Refer the function <code>arm_conv_opt_q7()</code> for a faster implementation of this function.
|
||||
*
|
||||
*/
|
||||
|
||||
void arm_conv_q7(
|
||||
q7_t * pSrcA,
|
||||
uint32_t srcALen,
|
||||
q7_t * pSrcB,
|
||||
uint32_t srcBLen,
|
||||
q7_t * pDst)
|
||||
{
|
||||
|
||||
|
||||
#ifndef ARM_MATH_CM0_FAMILY
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
q7_t *pIn1; /* inputA pointer */
|
||||
q7_t *pIn2; /* inputB pointer */
|
||||
q7_t *pOut = pDst; /* output pointer */
|
||||
q7_t *px; /* Intermediate inputA pointer */
|
||||
q7_t *py; /* Intermediate inputB pointer */
|
||||
q7_t *pSrc1, *pSrc2; /* Intermediate pointers */
|
||||
q7_t x0, x1, x2, x3, c0, c1; /* Temporary variables to hold state and coefficient values */
|
||||
q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
|
||||
q31_t input1, input2; /* Temporary input variables */
|
||||
q15_t in1, in2; /* Temporary input variables */
|
||||
uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */
|
||||
|
||||
/* The algorithm implementation is based on the lengths of the inputs. */
|
||||
/* srcB is always made to slide across srcA. */
|
||||
/* So srcBLen is always considered as shorter or equal to srcALen */
|
||||
if(srcALen >= srcBLen)
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = pSrcA;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = pSrcB;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Initialization of inputA pointer */
|
||||
pIn1 = pSrcB;
|
||||
|
||||
/* Initialization of inputB pointer */
|
||||
pIn2 = pSrcA;
|
||||
|
||||
/* srcBLen is always considered as shorter or equal to srcALen */
|
||||
j = srcBLen;
|
||||
srcBLen = srcALen;
|
||||
srcALen = j;
|
||||
}
|
||||
|
||||
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
|
||||
/* The function is internally
|
||||
* divided into three stages according to the number of multiplications that has to be
|
||||
* taken place between inputA samples and inputB samples. In the first stage of the
|
||||
* algorithm, the multiplications increase by one for every iteration.
|
||||
* In the second stage of the algorithm, srcBLen number of multiplications are done.
|
||||
* In the third stage of the algorithm, the multiplications decrease by one
|
||||
* for every iteration. */
|
||||
|
||||
/* The algorithm is implemented in three stages.
|
||||
The loop counters of each stage is initiated here. */
|
||||
blockSize1 = srcBLen - 1u;
|
||||
blockSize2 = (srcALen - srcBLen) + 1u;
|
||||
blockSize3 = blockSize1;
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage1
|
||||
* -------------------------*/
|
||||
|
||||
/* sum = x[0] * y[0]
|
||||
* sum = x[0] * y[1] + x[1] * y[0]
|
||||
* ....
|
||||
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
|
||||
*/
|
||||
|
||||
/* In this stage the MAC operations are increased by 1 for every iteration.
|
||||
The count variable holds the number of MAC operations performed */
|
||||
count = 1u;
|
||||
|
||||
/* Working pointer of inputA */
|
||||
px = pIn1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
py = pIn2;
|
||||
|
||||
|
||||
/* ------------------------
|
||||
* Stage1 process
|
||||
* ----------------------*/
|
||||
|
||||
/* The first stage starts here */
|
||||
while(blockSize1 > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = count >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while(k > 0u)
|
||||
{
|
||||
/* x[0] , x[1] */
|
||||
in1 = (q15_t) * px++;
|
||||
in2 = (q15_t) * px++;
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* y[srcBLen - 1] , y[srcBLen - 2] */
|
||||
in1 = (q15_t) * py--;
|
||||
in2 = (q15_t) * py--;
|
||||
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* x[0] * y[srcBLen - 1] */
|
||||
/* x[1] * y[srcBLen - 2] */
|
||||
sum = __SMLAD(input1, input2, sum);
|
||||
|
||||
/* x[2] , x[3] */
|
||||
in1 = (q15_t) * px++;
|
||||
in2 = (q15_t) * px++;
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* y[srcBLen - 3] , y[srcBLen - 4] */
|
||||
in1 = (q15_t) * py--;
|
||||
in2 = (q15_t) * py--;
|
||||
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* x[2] * y[srcBLen - 3] */
|
||||
/* x[3] * y[srcBLen - 4] */
|
||||
sum = __SMLAD(input1, input2, sum);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the count is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = count % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
sum += ((q15_t) * px++ * *py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
py = pIn2 + count;
|
||||
px = pIn1;
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize1--;
|
||||
}
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage2
|
||||
* ------------------------*/
|
||||
|
||||
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
|
||||
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
|
||||
* ....
|
||||
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
|
||||
*/
|
||||
|
||||
/* Working pointer of inputA */
|
||||
px = pIn1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
pSrc2 = pIn2 + (srcBLen - 1u);
|
||||
py = pSrc2;
|
||||
|
||||
/* count is index by which the pointer pIn1 to be incremented */
|
||||
count = 0u;
|
||||
|
||||
/* -------------------
|
||||
* Stage2 process
|
||||
* ------------------*/
|
||||
|
||||
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
|
||||
* So, to loop unroll over blockSize2,
|
||||
* srcBLen should be greater than or equal to 4 */
|
||||
if(srcBLen >= 4u)
|
||||
{
|
||||
/* Loop unroll over blockSize2, by 4 */
|
||||
blkCnt = blockSize2 >> 2u;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Set all accumulators to zero */
|
||||
acc0 = 0;
|
||||
acc1 = 0;
|
||||
acc2 = 0;
|
||||
acc3 = 0;
|
||||
|
||||
/* read x[0], x[1], x[2] samples */
|
||||
x0 = *(px++);
|
||||
x1 = *(px++);
|
||||
x2 = *(px++);
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = srcBLen >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
do
|
||||
{
|
||||
/* Read y[srcBLen - 1] sample */
|
||||
c0 = *(py--);
|
||||
/* Read y[srcBLen - 2] sample */
|
||||
c1 = *(py--);
|
||||
|
||||
/* Read x[3] sample */
|
||||
x3 = *(px++);
|
||||
|
||||
/* x[0] and x[1] are packed */
|
||||
in1 = (q15_t) x0;
|
||||
in2 = (q15_t) x1;
|
||||
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* y[srcBLen - 1] and y[srcBLen - 2] are packed */
|
||||
in1 = (q15_t) c0;
|
||||
in2 = (q15_t) c1;
|
||||
|
||||
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
|
||||
acc0 = __SMLAD(input1, input2, acc0);
|
||||
|
||||
/* x[1] and x[2] are packed */
|
||||
in1 = (q15_t) x1;
|
||||
in2 = (q15_t) x2;
|
||||
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
|
||||
acc1 = __SMLAD(input1, input2, acc1);
|
||||
|
||||
/* x[2] and x[3] are packed */
|
||||
in1 = (q15_t) x2;
|
||||
in2 = (q15_t) x3;
|
||||
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
|
||||
acc2 = __SMLAD(input1, input2, acc2);
|
||||
|
||||
/* Read x[4] sample */
|
||||
x0 = *(px++);
|
||||
|
||||
/* x[3] and x[4] are packed */
|
||||
in1 = (q15_t) x3;
|
||||
in2 = (q15_t) x0;
|
||||
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
|
||||
acc3 = __SMLAD(input1, input2, acc3);
|
||||
|
||||
/* Read y[srcBLen - 3] sample */
|
||||
c0 = *(py--);
|
||||
/* Read y[srcBLen - 4] sample */
|
||||
c1 = *(py--);
|
||||
|
||||
/* Read x[5] sample */
|
||||
x1 = *(px++);
|
||||
|
||||
/* x[2] and x[3] are packed */
|
||||
in1 = (q15_t) x2;
|
||||
in2 = (q15_t) x3;
|
||||
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* y[srcBLen - 3] and y[srcBLen - 4] are packed */
|
||||
in1 = (q15_t) c0;
|
||||
in2 = (q15_t) c1;
|
||||
|
||||
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
|
||||
acc0 = __SMLAD(input1, input2, acc0);
|
||||
|
||||
/* x[3] and x[4] are packed */
|
||||
in1 = (q15_t) x3;
|
||||
in2 = (q15_t) x0;
|
||||
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
|
||||
acc1 = __SMLAD(input1, input2, acc1);
|
||||
|
||||
/* x[4] and x[5] are packed */
|
||||
in1 = (q15_t) x0;
|
||||
in2 = (q15_t) x1;
|
||||
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
|
||||
acc2 = __SMLAD(input1, input2, acc2);
|
||||
|
||||
/* Read x[6] sample */
|
||||
x2 = *(px++);
|
||||
|
||||
/* x[5] and x[6] are packed */
|
||||
in1 = (q15_t) x1;
|
||||
in2 = (q15_t) x2;
|
||||
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
|
||||
acc3 = __SMLAD(input1, input2, acc3);
|
||||
|
||||
} while(--k);
|
||||
|
||||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcBLen % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Read y[srcBLen - 5] sample */
|
||||
c0 = *(py--);
|
||||
|
||||
/* Read x[7] sample */
|
||||
x3 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
/* acc0 += x[4] * y[srcBLen - 5] */
|
||||
acc0 += ((q15_t) x0 * c0);
|
||||
/* acc1 += x[5] * y[srcBLen - 5] */
|
||||
acc1 += ((q15_t) x1 * c0);
|
||||
/* acc2 += x[6] * y[srcBLen - 5] */
|
||||
acc2 += ((q15_t) x2 * c0);
|
||||
/* acc3 += x[7] * y[srcBLen - 5] */
|
||||
acc3 += ((q15_t) x3 * c0);
|
||||
|
||||
/* Reuse the present samples for the next MAC */
|
||||
x0 = x1;
|
||||
x1 = x2;
|
||||
x2 = x3;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8));
|
||||
*pOut++ = (q7_t) (__SSAT(acc1 >> 7u, 8));
|
||||
*pOut++ = (q7_t) (__SSAT(acc2 >> 7u, 8));
|
||||
*pOut++ = (q7_t) (__SSAT(acc3 >> 7u, 8));
|
||||
|
||||
/* Increment the pointer pIn1 index, count by 4 */
|
||||
count += 4u;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize2 % 0x4u;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = srcBLen >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while(k > 0u)
|
||||
{
|
||||
|
||||
/* Reading two inputs of SrcA buffer and packing */
|
||||
in1 = (q15_t) * px++;
|
||||
in2 = (q15_t) * px++;
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* Reading two inputs of SrcB buffer and packing */
|
||||
in1 = (q15_t) * py--;
|
||||
in2 = (q15_t) * py--;
|
||||
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
sum = __SMLAD(input1, input2, sum);
|
||||
|
||||
/* Reading two inputs of SrcA buffer and packing */
|
||||
in1 = (q15_t) * px++;
|
||||
in2 = (q15_t) * px++;
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* Reading two inputs of SrcB buffer and packing */
|
||||
in1 = (q15_t) * py--;
|
||||
in2 = (q15_t) * py--;
|
||||
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
sum = __SMLAD(input1, input2, sum);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = srcBLen % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
sum += ((q15_t) * px++ * *py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
|
||||
|
||||
/* Increment the pointer pIn1 index, count by 1 */
|
||||
count++;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* If the srcBLen is not a multiple of 4,
|
||||
* the blockSize2 loop cannot be unrolled by 4 */
|
||||
blkCnt = blockSize2;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* srcBLen number of MACS should be performed */
|
||||
k = srcBLen;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulate */
|
||||
sum += ((q15_t) * px++ * *py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
|
||||
|
||||
/* Increment the MAC count */
|
||||
count++;
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = pIn1 + count;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* --------------------------
|
||||
* Initializations of stage3
|
||||
* -------------------------*/
|
||||
|
||||
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
|
||||
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
|
||||
* ....
|
||||
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
|
||||
* sum += x[srcALen-1] * y[srcBLen-1]
|
||||
*/
|
||||
|
||||
/* In this stage the MAC operations are decreased by 1 for every iteration.
|
||||
The blockSize3 variable holds the number of MAC operations performed */
|
||||
|
||||
/* Working pointer of inputA */
|
||||
pSrc1 = pIn1 + (srcALen - (srcBLen - 1u));
|
||||
px = pSrc1;
|
||||
|
||||
/* Working pointer of inputB */
|
||||
pSrc2 = pIn2 + (srcBLen - 1u);
|
||||
py = pSrc2;
|
||||
|
||||
/* -------------------
|
||||
* Stage3 process
|
||||
* ------------------*/
|
||||
|
||||
while(blockSize3 > 0u)
|
||||
{
|
||||
/* Accumulator is made zero for every iteration */
|
||||
sum = 0;
|
||||
|
||||
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
||||
k = blockSize3 >> 2u;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time.
|
||||
** a second loop below computes MACs for the remaining 1 to 3 samples. */
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Reading two inputs, x[srcALen - srcBLen + 1] and x[srcALen - srcBLen + 2] of SrcA buffer and packing */
|
||||
in1 = (q15_t) * px++;
|
||||
in2 = (q15_t) * px++;
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* Reading two inputs, y[srcBLen - 1] and y[srcBLen - 2] of SrcB buffer and packing */
|
||||
in1 = (q15_t) * py--;
|
||||
in2 = (q15_t) * py--;
|
||||
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */
|
||||
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */
|
||||
sum = __SMLAD(input1, input2, sum);
|
||||
|
||||
/* Reading two inputs, x[srcALen - srcBLen + 3] and x[srcALen - srcBLen + 4] of SrcA buffer and packing */
|
||||
in1 = (q15_t) * px++;
|
||||
in2 = (q15_t) * px++;
|
||||
input1 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* Reading two inputs, y[srcBLen - 3] and y[srcBLen - 4] of SrcB buffer and packing */
|
||||
in1 = (q15_t) * py--;
|
||||
in2 = (q15_t) * py--;
|
||||
input2 = ((q31_t) in1 & 0x0000FFFF) | ((q31_t) in2 << 16u);
|
||||
|
||||
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */
|
||||
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */
|
||||
sum = __SMLAD(input1, input2, sum);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
|
||||
** No loop unrolling is used. */
|
||||
k = blockSize3 % 0x4u;
|
||||
|
||||
while(k > 0u)
|
||||
{
|
||||
/* Perform the multiply-accumulates */
|
||||
sum += ((q15_t) * px++ * *py--);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
k--;
|
||||
}
|
||||
|
||||
/* Store the result in the accumulator in the destination buffer. */
|
||||
*pOut++ = (q7_t) (__SSAT(sum >> 7u, 8));
|
||||
|
||||
/* Update the inputA and inputB pointers for next MAC calculation */
|
||||
px = ++pSrc1;
|
||||
py = pSrc2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blockSize3--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
q7_t *pIn1 = pSrcA; /* input pointer */
|
||||
q7_t *pIn2 = pSrcB; /* coefficient pointer */
|
||||
q31_t sum; /* Accumulator */
|
||||
uint32_t i, j; /* loop counter */
|
||||
|
||||
/* Loop to calculate output of convolution for output length number of times */
|
||||
for (i = 0; i < (srcALen + srcBLen - 1); i++)
|
||||
{
|
||||
/* Initialize sum with zero to carry on MAC operations */
|
||||
sum = 0;
|
||||
|
||||
/* Loop to perform MAC operations according to convolution equation */
|
||||
for (j = 0; j <= i; j++)
|
||||
{
|
||||
/* Check the array limitations */
|
||||
if(((i - j) < srcBLen) && (j < srcALen))
|
||||
{
|
||||
/* z[i] += x[i-j] * y[j] */
|
||||
sum += (q15_t) pIn1[j] * (pIn2[i - j]);
|
||||
}
|
||||
}
|
||||
|
||||
/* Store the output in the destination buffer */
|
||||
pDst[i] = (q7_t) __SSAT((sum >> 7u), 8u);
|
||||
}
|
||||
|
||||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of Conv group
|
||||
*/
|
@ -0,0 +1,997 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 19. March 2015
|
||||
* $Revision: V.1.4.5
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_fir_f32.c
|
||||
*
|
||||
* Description: Floating-point FIR filter processing function.
|
||||
*
|
||||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* - Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* - Neither the name of ARM LIMITED nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @defgroup FIR Finite Impulse Response (FIR) Filters
|
||||
*
|
||||
* This set of functions implements Finite Impulse Response (FIR) filters
|
||||
* for Q7, Q15, Q31, and floating-point data types. Fast versions of Q15 and Q31 are also provided.
|
||||
* The functions operate on blocks of input and output data and each call to the function processes
|
||||
* <code>blockSize</code> samples through the filter. <code>pSrc</code> and
|
||||
* <code>pDst</code> points to input and output arrays containing <code>blockSize</code> values.
|
||||
*
|
||||
* \par Algorithm:
|
||||
* The FIR filter algorithm is based upon a sequence of multiply-accumulate (MAC) operations.
|
||||
* Each filter coefficient <code>b[n]</code> is multiplied by a state variable which equals a previous input sample <code>x[n]</code>.
|
||||
* <pre>
|
||||
* y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
|
||||
* </pre>
|
||||
* \par
|
||||
* \image html FIR.gif "Finite Impulse Response filter"
|
||||
* \par
|
||||
* <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
|
||||
* Coefficients are stored in time reversed order.
|
||||
* \par
|
||||
* <pre>
|
||||
* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
|
||||
* </pre>
|
||||
* \par
|
||||
* <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
|
||||
* Samples in the state buffer are stored in the following order.
|
||||
* \par
|
||||
* <pre>
|
||||
* {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
|
||||
* </pre>
|
||||
* \par
|
||||
* Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code>.
|
||||
* The increased state buffer length allows circular addressing, which is traditionally used in the FIR filters,
|
||||
* to be avoided and yields a significant speed improvement.
|
||||
* The state variables are updated after each block of data is processed; the coefficients are untouched.
|
||||
* \par Instance Structure
|
||||
* The coefficients and state variables for a filter are stored together in an instance data structure.
|
||||
* A separate instance structure must be defined for each filter.
|
||||
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
|
||||
* There are separate instance structure declarations for each of the 4 supported data types.
|
||||
*
|
||||
* \par Initialization Functions
|
||||
* There is also an associated initialization function for each data type.
|
||||
* The initialization function performs the following operations:
|
||||
* - Sets the values of the internal structure fields.
|
||||
* - Zeros out the values in the state buffer.
|
||||
* To do this manually without calling the init function, assign the follow subfields of the instance structure:
|
||||
* numTaps, pCoeffs, pState. Also set all of the values in pState to zero.
|
||||
*
|
||||
* \par
|
||||
* Use of the initialization function is optional.
|
||||
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
|
||||
* To place an instance structure into a const data section, the instance structure must be manually initialized.
|
||||
* Set the values in the state buffer to zeros before static initialization.
|
||||
* The code below statically initializes each of the 4 different data type filter instance structures
|
||||
* <pre>
|
||||
*arm_fir_instance_f32 S = {numTaps, pState, pCoeffs};
|
||||
*arm_fir_instance_q31 S = {numTaps, pState, pCoeffs};
|
||||
*arm_fir_instance_q15 S = {numTaps, pState, pCoeffs};
|
||||
*arm_fir_instance_q7 S = {numTaps, pState, pCoeffs};
|
||||
* </pre>
|
||||
*
|
||||
* where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;
|
||||
* <code>pCoeffs</code> is the address of the coefficient buffer.
|
||||
*
|
||||
* \par Fixed-Point Behavior
|
||||
* Care must be taken when using the fixed-point versions of the FIR filter functions.
|
||||
* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
|
||||
* Refer to the function specific documentation below for usage guidelines.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FIR
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
*
|
||||
* @param[in] *S points to an instance of the floating-point FIR filter structure.
|
||||
* @param[in] *pSrc points to the block of input data.
|
||||
* @param[out] *pDst points to the block of output data.
|
||||
* @param[in] blockSize number of samples to process per call.
|
||||
* @return none.
|
||||
*
|
||||
*/
|
||||
|
||||
#if defined(ARM_MATH_CM7)
|
||||
|
||||
void arm_fir_f32(
|
||||
const arm_fir_instance_f32 * S,
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
float32_t *pState = S->pState; /* State pointer */
|
||||
float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
||||
float32_t *pStateCurnt; /* Points to the current sample of the state */
|
||||
float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
|
||||
float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
|
||||
float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
|
||||
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
|
||||
uint32_t i, tapCnt, blkCnt; /* Loop counters */
|
||||
|
||||
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
||||
/* pStateCurnt points to the location where the new input data should be written */
|
||||
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
||||
|
||||
/* Apply loop unrolling and compute 8 output values simultaneously.
|
||||
* The variables acc0 ... acc7 hold output values that are being computed:
|
||||
*
|
||||
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
|
||||
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
|
||||
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
|
||||
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
|
||||
*/
|
||||
blkCnt = blockSize >> 3;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 8 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 7 samples. */
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy four new input samples into the state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set all accumulators to zero */
|
||||
acc0 = 0.0f;
|
||||
acc1 = 0.0f;
|
||||
acc2 = 0.0f;
|
||||
acc3 = 0.0f;
|
||||
acc4 = 0.0f;
|
||||
acc5 = 0.0f;
|
||||
acc6 = 0.0f;
|
||||
acc7 = 0.0f;
|
||||
|
||||
/* Initialize state pointer */
|
||||
px = pState;
|
||||
|
||||
/* Initialize coeff pointer */
|
||||
pb = (pCoeffs);
|
||||
|
||||
/* This is separated from the others to avoid
|
||||
* a call to __aeabi_memmove which would be slower
|
||||
*/
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Read the first seven samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
|
||||
x0 = *px++;
|
||||
x1 = *px++;
|
||||
x2 = *px++;
|
||||
x3 = *px++;
|
||||
x4 = *px++;
|
||||
x5 = *px++;
|
||||
x6 = *px++;
|
||||
|
||||
/* Loop unrolling. Process 8 taps at a time. */
|
||||
tapCnt = numTaps >> 3u;
|
||||
|
||||
/* Loop over the number of taps. Unroll by a factor of 8.
|
||||
** Repeat until we've computed numTaps-8 coefficients. */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
/* Read the b[numTaps-1] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-3] sample */
|
||||
x7 = *(px++);
|
||||
|
||||
/* acc0 += b[numTaps-1] * x[n-numTaps] */
|
||||
acc0 += x0 * c0;
|
||||
|
||||
/* acc1 += b[numTaps-1] * x[n-numTaps-1] */
|
||||
acc1 += x1 * c0;
|
||||
|
||||
/* acc2 += b[numTaps-1] * x[n-numTaps-2] */
|
||||
acc2 += x2 * c0;
|
||||
|
||||
/* acc3 += b[numTaps-1] * x[n-numTaps-3] */
|
||||
acc3 += x3 * c0;
|
||||
|
||||
/* acc4 += b[numTaps-1] * x[n-numTaps-4] */
|
||||
acc4 += x4 * c0;
|
||||
|
||||
/* acc1 += b[numTaps-1] * x[n-numTaps-5] */
|
||||
acc5 += x5 * c0;
|
||||
|
||||
/* acc2 += b[numTaps-1] * x[n-numTaps-6] */
|
||||
acc6 += x6 * c0;
|
||||
|
||||
/* acc3 += b[numTaps-1] * x[n-numTaps-7] */
|
||||
acc7 += x7 * c0;
|
||||
|
||||
/* Read the b[numTaps-2] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-4] sample */
|
||||
x0 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulate */
|
||||
acc0 += x1 * c0;
|
||||
acc1 += x2 * c0;
|
||||
acc2 += x3 * c0;
|
||||
acc3 += x4 * c0;
|
||||
acc4 += x5 * c0;
|
||||
acc5 += x6 * c0;
|
||||
acc6 += x7 * c0;
|
||||
acc7 += x0 * c0;
|
||||
|
||||
/* Read the b[numTaps-3] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-5] sample */
|
||||
x1 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += x2 * c0;
|
||||
acc1 += x3 * c0;
|
||||
acc2 += x4 * c0;
|
||||
acc3 += x5 * c0;
|
||||
acc4 += x6 * c0;
|
||||
acc5 += x7 * c0;
|
||||
acc6 += x0 * c0;
|
||||
acc7 += x1 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x2 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += x3 * c0;
|
||||
acc1 += x4 * c0;
|
||||
acc2 += x5 * c0;
|
||||
acc3 += x6 * c0;
|
||||
acc4 += x7 * c0;
|
||||
acc5 += x0 * c0;
|
||||
acc6 += x1 * c0;
|
||||
acc7 += x2 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x3 = *(px++);
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += x4 * c0;
|
||||
acc1 += x5 * c0;
|
||||
acc2 += x6 * c0;
|
||||
acc3 += x7 * c0;
|
||||
acc4 += x0 * c0;
|
||||
acc5 += x1 * c0;
|
||||
acc6 += x2 * c0;
|
||||
acc7 += x3 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x4 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += x5 * c0;
|
||||
acc1 += x6 * c0;
|
||||
acc2 += x7 * c0;
|
||||
acc3 += x0 * c0;
|
||||
acc4 += x1 * c0;
|
||||
acc5 += x2 * c0;
|
||||
acc6 += x3 * c0;
|
||||
acc7 += x4 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x5 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += x6 * c0;
|
||||
acc1 += x7 * c0;
|
||||
acc2 += x0 * c0;
|
||||
acc3 += x1 * c0;
|
||||
acc4 += x2 * c0;
|
||||
acc5 += x3 * c0;
|
||||
acc6 += x4 * c0;
|
||||
acc7 += x5 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x6 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += x7 * c0;
|
||||
acc1 += x0 * c0;
|
||||
acc2 += x1 * c0;
|
||||
acc3 += x2 * c0;
|
||||
acc4 += x3 * c0;
|
||||
acc5 += x4 * c0;
|
||||
acc6 += x5 * c0;
|
||||
acc7 += x6 * c0;
|
||||
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
/* If the filter length is not a multiple of 8, compute the remaining filter taps */
|
||||
tapCnt = numTaps % 0x8u;
|
||||
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
/* Read coefficients */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Fetch 1 state variable */
|
||||
x7 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += x0 * c0;
|
||||
acc1 += x1 * c0;
|
||||
acc2 += x2 * c0;
|
||||
acc3 += x3 * c0;
|
||||
acc4 += x4 * c0;
|
||||
acc5 += x5 * c0;
|
||||
acc6 += x6 * c0;
|
||||
acc7 += x7 * c0;
|
||||
|
||||
/* Reuse the present sample states for next sample */
|
||||
x0 = x1;
|
||||
x1 = x2;
|
||||
x2 = x3;
|
||||
x3 = x4;
|
||||
x4 = x5;
|
||||
x5 = x6;
|
||||
x6 = x7;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
/* Advance the state pointer by 8 to process the next group of 8 samples */
|
||||
pState = pState + 8;
|
||||
|
||||
/* The results in the 8 accumulators, store in the destination buffer. */
|
||||
*pDst++ = acc0;
|
||||
*pDst++ = acc1;
|
||||
*pDst++ = acc2;
|
||||
*pDst++ = acc3;
|
||||
*pDst++ = acc4;
|
||||
*pDst++ = acc5;
|
||||
*pDst++ = acc6;
|
||||
*pDst++ = acc7;
|
||||
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 8, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x8u;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy one sample at a time into state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set the accumulator to zero */
|
||||
acc0 = 0.0f;
|
||||
|
||||
/* Initialize state pointer */
|
||||
px = pState;
|
||||
|
||||
/* Initialize Coefficient pointer */
|
||||
pb = (pCoeffs);
|
||||
|
||||
i = numTaps;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
do
|
||||
{
|
||||
acc0 += *px++ * *pb++;
|
||||
i--;
|
||||
|
||||
} while(i > 0u);
|
||||
|
||||
/* The result is store in the destination buffer. */
|
||||
*pDst++ = acc0;
|
||||
|
||||
/* Advance state pointer by 1 for the next sample */
|
||||
pState = pState + 1;
|
||||
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* Processing is complete.
|
||||
** Now copy the last numTaps - 1 samples to the start of the state buffer.
|
||||
** This prepares the state buffer for the next function call. */
|
||||
|
||||
/* Points to the start of the state buffer */
|
||||
pStateCurnt = S->pState;
|
||||
|
||||
tapCnt = (numTaps - 1u) >> 2u;
|
||||
|
||||
/* copy data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
/* Calculate remaining number of copies */
|
||||
tapCnt = (numTaps - 1u) % 0x4u;
|
||||
|
||||
/* Copy the remaining q31_t data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
#elif defined(ARM_MATH_CM0_FAMILY)
|
||||
|
||||
void arm_fir_f32(
|
||||
const arm_fir_instance_f32 * S,
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
float32_t *pState = S->pState; /* State pointer */
|
||||
float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
||||
float32_t *pStateCurnt; /* Points to the current sample of the state */
|
||||
float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
|
||||
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
|
||||
uint32_t i, tapCnt, blkCnt; /* Loop counters */
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
float32_t acc;
|
||||
|
||||
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
||||
/* pStateCurnt points to the location where the new input data should be written */
|
||||
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
||||
|
||||
/* Initialize blkCnt with blockSize */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy one sample at a time into state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set the accumulator to zero */
|
||||
acc = 0.0f;
|
||||
|
||||
/* Initialize state pointer */
|
||||
px = pState;
|
||||
|
||||
/* Initialize Coefficient pointer */
|
||||
pb = pCoeffs;
|
||||
|
||||
i = numTaps;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
do
|
||||
{
|
||||
/* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
|
||||
acc += *px++ * *pb++;
|
||||
i--;
|
||||
|
||||
} while(i > 0u);
|
||||
|
||||
/* The result is store in the destination buffer. */
|
||||
*pDst++ = acc;
|
||||
|
||||
/* Advance state pointer by 1 for the next sample */
|
||||
pState = pState + 1;
|
||||
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* Processing is complete.
|
||||
** Now copy the last numTaps - 1 samples to the starting of the state buffer.
|
||||
** This prepares the state buffer for the next function call. */
|
||||
|
||||
/* Points to the start of the state buffer */
|
||||
pStateCurnt = S->pState;
|
||||
|
||||
/* Copy numTaps number of values */
|
||||
tapCnt = numTaps - 1u;
|
||||
|
||||
/* Copy data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
void arm_fir_f32(
|
||||
const arm_fir_instance_f32 * S,
|
||||
float32_t * pSrc,
|
||||
float32_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
float32_t *pState = S->pState; /* State pointer */
|
||||
float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
||||
float32_t *pStateCurnt; /* Points to the current sample of the state */
|
||||
float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
|
||||
float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
|
||||
float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
|
||||
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
|
||||
uint32_t i, tapCnt, blkCnt; /* Loop counters */
|
||||
float32_t p0,p1,p2,p3,p4,p5,p6,p7; /* Temporary product values */
|
||||
|
||||
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
||||
/* pStateCurnt points to the location where the new input data should be written */
|
||||
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
||||
|
||||
/* Apply loop unrolling and compute 8 output values simultaneously.
|
||||
* The variables acc0 ... acc7 hold output values that are being computed:
|
||||
*
|
||||
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
|
||||
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
|
||||
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
|
||||
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
|
||||
*/
|
||||
blkCnt = blockSize >> 3;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 8 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 7 samples. */
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy four new input samples into the state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set all accumulators to zero */
|
||||
acc0 = 0.0f;
|
||||
acc1 = 0.0f;
|
||||
acc2 = 0.0f;
|
||||
acc3 = 0.0f;
|
||||
acc4 = 0.0f;
|
||||
acc5 = 0.0f;
|
||||
acc6 = 0.0f;
|
||||
acc7 = 0.0f;
|
||||
|
||||
/* Initialize state pointer */
|
||||
px = pState;
|
||||
|
||||
/* Initialize coeff pointer */
|
||||
pb = (pCoeffs);
|
||||
|
||||
/* This is separated from the others to avoid
|
||||
* a call to __aeabi_memmove which would be slower
|
||||
*/
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Read the first seven samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
|
||||
x0 = *px++;
|
||||
x1 = *px++;
|
||||
x2 = *px++;
|
||||
x3 = *px++;
|
||||
x4 = *px++;
|
||||
x5 = *px++;
|
||||
x6 = *px++;
|
||||
|
||||
/* Loop unrolling. Process 8 taps at a time. */
|
||||
tapCnt = numTaps >> 3u;
|
||||
|
||||
/* Loop over the number of taps. Unroll by a factor of 8.
|
||||
** Repeat until we've computed numTaps-8 coefficients. */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
/* Read the b[numTaps-1] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-3] sample */
|
||||
x7 = *(px++);
|
||||
|
||||
/* acc0 += b[numTaps-1] * x[n-numTaps] */
|
||||
p0 = x0 * c0;
|
||||
|
||||
/* acc1 += b[numTaps-1] * x[n-numTaps-1] */
|
||||
p1 = x1 * c0;
|
||||
|
||||
/* acc2 += b[numTaps-1] * x[n-numTaps-2] */
|
||||
p2 = x2 * c0;
|
||||
|
||||
/* acc3 += b[numTaps-1] * x[n-numTaps-3] */
|
||||
p3 = x3 * c0;
|
||||
|
||||
/* acc4 += b[numTaps-1] * x[n-numTaps-4] */
|
||||
p4 = x4 * c0;
|
||||
|
||||
/* acc1 += b[numTaps-1] * x[n-numTaps-5] */
|
||||
p5 = x5 * c0;
|
||||
|
||||
/* acc2 += b[numTaps-1] * x[n-numTaps-6] */
|
||||
p6 = x6 * c0;
|
||||
|
||||
/* acc3 += b[numTaps-1] * x[n-numTaps-7] */
|
||||
p7 = x7 * c0;
|
||||
|
||||
/* Read the b[numTaps-2] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-4] sample */
|
||||
x0 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
|
||||
/* Perform the multiply-accumulate */
|
||||
p0 = x1 * c0;
|
||||
p1 = x2 * c0;
|
||||
p2 = x3 * c0;
|
||||
p3 = x4 * c0;
|
||||
p4 = x5 * c0;
|
||||
p5 = x6 * c0;
|
||||
p6 = x7 * c0;
|
||||
p7 = x0 * c0;
|
||||
|
||||
/* Read the b[numTaps-3] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-5] sample */
|
||||
x1 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x2 * c0;
|
||||
p1 = x3 * c0;
|
||||
p2 = x4 * c0;
|
||||
p3 = x5 * c0;
|
||||
p4 = x6 * c0;
|
||||
p5 = x7 * c0;
|
||||
p6 = x0 * c0;
|
||||
p7 = x1 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x2 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x3 * c0;
|
||||
p1 = x4 * c0;
|
||||
p2 = x5 * c0;
|
||||
p3 = x6 * c0;
|
||||
p4 = x7 * c0;
|
||||
p5 = x0 * c0;
|
||||
p6 = x1 * c0;
|
||||
p7 = x2 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x3 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x4 * c0;
|
||||
p1 = x5 * c0;
|
||||
p2 = x6 * c0;
|
||||
p3 = x7 * c0;
|
||||
p4 = x0 * c0;
|
||||
p5 = x1 * c0;
|
||||
p6 = x2 * c0;
|
||||
p7 = x3 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x4 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x5 * c0;
|
||||
p1 = x6 * c0;
|
||||
p2 = x7 * c0;
|
||||
p3 = x0 * c0;
|
||||
p4 = x1 * c0;
|
||||
p5 = x2 * c0;
|
||||
p6 = x3 * c0;
|
||||
p7 = x4 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x5 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x6 * c0;
|
||||
p1 = x7 * c0;
|
||||
p2 = x0 * c0;
|
||||
p3 = x1 * c0;
|
||||
p4 = x2 * c0;
|
||||
p5 = x3 * c0;
|
||||
p6 = x4 * c0;
|
||||
p7 = x5 * c0;
|
||||
|
||||
/* Read the b[numTaps-4] coefficient */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x6 = *(px++);
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x7 * c0;
|
||||
p1 = x0 * c0;
|
||||
p2 = x1 * c0;
|
||||
p3 = x2 * c0;
|
||||
p4 = x3 * c0;
|
||||
p5 = x4 * c0;
|
||||
p6 = x5 * c0;
|
||||
p7 = x6 * c0;
|
||||
|
||||
tapCnt--;
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
}
|
||||
|
||||
/* If the filter length is not a multiple of 8, compute the remaining filter taps */
|
||||
tapCnt = numTaps % 0x8u;
|
||||
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
/* Read coefficients */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Fetch 1 state variable */
|
||||
x7 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
p0 = x0 * c0;
|
||||
p1 = x1 * c0;
|
||||
p2 = x2 * c0;
|
||||
p3 = x3 * c0;
|
||||
p4 = x4 * c0;
|
||||
p5 = x5 * c0;
|
||||
p6 = x6 * c0;
|
||||
p7 = x7 * c0;
|
||||
|
||||
/* Reuse the present sample states for next sample */
|
||||
x0 = x1;
|
||||
x1 = x2;
|
||||
x2 = x3;
|
||||
x3 = x4;
|
||||
x4 = x5;
|
||||
x5 = x6;
|
||||
x6 = x7;
|
||||
|
||||
acc0 += p0;
|
||||
acc1 += p1;
|
||||
acc2 += p2;
|
||||
acc3 += p3;
|
||||
acc4 += p4;
|
||||
acc5 += p5;
|
||||
acc6 += p6;
|
||||
acc7 += p7;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
/* Advance the state pointer by 8 to process the next group of 8 samples */
|
||||
pState = pState + 8;
|
||||
|
||||
/* The results in the 8 accumulators, store in the destination buffer. */
|
||||
*pDst++ = acc0;
|
||||
*pDst++ = acc1;
|
||||
*pDst++ = acc2;
|
||||
*pDst++ = acc3;
|
||||
*pDst++ = acc4;
|
||||
*pDst++ = acc5;
|
||||
*pDst++ = acc6;
|
||||
*pDst++ = acc7;
|
||||
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 8, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x8u;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy one sample at a time into state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set the accumulator to zero */
|
||||
acc0 = 0.0f;
|
||||
|
||||
/* Initialize state pointer */
|
||||
px = pState;
|
||||
|
||||
/* Initialize Coefficient pointer */
|
||||
pb = (pCoeffs);
|
||||
|
||||
i = numTaps;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
do
|
||||
{
|
||||
acc0 += *px++ * *pb++;
|
||||
i--;
|
||||
|
||||
} while(i > 0u);
|
||||
|
||||
/* The result is store in the destination buffer. */
|
||||
*pDst++ = acc0;
|
||||
|
||||
/* Advance state pointer by 1 for the next sample */
|
||||
pState = pState + 1;
|
||||
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* Processing is complete.
|
||||
** Now copy the last numTaps - 1 samples to the start of the state buffer.
|
||||
** This prepares the state buffer for the next function call. */
|
||||
|
||||
/* Points to the start of the state buffer */
|
||||
pStateCurnt = S->pState;
|
||||
|
||||
tapCnt = (numTaps - 1u) >> 2u;
|
||||
|
||||
/* copy data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
/* Calculate remaining number of copies */
|
||||
tapCnt = (numTaps - 1u) % 0x4u;
|
||||
|
||||
/* Copy the remaining q31_t data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @} end of FIR group
|
||||
*/
|
@ -0,0 +1,96 @@
|
||||
/*-----------------------------------------------------------------------------
|
||||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 19. March 2015
|
||||
* $Revision: V.1.4.5
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_fir_init_f32.c
|
||||
*
|
||||
* Description: Floating-point FIR filter initialization function.
|
||||
*
|
||||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* - Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* - Neither the name of ARM LIMITED nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
* ---------------------------------------------------------------------------*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FIR
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @details
|
||||
*
|
||||
* @param[in,out] *S points to an instance of the floating-point FIR filter structure.
|
||||
* @param[in] numTaps Number of filter coefficients in the filter.
|
||||
* @param[in] *pCoeffs points to the filter coefficients buffer.
|
||||
* @param[in] *pState points to the state buffer.
|
||||
* @param[in] blockSize number of samples that are processed per call.
|
||||
* @return none.
|
||||
*
|
||||
* <b>Description:</b>
|
||||
* \par
|
||||
* <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
|
||||
* <pre>
|
||||
* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
|
||||
* </pre>
|
||||
* \par
|
||||
* <code>pState</code> points to the array of state variables.
|
||||
* <code>pState</code> is of length <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_f32()</code>.
|
||||
*/
|
||||
|
||||
void arm_fir_init_f32(
|
||||
arm_fir_instance_f32 * S,
|
||||
uint16_t numTaps,
|
||||
float32_t * pCoeffs,
|
||||
float32_t * pState,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
/* Assign filter taps */
|
||||
S->numTaps = numTaps;
|
||||
|
||||
/* Assign coefficient pointer */
|
||||
S->pCoeffs = pCoeffs;
|
||||
|
||||
/* Clear state buffer and the size of state buffer is (blockSize + numTaps - 1) */
|
||||
memset(pState, 0, (numTaps + (blockSize - 1u)) * sizeof(float32_t));
|
||||
|
||||
/* Assign state pointer */
|
||||
S->pState = pState;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FIR group
|
||||
*/
|
@ -0,0 +1,154 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 19. March 2015
|
||||
* $Revision: V.1.4.5
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_fir_init_q15.c
|
||||
*
|
||||
* Description: Q15 FIR filter initialization function.
|
||||
*
|
||||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* - Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* - Neither the name of ARM LIMITED nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
* ------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FIR
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @param[in,out] *S points to an instance of the Q15 FIR filter structure.
|
||||
* @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
|
||||
* @param[in] *pCoeffs points to the filter coefficients buffer.
|
||||
* @param[in] *pState points to the state buffer.
|
||||
* @param[in] blockSize is number of samples processed per call.
|
||||
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if
|
||||
* <code>numTaps</code> is not greater than or equal to 4 and even.
|
||||
*
|
||||
* <b>Description:</b>
|
||||
* \par
|
||||
* <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
|
||||
* <pre>
|
||||
* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
|
||||
* </pre>
|
||||
* Note that <code>numTaps</code> must be even and greater than or equal to 4.
|
||||
* To implement an odd length filter simply increase <code>numTaps</code> by 1 and set the last coefficient to zero.
|
||||
* For example, to implement a filter with <code>numTaps=3</code> and coefficients
|
||||
* <pre>
|
||||
* {0.3, -0.8, 0.3}
|
||||
* </pre>
|
||||
* set <code>numTaps=4</code> and use the coefficients:
|
||||
* <pre>
|
||||
* {0.3, -0.8, 0.3, 0}.
|
||||
* </pre>
|
||||
* Similarly, to implement a two point filter
|
||||
* <pre>
|
||||
* {0.3, -0.3}
|
||||
* </pre>
|
||||
* set <code>numTaps=4</code> and use the coefficients:
|
||||
* <pre>
|
||||
* {0.3, -0.3, 0, 0}.
|
||||
* </pre>
|
||||
* \par
|
||||
* <code>pState</code> points to the array of state variables.
|
||||
* <code>pState</code> is of length <code>numTaps+blockSize</code>, when running on Cortex-M4 and Cortex-M3 and is of length <code>numTaps+blockSize-1</code>, when running on Cortex-M0 where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_q15()</code>.
|
||||
*/
|
||||
|
||||
arm_status arm_fir_init_q15(
|
||||
arm_fir_instance_q15 * S,
|
||||
uint16_t numTaps,
|
||||
q15_t * pCoeffs,
|
||||
q15_t * pState,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
arm_status status;
|
||||
|
||||
|
||||
#ifndef ARM_MATH_CM0_FAMILY
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
/* The Number of filter coefficients in the filter must be even and at least 4 */
|
||||
if(numTaps & 0x1u)
|
||||
{
|
||||
status = ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Assign filter taps */
|
||||
S->numTaps = numTaps;
|
||||
|
||||
/* Assign coefficient pointer */
|
||||
S->pCoeffs = pCoeffs;
|
||||
|
||||
/* Clear the state buffer. The size is always (blockSize + numTaps ) */
|
||||
memset(pState, 0, (numTaps + (blockSize)) * sizeof(q15_t));
|
||||
|
||||
/* Assign state pointer */
|
||||
S->pState = pState;
|
||||
|
||||
status = ARM_MATH_SUCCESS;
|
||||
}
|
||||
|
||||
return (status);
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
/* Assign filter taps */
|
||||
S->numTaps = numTaps;
|
||||
|
||||
/* Assign coefficient pointer */
|
||||
S->pCoeffs = pCoeffs;
|
||||
|
||||
/* Clear the state buffer. The size is always (blockSize + numTaps - 1) */
|
||||
memset(pState, 0, (numTaps + (blockSize - 1u)) * sizeof(q15_t));
|
||||
|
||||
/* Assign state pointer */
|
||||
S->pState = pState;
|
||||
|
||||
status = ARM_MATH_SUCCESS;
|
||||
|
||||
return (status);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FIR group
|
||||
*/
|
@ -0,0 +1,96 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 19. March 2015
|
||||
* $Revision: V.1.4.5
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_fir_init_q31.c
|
||||
*
|
||||
* Description: Q31 FIR filter initialization function.
|
||||
*
|
||||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* - Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* - Neither the name of ARM LIMITED nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FIR
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @details
|
||||
*
|
||||
* @param[in,out] *S points to an instance of the Q31 FIR filter structure.
|
||||
* @param[in] numTaps Number of filter coefficients in the filter.
|
||||
* @param[in] *pCoeffs points to the filter coefficients buffer.
|
||||
* @param[in] *pState points to the state buffer.
|
||||
* @param[in] blockSize number of samples that are processed per call.
|
||||
* @return none.
|
||||
*
|
||||
* <b>Description:</b>
|
||||
* \par
|
||||
* <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
|
||||
* <pre>
|
||||
* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
|
||||
* </pre>
|
||||
* \par
|
||||
* <code>pState</code> points to the array of state variables.
|
||||
* <code>pState</code> is of length <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_q31()</code>.
|
||||
*/
|
||||
|
||||
void arm_fir_init_q31(
|
||||
arm_fir_instance_q31 * S,
|
||||
uint16_t numTaps,
|
||||
q31_t * pCoeffs,
|
||||
q31_t * pState,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
/* Assign filter taps */
|
||||
S->numTaps = numTaps;
|
||||
|
||||
/* Assign coefficient pointer */
|
||||
S->pCoeffs = pCoeffs;
|
||||
|
||||
/* Clear state buffer and state array size is (blockSize + numTaps - 1) */
|
||||
memset(pState, 0, (blockSize + ((uint32_t) numTaps - 1u)) * sizeof(q31_t));
|
||||
|
||||
/* Assign state pointer */
|
||||
S->pState = pState;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FIR group
|
||||
*/
|
@ -0,0 +1,94 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 19. March 2015
|
||||
* $Revision: V.1.4.5
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_fir_init_q7.c
|
||||
*
|
||||
* Description: Q7 FIR filter initialization function.
|
||||
*
|
||||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* - Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* - Neither the name of ARM LIMITED nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
* ------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FIR
|
||||
* @{
|
||||
*/
|
||||
/**
|
||||
* @param[in,out] *S points to an instance of the Q7 FIR filter structure.
|
||||
* @param[in] numTaps Number of filter coefficients in the filter.
|
||||
* @param[in] *pCoeffs points to the filter coefficients buffer.
|
||||
* @param[in] *pState points to the state buffer.
|
||||
* @param[in] blockSize number of samples that are processed per call.
|
||||
* @return none
|
||||
*
|
||||
* <b>Description:</b>
|
||||
* \par
|
||||
* <code>pCoeffs</code> points to the array of filter coefficients stored in time reversed order:
|
||||
* <pre>
|
||||
* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
|
||||
* </pre>
|
||||
* \par
|
||||
* <code>pState</code> points to the array of state variables.
|
||||
* <code>pState</code> is of length <code>numTaps+blockSize-1</code> samples, where <code>blockSize</code> is the number of input samples processed by each call to <code>arm_fir_q7()</code>.
|
||||
*/
|
||||
|
||||
void arm_fir_init_q7(
|
||||
arm_fir_instance_q7 * S,
|
||||
uint16_t numTaps,
|
||||
q7_t * pCoeffs,
|
||||
q7_t * pState,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
|
||||
/* Assign filter taps */
|
||||
S->numTaps = numTaps;
|
||||
|
||||
/* Assign coefficient pointer */
|
||||
S->pCoeffs = pCoeffs;
|
||||
|
||||
/* Clear the state buffer. The size is always (blockSize + numTaps - 1) */
|
||||
memset(pState, 0, (numTaps + (blockSize - 1u)) * sizeof(q7_t));
|
||||
|
||||
/* Assign state pointer */
|
||||
S->pState = pState;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FIR group
|
||||
*/
|
@ -0,0 +1,691 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 19. March 2015
|
||||
* $Revision: V.1.4.5
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_fir_q15.c
|
||||
*
|
||||
* Description: Q15 FIR filter processing function.
|
||||
*
|
||||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* - Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* - Neither the name of ARM LIMITED nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FIR
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @brief Processing function for the Q15 FIR filter.
|
||||
* @param[in] *S points to an instance of the Q15 FIR structure.
|
||||
* @param[in] *pSrc points to the block of input data.
|
||||
* @param[out] *pDst points to the block of output data.
|
||||
* @param[in] blockSize number of samples to process per call.
|
||||
* @return none.
|
||||
*
|
||||
*
|
||||
* \par Restrictions
|
||||
* If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
|
||||
* In this case input, output, state buffers should be aligned by 32-bit
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function is implemented using a 64-bit internal accumulator.
|
||||
* Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
|
||||
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
|
||||
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
|
||||
* After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
|
||||
* Lastly, the accumulator is saturated to yield a result in 1.15 format.
|
||||
*
|
||||
* \par
|
||||
* Refer to the function <code>arm_fir_fast_q15()</code> for a faster but less precise implementation of this function.
|
||||
*/
|
||||
|
||||
#ifndef ARM_MATH_CM0_FAMILY
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
#ifndef UNALIGNED_SUPPORT_DISABLE
|
||||
|
||||
|
||||
void arm_fir_q15(
|
||||
const arm_fir_instance_q15 * S,
|
||||
q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
q15_t *pState = S->pState; /* State pointer */
|
||||
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
||||
q15_t *pStateCurnt; /* Points to the current sample of the state */
|
||||
q15_t *px1; /* Temporary q15 pointer for state buffer */
|
||||
q15_t *pb; /* Temporary pointer for coefficient buffer */
|
||||
q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold SIMD state and coefficient values */
|
||||
q63_t acc0, acc1, acc2, acc3; /* Accumulators */
|
||||
uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
|
||||
uint32_t tapCnt, blkCnt; /* Loop counters */
|
||||
|
||||
|
||||
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
||||
/* pStateCurnt points to the location where the new input data should be written */
|
||||
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
||||
|
||||
/* Apply loop unrolling and compute 4 output values simultaneously.
|
||||
* The variables acc0 ... acc3 hold output values that are being computed:
|
||||
*
|
||||
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
|
||||
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
|
||||
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
|
||||
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
|
||||
*/
|
||||
|
||||
blkCnt = blockSize >> 2;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy four new input samples into the state buffer.
|
||||
** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */
|
||||
*__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
|
||||
*__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
|
||||
|
||||
/* Set all accumulators to zero */
|
||||
acc0 = 0;
|
||||
acc1 = 0;
|
||||
acc2 = 0;
|
||||
acc3 = 0;
|
||||
|
||||
/* Initialize state pointer of type q15 */
|
||||
px1 = pState;
|
||||
|
||||
/* Initialize coeff pointer of type q31 */
|
||||
pb = pCoeffs;
|
||||
|
||||
/* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */
|
||||
x0 = _SIMD32_OFFSET(px1);
|
||||
|
||||
/* Read the third and forth samples from the state buffer: x[n-N-1], x[n-N-2] */
|
||||
x1 = _SIMD32_OFFSET(px1 + 1u);
|
||||
|
||||
px1 += 2u;
|
||||
|
||||
/* Loop over the number of taps. Unroll by a factor of 4.
|
||||
** Repeat until we've computed numTaps-4 coefficients. */
|
||||
tapCnt = numTaps >> 2;
|
||||
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
/* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */
|
||||
c0 = *__SIMD32(pb)++;
|
||||
|
||||
/* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
|
||||
acc0 = __SMLALD(x0, c0, acc0);
|
||||
|
||||
/* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
|
||||
acc1 = __SMLALD(x1, c0, acc1);
|
||||
|
||||
/* Read state x[n-N-2], x[n-N-3] */
|
||||
x2 = _SIMD32_OFFSET(px1);
|
||||
|
||||
/* Read state x[n-N-3], x[n-N-4] */
|
||||
x3 = _SIMD32_OFFSET(px1 + 1u);
|
||||
|
||||
/* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
|
||||
acc2 = __SMLALD(x2, c0, acc2);
|
||||
|
||||
/* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
|
||||
acc3 = __SMLALD(x3, c0, acc3);
|
||||
|
||||
/* Read coefficients b[N-2], b[N-3] */
|
||||
c0 = *__SIMD32(pb)++;
|
||||
|
||||
/* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
|
||||
acc0 = __SMLALD(x2, c0, acc0);
|
||||
|
||||
/* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
|
||||
acc1 = __SMLALD(x3, c0, acc1);
|
||||
|
||||
/* Read state x[n-N-4], x[n-N-5] */
|
||||
x0 = _SIMD32_OFFSET(px1 + 2u);
|
||||
|
||||
/* Read state x[n-N-5], x[n-N-6] */
|
||||
x1 = _SIMD32_OFFSET(px1 + 3u);
|
||||
|
||||
/* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
|
||||
acc2 = __SMLALD(x0, c0, acc2);
|
||||
|
||||
/* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
|
||||
acc3 = __SMLALD(x1, c0, acc3);
|
||||
|
||||
px1 += 4u;
|
||||
|
||||
tapCnt--;
|
||||
|
||||
}
|
||||
|
||||
|
||||
/* If the filter length is not a multiple of 4, compute the remaining filter taps.
|
||||
** This is always be 2 taps since the filter length is even. */
|
||||
if((numTaps & 0x3u) != 0u)
|
||||
{
|
||||
/* Read 2 coefficients */
|
||||
c0 = *__SIMD32(pb)++;
|
||||
|
||||
/* Fetch 4 state variables */
|
||||
x2 = _SIMD32_OFFSET(px1);
|
||||
|
||||
x3 = _SIMD32_OFFSET(px1 + 1u);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 = __SMLALD(x0, c0, acc0);
|
||||
|
||||
px1 += 2u;
|
||||
|
||||
acc1 = __SMLALD(x1, c0, acc1);
|
||||
acc2 = __SMLALD(x2, c0, acc2);
|
||||
acc3 = __SMLALD(x3, c0, acc3);
|
||||
}
|
||||
|
||||
/* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
|
||||
** Then store the 4 outputs in the destination buffer. */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
*__SIMD32(pDst)++ =
|
||||
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
|
||||
*__SIMD32(pDst)++ =
|
||||
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
|
||||
|
||||
#else
|
||||
|
||||
*__SIMD32(pDst)++ =
|
||||
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
|
||||
*__SIMD32(pDst)++ =
|
||||
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
|
||||
|
||||
/* Advance the state pointer by 4 to process the next group of 4 samples */
|
||||
pState = pState + 4;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4u;
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy two samples into state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set the accumulator to zero */
|
||||
acc0 = 0;
|
||||
|
||||
/* Initialize state pointer of type q15 */
|
||||
px1 = pState;
|
||||
|
||||
/* Initialize coeff pointer of type q31 */
|
||||
pb = pCoeffs;
|
||||
|
||||
tapCnt = numTaps >> 1;
|
||||
|
||||
do
|
||||
{
|
||||
|
||||
c0 = *__SIMD32(pb)++;
|
||||
x0 = *__SIMD32(px1)++;
|
||||
|
||||
acc0 = __SMLALD(x0, c0, acc0);
|
||||
tapCnt--;
|
||||
}
|
||||
while(tapCnt > 0u);
|
||||
|
||||
/* The result is in 2.30 format. Convert to 1.15 with saturation.
|
||||
** Then store the output in the destination buffer. */
|
||||
*pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
|
||||
|
||||
/* Advance state pointer by 1 for the next sample */
|
||||
pState = pState + 1;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* Processing is complete.
|
||||
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
|
||||
** This prepares the state buffer for the next function call. */
|
||||
|
||||
/* Points to the start of the state buffer */
|
||||
pStateCurnt = S->pState;
|
||||
|
||||
/* Calculation of count for copying integer writes */
|
||||
tapCnt = (numTaps - 1u) >> 2;
|
||||
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
|
||||
/* Copy state values to start of state buffer */
|
||||
*__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
|
||||
*__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
|
||||
|
||||
tapCnt--;
|
||||
|
||||
}
|
||||
|
||||
/* Calculation of count for remaining q15_t data */
|
||||
tapCnt = (numTaps - 1u) % 0x4u;
|
||||
|
||||
/* copy remaining data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
#else /* UNALIGNED_SUPPORT_DISABLE */
|
||||
|
||||
void arm_fir_q15(
|
||||
const arm_fir_instance_q15 * S,
|
||||
q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
q15_t *pState = S->pState; /* State pointer */
|
||||
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
||||
q15_t *pStateCurnt; /* Points to the current sample of the state */
|
||||
q63_t acc0, acc1, acc2, acc3; /* Accumulators */
|
||||
q15_t *pb; /* Temporary pointer for coefficient buffer */
|
||||
q15_t *px; /* Temporary q31 pointer for SIMD state buffer accesses */
|
||||
q31_t x0, x1, x2, c0; /* Temporary variables to hold SIMD state and coefficient values */
|
||||
uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
|
||||
uint32_t tapCnt, blkCnt; /* Loop counters */
|
||||
|
||||
|
||||
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
||||
/* pStateCurnt points to the location where the new input data should be written */
|
||||
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
||||
|
||||
/* Apply loop unrolling and compute 4 output values simultaneously.
|
||||
* The variables acc0 ... acc3 hold output values that are being computed:
|
||||
*
|
||||
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
|
||||
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
|
||||
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
|
||||
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
|
||||
*/
|
||||
|
||||
blkCnt = blockSize >> 2;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy four new input samples into the state buffer.
|
||||
** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
|
||||
/* Set all accumulators to zero */
|
||||
acc0 = 0;
|
||||
acc1 = 0;
|
||||
acc2 = 0;
|
||||
acc3 = 0;
|
||||
|
||||
/* Typecast q15_t pointer to q31_t pointer for state reading in q31_t */
|
||||
px = pState;
|
||||
|
||||
/* Typecast q15_t pointer to q31_t pointer for coefficient reading in q31_t */
|
||||
pb = pCoeffs;
|
||||
|
||||
/* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */
|
||||
x0 = *__SIMD32(px)++;
|
||||
|
||||
/* Read the third and forth samples from the state buffer: x[n-N-2], x[n-N-3] */
|
||||
x2 = *__SIMD32(px)++;
|
||||
|
||||
/* Loop over the number of taps. Unroll by a factor of 4.
|
||||
** Repeat until we've computed numTaps-(numTaps%4) coefficients. */
|
||||
tapCnt = numTaps >> 2;
|
||||
|
||||
while(tapCnt > 0)
|
||||
{
|
||||
/* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */
|
||||
c0 = *__SIMD32(pb)++;
|
||||
|
||||
/* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
|
||||
acc0 = __SMLALD(x0, c0, acc0);
|
||||
|
||||
/* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
|
||||
acc2 = __SMLALD(x2, c0, acc2);
|
||||
|
||||
/* pack x[n-N-1] and x[n-N-2] */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
x1 = __PKHBT(x2, x0, 0);
|
||||
#else
|
||||
x1 = __PKHBT(x0, x2, 0);
|
||||
#endif
|
||||
|
||||
/* Read state x[n-N-4], x[n-N-5] */
|
||||
x0 = _SIMD32_OFFSET(px);
|
||||
|
||||
/* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
|
||||
acc1 = __SMLALDX(x1, c0, acc1);
|
||||
|
||||
/* pack x[n-N-3] and x[n-N-4] */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
x1 = __PKHBT(x0, x2, 0);
|
||||
#else
|
||||
x1 = __PKHBT(x2, x0, 0);
|
||||
#endif
|
||||
|
||||
/* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
|
||||
acc3 = __SMLALDX(x1, c0, acc3);
|
||||
|
||||
/* Read coefficients b[N-2], b[N-3] */
|
||||
c0 = *__SIMD32(pb)++;
|
||||
|
||||
/* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
|
||||
acc0 = __SMLALD(x2, c0, acc0);
|
||||
|
||||
/* Read state x[n-N-6], x[n-N-7] with offset */
|
||||
x2 = _SIMD32_OFFSET(px + 2u);
|
||||
|
||||
/* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
|
||||
acc2 = __SMLALD(x0, c0, acc2);
|
||||
|
||||
/* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
|
||||
acc1 = __SMLALDX(x1, c0, acc1);
|
||||
|
||||
/* pack x[n-N-5] and x[n-N-6] */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
x1 = __PKHBT(x2, x0, 0);
|
||||
#else
|
||||
x1 = __PKHBT(x0, x2, 0);
|
||||
#endif
|
||||
|
||||
/* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
|
||||
acc3 = __SMLALDX(x1, c0, acc3);
|
||||
|
||||
/* Update state pointer for next state reading */
|
||||
px += 4u;
|
||||
|
||||
/* Decrement tap count */
|
||||
tapCnt--;
|
||||
|
||||
}
|
||||
|
||||
/* If the filter length is not a multiple of 4, compute the remaining filter taps.
|
||||
** This is always be 2 taps since the filter length is even. */
|
||||
if((numTaps & 0x3u) != 0u)
|
||||
{
|
||||
|
||||
/* Read last two coefficients */
|
||||
c0 = *__SIMD32(pb)++;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 = __SMLALD(x0, c0, acc0);
|
||||
acc2 = __SMLALD(x2, c0, acc2);
|
||||
|
||||
/* pack state variables */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
x1 = __PKHBT(x2, x0, 0);
|
||||
#else
|
||||
x1 = __PKHBT(x0, x2, 0);
|
||||
#endif
|
||||
|
||||
/* Read last state variables */
|
||||
x0 = *__SIMD32(px);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc1 = __SMLALDX(x1, c0, acc1);
|
||||
|
||||
/* pack state variables */
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
x1 = __PKHBT(x0, x2, 0);
|
||||
#else
|
||||
x1 = __PKHBT(x2, x0, 0);
|
||||
#endif
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc3 = __SMLALDX(x1, c0, acc3);
|
||||
}
|
||||
|
||||
/* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
|
||||
** Then store the 4 outputs in the destination buffer. */
|
||||
|
||||
#ifndef ARM_MATH_BIG_ENDIAN
|
||||
|
||||
*__SIMD32(pDst)++ =
|
||||
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
|
||||
|
||||
*__SIMD32(pDst)++ =
|
||||
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
|
||||
|
||||
#else
|
||||
|
||||
*__SIMD32(pDst)++ =
|
||||
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
|
||||
|
||||
*__SIMD32(pDst)++ =
|
||||
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
|
||||
|
||||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
||||
|
||||
/* Advance the state pointer by 4 to process the next group of 4 samples */
|
||||
pState = pState + 4;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 0x4u;
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy two samples into state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set the accumulator to zero */
|
||||
acc0 = 0;
|
||||
|
||||
/* Use SIMD to hold states and coefficients */
|
||||
px = pState;
|
||||
pb = pCoeffs;
|
||||
|
||||
tapCnt = numTaps >> 1u;
|
||||
|
||||
do
|
||||
{
|
||||
acc0 += (q31_t) * px++ * *pb++;
|
||||
acc0 += (q31_t) * px++ * *pb++;
|
||||
tapCnt--;
|
||||
}
|
||||
while(tapCnt > 0u);
|
||||
|
||||
/* The result is in 2.30 format. Convert to 1.15 with saturation.
|
||||
** Then store the output in the destination buffer. */
|
||||
*pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
|
||||
|
||||
/* Advance state pointer by 1 for the next sample */
|
||||
pState = pState + 1u;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* Processing is complete.
|
||||
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
|
||||
** This prepares the state buffer for the next function call. */
|
||||
|
||||
/* Points to the start of the state buffer */
|
||||
pStateCurnt = S->pState;
|
||||
|
||||
/* Calculation of count for copying integer writes */
|
||||
tapCnt = (numTaps - 1u) >> 2;
|
||||
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
tapCnt--;
|
||||
|
||||
}
|
||||
|
||||
/* Calculation of count for remaining q15_t data */
|
||||
tapCnt = (numTaps - 1u) % 0x4u;
|
||||
|
||||
/* copy remaining data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
||||
|
||||
#else /* ARM_MATH_CM0_FAMILY */
|
||||
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
void arm_fir_q15(
|
||||
const arm_fir_instance_q15 * S,
|
||||
q15_t * pSrc,
|
||||
q15_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
q15_t *pState = S->pState; /* State pointer */
|
||||
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
||||
q15_t *pStateCurnt; /* Points to the current sample of the state */
|
||||
|
||||
|
||||
|
||||
q15_t *px; /* Temporary pointer for state buffer */
|
||||
q15_t *pb; /* Temporary pointer for coefficient buffer */
|
||||
q63_t acc; /* Accumulator */
|
||||
uint32_t numTaps = S->numTaps; /* Number of nTaps in the filter */
|
||||
uint32_t tapCnt, blkCnt; /* Loop counters */
|
||||
|
||||
/* S->pState buffer contains previous frame (numTaps - 1) samples */
|
||||
/* pStateCurnt points to the location where the new input data should be written */
|
||||
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
||||
|
||||
/* Initialize blkCnt with blockSize */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy one sample at a time into state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set the accumulator to zero */
|
||||
acc = 0;
|
||||
|
||||
/* Initialize state pointer */
|
||||
px = pState;
|
||||
|
||||
/* Initialize Coefficient pointer */
|
||||
pb = pCoeffs;
|
||||
|
||||
tapCnt = numTaps;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
do
|
||||
{
|
||||
/* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
|
||||
acc += (q31_t) * px++ * *pb++;
|
||||
tapCnt--;
|
||||
} while(tapCnt > 0u);
|
||||
|
||||
/* The result is in 2.30 format. Convert to 1.15
|
||||
** Then store the output in the destination buffer. */
|
||||
*pDst++ = (q15_t) __SSAT((acc >> 15u), 16);
|
||||
|
||||
/* Advance state pointer by 1 for the next sample */
|
||||
pState = pState + 1;
|
||||
|
||||
/* Decrement the samples loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* Processing is complete.
|
||||
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
|
||||
** This prepares the state buffer for the next function call. */
|
||||
|
||||
/* Points to the start of the state buffer */
|
||||
pStateCurnt = S->pState;
|
||||
|
||||
/* Copy numTaps number of values */
|
||||
tapCnt = (numTaps - 1u);
|
||||
|
||||
/* copy data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @} end of FIR group
|
||||
*/
|
@ -0,0 +1,365 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 19. March 2015
|
||||
* $Revision: V.1.4.5
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_fir_q31.c
|
||||
*
|
||||
* Description: Q31 FIR filter processing function.
|
||||
*
|
||||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* - Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* - Neither the name of ARM LIMITED nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FIR
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @param[in] *S points to an instance of the Q31 FIR filter structure.
|
||||
* @param[in] *pSrc points to the block of input data.
|
||||
* @param[out] *pDst points to the block of output data.
|
||||
* @param[in] blockSize number of samples to process per call.
|
||||
* @return none.
|
||||
*
|
||||
* @details
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function is implemented using an internal 64-bit accumulator.
|
||||
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
|
||||
* Thus, if the accumulator result overflows it wraps around rather than clip.
|
||||
* In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.
|
||||
* After all multiply-accumulates are performed, the 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
|
||||
*
|
||||
* \par
|
||||
* Refer to the function <code>arm_fir_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
|
||||
*/
|
||||
|
||||
void arm_fir_q31(
|
||||
const arm_fir_instance_q31 * S,
|
||||
q31_t * pSrc,
|
||||
q31_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
q31_t *pState = S->pState; /* State pointer */
|
||||
q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
||||
q31_t *pStateCurnt; /* Points to the current sample of the state */
|
||||
|
||||
|
||||
#ifndef ARM_MATH_CM0_FAMILY
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
q31_t x0, x1, x2; /* Temporary variables to hold state */
|
||||
q31_t c0; /* Temporary variable to hold coefficient value */
|
||||
q31_t *px; /* Temporary pointer for state */
|
||||
q31_t *pb; /* Temporary pointer for coefficient buffer */
|
||||
q63_t acc0, acc1, acc2; /* Accumulators */
|
||||
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
|
||||
uint32_t i, tapCnt, blkCnt, tapCntN3; /* Loop counters */
|
||||
|
||||
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
||||
/* pStateCurnt points to the location where the new input data should be written */
|
||||
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
||||
|
||||
/* Apply loop unrolling and compute 4 output values simultaneously.
|
||||
* The variables acc0 ... acc3 hold output values that are being computed:
|
||||
*
|
||||
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
|
||||
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
|
||||
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
|
||||
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
|
||||
*/
|
||||
blkCnt = blockSize / 3;
|
||||
blockSize = blockSize - (3 * blkCnt);
|
||||
|
||||
tapCnt = numTaps / 3;
|
||||
tapCntN3 = numTaps - (3 * tapCnt);
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy three new input samples into the state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set all accumulators to zero */
|
||||
acc0 = 0;
|
||||
acc1 = 0;
|
||||
acc2 = 0;
|
||||
|
||||
/* Initialize state pointer */
|
||||
px = pState;
|
||||
|
||||
/* Initialize coefficient pointer */
|
||||
pb = pCoeffs;
|
||||
|
||||
/* Read the first two samples from the state buffer:
|
||||
* x[n-numTaps], x[n-numTaps-1] */
|
||||
x0 = *(px++);
|
||||
x1 = *(px++);
|
||||
|
||||
/* Loop unrolling. Process 3 taps at a time. */
|
||||
i = tapCnt;
|
||||
|
||||
while(i > 0u)
|
||||
{
|
||||
/* Read the b[numTaps] coefficient */
|
||||
c0 = *pb;
|
||||
|
||||
/* Read x[n-numTaps-2] sample */
|
||||
x2 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += ((q63_t) x0 * c0);
|
||||
acc1 += ((q63_t) x1 * c0);
|
||||
acc2 += ((q63_t) x2 * c0);
|
||||
|
||||
/* Read the coefficient and state */
|
||||
c0 = *(pb + 1u);
|
||||
x0 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += ((q63_t) x1 * c0);
|
||||
acc1 += ((q63_t) x2 * c0);
|
||||
acc2 += ((q63_t) x0 * c0);
|
||||
|
||||
/* Read the coefficient and state */
|
||||
c0 = *(pb + 2u);
|
||||
x1 = *(px++);
|
||||
|
||||
/* update coefficient pointer */
|
||||
pb += 3u;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += ((q63_t) x2 * c0);
|
||||
acc1 += ((q63_t) x0 * c0);
|
||||
acc2 += ((q63_t) x1 * c0);
|
||||
|
||||
/* Decrement the loop counter */
|
||||
i--;
|
||||
}
|
||||
|
||||
/* If the filter length is not a multiple of 3, compute the remaining filter taps */
|
||||
|
||||
i = tapCntN3;
|
||||
|
||||
while(i > 0u)
|
||||
{
|
||||
/* Read coefficients */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Fetch 1 state variable */
|
||||
x2 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += ((q63_t) x0 * c0);
|
||||
acc1 += ((q63_t) x1 * c0);
|
||||
acc2 += ((q63_t) x2 * c0);
|
||||
|
||||
/* Reuse the present sample states for next sample */
|
||||
x0 = x1;
|
||||
x1 = x2;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
i--;
|
||||
}
|
||||
|
||||
/* Advance the state pointer by 3 to process the next group of 3 samples */
|
||||
pState = pState + 3;
|
||||
|
||||
/* The results in the 3 accumulators are in 2.30 format. Convert to 1.31
|
||||
** Then store the 3 outputs in the destination buffer. */
|
||||
*pDst++ = (q31_t) (acc0 >> 31u);
|
||||
*pDst++ = (q31_t) (acc1 >> 31u);
|
||||
*pDst++ = (q31_t) (acc2 >> 31u);
|
||||
|
||||
/* Decrement the samples loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* If the blockSize is not a multiple of 3, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
|
||||
while(blockSize > 0u)
|
||||
{
|
||||
/* Copy one sample at a time into state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set the accumulator to zero */
|
||||
acc0 = 0;
|
||||
|
||||
/* Initialize state pointer */
|
||||
px = pState;
|
||||
|
||||
/* Initialize Coefficient pointer */
|
||||
pb = (pCoeffs);
|
||||
|
||||
i = numTaps;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
do
|
||||
{
|
||||
acc0 += (q63_t) * (px++) * (*(pb++));
|
||||
i--;
|
||||
} while(i > 0u);
|
||||
|
||||
/* The result is in 2.62 format. Convert to 1.31
|
||||
** Then store the output in the destination buffer. */
|
||||
*pDst++ = (q31_t) (acc0 >> 31u);
|
||||
|
||||
/* Advance state pointer by 1 for the next sample */
|
||||
pState = pState + 1;
|
||||
|
||||
/* Decrement the samples loop counter */
|
||||
blockSize--;
|
||||
}
|
||||
|
||||
/* Processing is complete.
|
||||
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
|
||||
** This prepares the state buffer for the next function call. */
|
||||
|
||||
/* Points to the start of the state buffer */
|
||||
pStateCurnt = S->pState;
|
||||
|
||||
tapCnt = (numTaps - 1u) >> 2u;
|
||||
|
||||
/* copy data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
/* Calculate remaining number of copies */
|
||||
tapCnt = (numTaps - 1u) % 0x4u;
|
||||
|
||||
/* Copy the remaining q31_t data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
q31_t *px; /* Temporary pointer for state */
|
||||
q31_t *pb; /* Temporary pointer for coefficient buffer */
|
||||
q63_t acc; /* Accumulator */
|
||||
uint32_t numTaps = S->numTaps; /* Length of the filter */
|
||||
uint32_t i, tapCnt, blkCnt; /* Loop counters */
|
||||
|
||||
/* S->pState buffer contains previous frame (numTaps - 1) samples */
|
||||
/* pStateCurnt points to the location where the new input data should be written */
|
||||
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
||||
|
||||
/* Initialize blkCnt with blockSize */
|
||||
blkCnt = blockSize;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy one sample at a time into state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set the accumulator to zero */
|
||||
acc = 0;
|
||||
|
||||
/* Initialize state pointer */
|
||||
px = pState;
|
||||
|
||||
/* Initialize Coefficient pointer */
|
||||
pb = pCoeffs;
|
||||
|
||||
i = numTaps;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
do
|
||||
{
|
||||
/* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
|
||||
acc += (q63_t) * px++ * *pb++;
|
||||
i--;
|
||||
} while(i > 0u);
|
||||
|
||||
/* The result is in 2.62 format. Convert to 1.31
|
||||
** Then store the output in the destination buffer. */
|
||||
*pDst++ = (q31_t) (acc >> 31u);
|
||||
|
||||
/* Advance state pointer by 1 for the next sample */
|
||||
pState = pState + 1;
|
||||
|
||||
/* Decrement the samples loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* Processing is complete.
|
||||
** Now copy the last numTaps - 1 samples to the starting of the state buffer.
|
||||
** This prepares the state buffer for the next function call. */
|
||||
|
||||
/* Points to the start of the state buffer */
|
||||
pStateCurnt = S->pState;
|
||||
|
||||
/* Copy numTaps number of values */
|
||||
tapCnt = numTaps - 1u;
|
||||
|
||||
/* Copy the data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
|
||||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FIR group
|
||||
*/
|
@ -0,0 +1,397 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
||||
*
|
||||
* $Date: 19. March 2015
|
||||
* $Revision: V.1.4.5
|
||||
*
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_fir_q7.c
|
||||
*
|
||||
* Description: Q7 FIR filter processing function.
|
||||
*
|
||||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* - Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* - Neither the name of ARM LIMITED nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this
|
||||
* software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
* -------------------------------------------------------------------- */
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
/**
|
||||
* @ingroup groupFilters
|
||||
*/
|
||||
|
||||
/**
|
||||
* @addtogroup FIR
|
||||
* @{
|
||||
*/
|
||||
|
||||
/**
|
||||
* @param[in] *S points to an instance of the Q7 FIR filter structure.
|
||||
* @param[in] *pSrc points to the block of input data.
|
||||
* @param[out] *pDst points to the block of output data.
|
||||
* @param[in] blockSize number of samples to process per call.
|
||||
* @return none.
|
||||
*
|
||||
* <b>Scaling and Overflow Behavior:</b>
|
||||
* \par
|
||||
* The function is implemented using a 32-bit internal accumulator.
|
||||
* Both coefficients and state variables are represented in 1.7 format and multiplications yield a 2.14 result.
|
||||
* The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.
|
||||
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
|
||||
* The accumulator is converted to 18.7 format by discarding the low 7 bits.
|
||||
* Finally, the result is truncated to 1.7 format.
|
||||
*/
|
||||
|
||||
void arm_fir_q7(
|
||||
const arm_fir_instance_q7 * S,
|
||||
q7_t * pSrc,
|
||||
q7_t * pDst,
|
||||
uint32_t blockSize)
|
||||
{
|
||||
|
||||
#ifndef ARM_MATH_CM0_FAMILY
|
||||
|
||||
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
||||
|
||||
q7_t *pState = S->pState; /* State pointer */
|
||||
q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
||||
q7_t *pStateCurnt; /* Points to the current sample of the state */
|
||||
q7_t x0, x1, x2, x3; /* Temporary variables to hold state */
|
||||
q7_t c0; /* Temporary variable to hold coefficient value */
|
||||
q7_t *px; /* Temporary pointer for state */
|
||||
q7_t *pb; /* Temporary pointer for coefficient buffer */
|
||||
q31_t acc0, acc1, acc2, acc3; /* Accumulators */
|
||||
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
|
||||
uint32_t i, tapCnt, blkCnt; /* Loop counters */
|
||||
|
||||
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
||||
/* pStateCurnt points to the location where the new input data should be written */
|
||||
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
||||
|
||||
/* Apply loop unrolling and compute 4 output values simultaneously.
|
||||
* The variables acc0 ... acc3 hold output values that are being computed:
|
||||
*
|
||||
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
|
||||
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
|
||||
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
|
||||
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
|
||||
*/
|
||||
blkCnt = blockSize >> 2;
|
||||
|
||||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
||||
** a second loop below computes the remaining 1 to 3 samples. */
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy four new input samples into the state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set all accumulators to zero */
|
||||
acc0 = 0;
|
||||
acc1 = 0;
|
||||
acc2 = 0;
|
||||
acc3 = 0;
|
||||
|
||||
/* Initialize state pointer */
|
||||
px = pState;
|
||||
|
||||
/* Initialize coefficient pointer */
|
||||
pb = pCoeffs;
|
||||
|
||||
/* Read the first three samples from the state buffer:
|
||||
* x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
|
||||
x0 = *(px++);
|
||||
x1 = *(px++);
|
||||
x2 = *(px++);
|
||||
|
||||
/* Loop unrolling. Process 4 taps at a time. */
|
||||
tapCnt = numTaps >> 2;
|
||||
i = tapCnt;
|
||||
|
||||
while(i > 0u)
|
||||
{
|
||||
/* Read the b[numTaps] coefficient */
|
||||
c0 = *pb;
|
||||
|
||||
/* Read x[n-numTaps-3] sample */
|
||||
x3 = *px;
|
||||
|
||||
/* acc0 += b[numTaps] * x[n-numTaps] */
|
||||
acc0 += ((q15_t) x0 * c0);
|
||||
|
||||
/* acc1 += b[numTaps] * x[n-numTaps-1] */
|
||||
acc1 += ((q15_t) x1 * c0);
|
||||
|
||||
/* acc2 += b[numTaps] * x[n-numTaps-2] */
|
||||
acc2 += ((q15_t) x2 * c0);
|
||||
|
||||
/* acc3 += b[numTaps] * x[n-numTaps-3] */
|
||||
acc3 += ((q15_t) x3 * c0);
|
||||
|
||||
/* Read the b[numTaps-1] coefficient */
|
||||
c0 = *(pb + 1u);
|
||||
|
||||
/* Read x[n-numTaps-4] sample */
|
||||
x0 = *(px + 1u);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += ((q15_t) x1 * c0);
|
||||
acc1 += ((q15_t) x2 * c0);
|
||||
acc2 += ((q15_t) x3 * c0);
|
||||
acc3 += ((q15_t) x0 * c0);
|
||||
|
||||
/* Read the b[numTaps-2] coefficient */
|
||||
c0 = *(pb + 2u);
|
||||
|
||||
/* Read x[n-numTaps-5] sample */
|
||||
x1 = *(px + 2u);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += ((q15_t) x2 * c0);
|
||||
acc1 += ((q15_t) x3 * c0);
|
||||
acc2 += ((q15_t) x0 * c0);
|
||||
acc3 += ((q15_t) x1 * c0);
|
||||
|
||||
/* Read the b[numTaps-3] coefficients */
|
||||
c0 = *(pb + 3u);
|
||||
|
||||
/* Read x[n-numTaps-6] sample */
|
||||
x2 = *(px + 3u);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += ((q15_t) x3 * c0);
|
||||
acc1 += ((q15_t) x0 * c0);
|
||||
acc2 += ((q15_t) x1 * c0);
|
||||
acc3 += ((q15_t) x2 * c0);
|
||||
|
||||
/* update coefficient pointer */
|
||||
pb += 4u;
|
||||
px += 4u;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
i--;
|
||||
}
|
||||
|
||||
/* If the filter length is not a multiple of 4, compute the remaining filter taps */
|
||||
|
||||
i = numTaps - (tapCnt * 4u);
|
||||
while(i > 0u)
|
||||
{
|
||||
/* Read coefficients */
|
||||
c0 = *(pb++);
|
||||
|
||||
/* Fetch 1 state variable */
|
||||
x3 = *(px++);
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
acc0 += ((q15_t) x0 * c0);
|
||||
acc1 += ((q15_t) x1 * c0);
|
||||
acc2 += ((q15_t) x2 * c0);
|
||||
acc3 += ((q15_t) x3 * c0);
|
||||
|
||||
/* Reuse the present sample states for next sample */
|
||||
x0 = x1;
|
||||
x1 = x2;
|
||||
x2 = x3;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
i--;
|
||||
}
|
||||
|
||||
/* Advance the state pointer by 4 to process the next group of 4 samples */
|
||||
pState = pState + 4;
|
||||
|
||||
/* The results in the 4 accumulators are in 2.62 format. Convert to 1.31
|
||||
** Then store the 4 outputs in the destination buffer. */
|
||||
acc0 = __SSAT((acc0 >> 7u), 8);
|
||||
*pDst++ = acc0;
|
||||
acc1 = __SSAT((acc1 >> 7u), 8);
|
||||
*pDst++ = acc1;
|
||||
acc2 = __SSAT((acc2 >> 7u), 8);
|
||||
*pDst++ = acc2;
|
||||
acc3 = __SSAT((acc3 >> 7u), 8);
|
||||
*pDst++ = acc3;
|
||||
|
||||
/* Decrement the samples loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
|
||||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
||||
** No loop unrolling is used. */
|
||||
blkCnt = blockSize % 4u;
|
||||
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy one sample at a time into state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set the accumulator to zero */
|
||||
acc0 = 0;
|
||||
|
||||
/* Initialize state pointer */
|
||||
px = pState;
|
||||
|
||||
/* Initialize Coefficient pointer */
|
||||
pb = (pCoeffs);
|
||||
|
||||
i = numTaps;
|
||||
|
||||
/* Perform the multiply-accumulates */
|
||||
do
|
||||
{
|
||||
acc0 += (q15_t) * (px++) * (*(pb++));
|
||||
i--;
|
||||
} while(i > 0u);
|
||||
|
||||
/* The result is in 2.14 format. Convert to 1.7
|
||||
** Then store the output in the destination buffer. */
|
||||
*pDst++ = __SSAT((acc0 >> 7u), 8);
|
||||
|
||||
/* Advance state pointer by 1 for the next sample */
|
||||
pState = pState + 1;
|
||||
|
||||
/* Decrement the samples loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* Processing is complete.
|
||||
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
|
||||
** This prepares the state buffer for the next function call. */
|
||||
|
||||
/* Points to the start of the state buffer */
|
||||
pStateCurnt = S->pState;
|
||||
|
||||
tapCnt = (numTaps - 1u) >> 2u;
|
||||
|
||||
/* copy data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
/* Calculate remaining number of copies */
|
||||
tapCnt = (numTaps - 1u) % 0x4u;
|
||||
|
||||
/* Copy the remaining q31_t data */
|
||||
while(tapCnt > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
tapCnt--;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
/* Run the below code for Cortex-M0 */
|
||||
|
||||
uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
|
||||
uint32_t i, blkCnt; /* Loop counters */
|
||||
q7_t *pState = S->pState; /* State pointer */
|
||||
q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
||||
q7_t *px, *pb; /* Temporary pointers to state and coeff */
|
||||
q31_t acc = 0; /* Accumlator */
|
||||
q7_t *pStateCurnt; /* Points to the current sample of the state */
|
||||
|
||||
|
||||
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
||||
/* pStateCurnt points to the location where the new input data should be written */
|
||||
pStateCurnt = S->pState + (numTaps - 1u);
|
||||
|
||||
/* Initialize blkCnt with blockSize */
|
||||
blkCnt = blockSize;
|
||||
|
||||
/* Perform filtering upto BlockSize - BlockSize%4 */
|
||||
while(blkCnt > 0u)
|
||||
{
|
||||
/* Copy one sample at a time into state buffer */
|
||||
*pStateCurnt++ = *pSrc++;
|
||||
|
||||
/* Set accumulator to zero */
|
||||
acc = 0;
|
||||
|
||||
/* Initialize state pointer of type q7 */
|
||||
px = pState;
|
||||
|
||||
/* Initialize coeff pointer of type q7 */
|
||||
pb = pCoeffs;
|
||||
|
||||
|
||||
i = numTaps;
|
||||
|
||||
while(i > 0u)
|
||||
{
|
||||
/* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
|
||||
acc += (q15_t) * px++ * *pb++;
|
||||
i--;
|
||||
}
|
||||
|
||||
/* Store the 1.7 format filter output in destination buffer */
|
||||
*pDst++ = (q7_t) __SSAT((acc >> 7), 8);
|
||||
|
||||
/* Advance the state pointer by 1 to process the next sample */
|
||||
pState = pState + 1;
|
||||
|
||||
/* Decrement the loop counter */
|
||||
blkCnt--;
|
||||
}
|
||||
|
||||
/* Processing is complete.
|
||||
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
|
||||
** This prepares the state buffer for the next function call. */
|
||||
|
||||
|
||||
/* Points to the start of the state buffer */
|
||||
pStateCurnt = S->pState;
|
||||
|
||||
|
||||
/* Copy numTaps number of values */
|
||||
i = (numTaps - 1u);
|
||||
|
||||
/* Copy q7_t data */
|
||||
while(i > 0u)
|
||||
{
|
||||
*pStateCurnt++ = *pState++;
|
||||
i--;
|
||||
}
|
||||
|
||||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of FIR group
|
||||
*/
|
Loading…
Reference in New Issue