You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

425 lines
15 KiB
C++

/**
* @file main.cpp
* @brief Program entry point.
*
* Copyright (C) 2020 Clyne Sullivan
*
* Distributed under the GNU GPL v3 or later. You should have received a copy of
* the GNU General Public License along with this program.
* If not, see <https://www.gnu.org/licenses/>.
*/
#include "ch.h"
#include "hal.h"
#include "adc.hpp"
#include "dac.hpp"
#include "elf_load.hpp"
#include "usbserial.hpp"
#include <array>
constexpr unsigned int MAX_ELF_FILE_SIZE = 8 * 1024;
constexpr unsigned int MAX_ERROR_QUEUE_SIZE = 8;
constexpr unsigned int MAX_SAMPLE_BUFFER_SIZE = 6000; // operate on buffers size this / 2
constexpr unsigned int MAX_SIGGEN_BUFFER_SIZE = MAX_SAMPLE_BUFFER_SIZE / 2;
enum class RunStatus : char
{
Idle = '1',
Running
};
enum class Error : char
{
None = 0,
BadParam,
BadParamSize,
BadUserCodeLoad,
BadUserCodeSize,
NotIdle,
ConversionAborted
};
static RunStatus run_status = RunStatus::Idle;
static Error error_queue[MAX_ERROR_QUEUE_SIZE];
static unsigned int error_queue_index = 0;
static void error_queue_add(Error error)
{
if (error_queue_index < MAX_ERROR_QUEUE_SIZE)
error_queue[error_queue_index++] = error;
}
static Error error_queue_pop()
{
return error_queue_index == 0 ? Error::None : error_queue[--error_queue_index];
}
#define MSG_CONVFIRST (1)
#define MSG_CONVSECOND (2)
#define MSG_CONVFIRST_MEASURE (3)
#define MSG_CONVSECOND_MEASURE (4)
static msg_t conversionMBBuffer[4];
static MAILBOX_DECL(conversionMB, conversionMBBuffer, 4);
static THD_WORKING_AREA(conversionThreadWA, 2048);
static THD_FUNCTION(conversionThread, arg);
static time_measurement_t conversion_time_measurement;
static_assert(sizeof(adcsample_t) == sizeof(uint16_t));
static_assert(sizeof(dacsample_t) == sizeof(uint16_t));
#if CACHE_LINE_SIZE > 0
CC_ALIGN(CACHE_LINE_SIZE)
#endif
static std::array<adcsample_t, CACHE_SIZE_ALIGN(adcsample_t, MAX_SAMPLE_BUFFER_SIZE)> adc_samples;
#if CACHE_LINE_SIZE > 0
CC_ALIGN(CACHE_LINE_SIZE)
#endif
static std::array<dacsample_t, CACHE_SIZE_ALIGN(dacsample_t, MAX_SAMPLE_BUFFER_SIZE)> dac_samples;
static volatile const dacsample_t *dac_samples_new = nullptr;
#if CACHE_LINE_SIZE > 0
CC_ALIGN(CACHE_LINE_SIZE)
#endif
static std::array<dacsample_t, CACHE_SIZE_ALIGN(dacsample_t, MAX_SIGGEN_BUFFER_SIZE)> dac2_samples;
static unsigned char elf_file_store[MAX_ELF_FILE_SIZE];
static ELF::Entry elf_entry = nullptr;
static void signal_operate(adcsample_t *buffer, size_t count);
static void signal_operate_measure(adcsample_t *buffer, size_t count);
static void main_loop();
int main()
{
// Initialize the RTOS
halInit();
chSysInit();
// Enable FPU
SCB->CPACR |= 0xF << 20;
// Prepare LED
palSetPadMode(GPIOA, 5, PAL_MODE_OUTPUT_PUSHPULL);
palClearPad(GPIOA, 5);
ADC::begin();
DAC::begin();
USBSerial::begin();
// Start the conversion manager thread
chTMObjectInit(&conversion_time_measurement);
chThdCreateStatic(conversionThreadWA, sizeof(conversionThreadWA),
NORMALPRIO,
conversionThread, nullptr);
main_loop();
}
static unsigned int dac_sample_count = MAX_SAMPLE_BUFFER_SIZE;
static unsigned int dac2_sample_count = MAX_SIGGEN_BUFFER_SIZE;
static unsigned int adc_sample_count = MAX_SAMPLE_BUFFER_SIZE;
void main_loop()
{
while (1) {
if (USBSerial::isActive()) {
// Attempt to receive a command packet
if (unsigned char cmd[3]; USBSerial::read(&cmd[0], 1) > 0) {
// Packet received, first byte represents the desired command/action
switch (cmd[0]) {
case 'a':
USBSerial::write((uint8_t *)adc_samples.data(),
adc_sample_count * sizeof(adcsample_t));
break;
case 'A':
USBSerial::read((uint8_t *)&adc_samples[0],
adc_sample_count * sizeof(adcsample_t));
break;
case 'B':
if (run_status == RunStatus::Idle) {
if (USBSerial::read(&cmd[1], 2) == 2) {
unsigned int count = cmd[1] | (cmd[2] << 8);
if (count <= MAX_SAMPLE_BUFFER_SIZE / 2) {
adc_sample_count = count * 2;
dac_sample_count = count * 2;
} else {
error_queue_add(Error::BadParam);
}
} else {
error_queue_add(Error::BadParamSize);
}
} else {
error_queue_add(Error::NotIdle);
}
break;
case 'd':
USBSerial::write((uint8_t *)dac_samples.data(),
dac_sample_count * sizeof(dacsample_t));
break;
case 'D':
if (USBSerial::read(&cmd[1], 2) == 2) {
unsigned int count = cmd[1] | (cmd[2] << 8);
if (count <= MAX_SIGGEN_BUFFER_SIZE) {
dac2_sample_count = count;
USBSerial::read((uint8_t *)&dac2_samples[0],
dac2_sample_count * sizeof(dacsample_t));
} else {
error_queue_add(Error::BadParam);
}
} else {
error_queue_add(Error::BadParamSize);
}
break;
// 'E' - Reads in and loads the compiled conversion code binary from USB.
case 'E':
if (run_status == RunStatus::Idle) {
if (USBSerial::read(&cmd[1], 2) == 2) {
// Only load the binary if it can fit in the memory reserved for it.
unsigned int size = cmd[1] | (cmd[2] << 8);
if (size < sizeof(elf_file_store)) {
USBSerial::read(elf_file_store, size);
elf_entry = ELF::load(elf_file_store);
if (elf_entry == nullptr)
error_queue_add(Error::BadUserCodeLoad);
} else {
error_queue_add(Error::BadUserCodeSize);
}
} else {
error_queue_add(Error::BadParamSize);
}
} else {
error_queue_add(Error::NotIdle);
}
break;
// 'e' - Unloads the currently loaded conversion code
case 'e':
elf_entry = nullptr;
break;
// 'i' - Sends an identifying string to confirm that this is the stmdsp device.
case 'i':
USBSerial::write((uint8_t *)"stmdsp", 6);
break;
// 'I' - Sends the current run status.
case 'I':
{
unsigned char buf[2] = {
static_cast<unsigned char>(run_status),
static_cast<unsigned char>(error_queue_pop())
};
USBSerial::write(buf, sizeof(buf));
}
break;
// 'M' - Begins continuous sampling, but measures the execution time of the first
// sample processing. This duration can be later read through 'm'.
case 'M':
if (run_status == RunStatus::Idle) {
run_status = RunStatus::Running;
dac_samples.fill(0);
ADC::start(&adc_samples[0], adc_sample_count, signal_operate_measure);
DAC::start(0, &dac_samples[0], dac_sample_count);
} else {
error_queue_add(Error::NotIdle);
}
break;
// 'm' - Returns the last measured sample processing time, presumably in processor
// ticks.
case 'm':
USBSerial::write((uint8_t *)&conversion_time_measurement.last, sizeof(rtcnt_t));
break;
// 'R' - Begin continuous sampling/conversion of the ADC. Samples will go through
// the conversion code, and will be sent out over the DAC.
case 'R':
if (run_status == RunStatus::Idle) {
run_status = RunStatus::Running;
dac_samples.fill(0);
ADC::start(&adc_samples[0], adc_sample_count, signal_operate);
DAC::start(0, &dac_samples[0], dac_sample_count);
} else {
error_queue_add(Error::NotIdle);
}
break;
case 'r':
if (USBSerial::read(&cmd[1], 1) == 1) {
if (cmd[1] == 0xFF) {
unsigned char r = static_cast<unsigned char>(ADC::getRate());
USBSerial::write(&r, 1);
} else {
ADC::setRate(static_cast<ADC::Rate>(cmd[1]));
}
} else {
error_queue_add(Error::BadParamSize);
}
break;
// 'S' - Stops the continuous sampling/conversion.
case 'S':
if (run_status == RunStatus::Running) {
DAC::stop(0);
ADC::stop();
run_status = RunStatus::Idle;
}
break;
case 's':
if (dac_samples_new != nullptr) {
auto samps = reinterpret_cast<const uint8_t *>(
const_cast<const dacsample_t *>(dac_samples_new));
dac_samples_new = nullptr;
unsigned char buf[2] = {
static_cast<unsigned char>(dac_sample_count / 2 & 0xFF),
static_cast<unsigned char>(((dac_sample_count / 2) >> 8) & 0xFF)
};
USBSerial::write(buf, 2);
unsigned int total = dac_sample_count / 2 * sizeof(dacsample_t);
unsigned int offset = 0;
unsigned char unused;
while (total > 512) {
USBSerial::write(samps + offset, 512);
while (USBSerial::read(&unused, 1) == 0);
offset += 512;
total -= 512;
}
USBSerial::write(samps + offset, total);
while (USBSerial::read(&unused, 1) == 0);
} else {
USBSerial::write((uint8_t *)"\0\0", 2);
}
break;
case 'W':
DAC::start(1, &dac2_samples[0], dac2_sample_count);
break;
case 'w':
DAC::stop(1);
break;
default:
break;
}
}
}
chThdSleepMicroseconds(100);
}
}
void conversion_abort()
{
elf_entry = nullptr;
DAC::stop(0);
ADC::stop();
error_queue_add(Error::ConversionAborted);
}
THD_FUNCTION(conversionThread, arg)
{
(void)arg;
while (1) {
msg_t message;
if (chMBFetchTimeout(&conversionMB, &message, TIME_INFINITE) == MSG_OK) {
adcsample_t *samples = nullptr;
auto halfsize = adc_sample_count / 2;
if (message == MSG_CONVFIRST) {
if (elf_entry)
samples = elf_entry(&adc_samples[0], halfsize);
if (!samples)
samples = &adc_samples[0];
std::copy(samples, samples + halfsize, &dac_samples[0]);
dac_samples_new = &dac_samples[0];
} else if (message == MSG_CONVSECOND) {
if (elf_entry)
samples = elf_entry(&adc_samples[halfsize], halfsize);
if (!samples)
samples = &adc_samples[halfsize];
std::copy(samples, samples + halfsize, &dac_samples[dac_sample_count / 2]);
dac_samples_new = &dac_samples[dac_sample_count / 2];
} else if (message == MSG_CONVFIRST_MEASURE) {
chTMStartMeasurementX(&conversion_time_measurement);
if (elf_entry)
samples = elf_entry(&adc_samples[0], halfsize);
chTMStopMeasurementX(&conversion_time_measurement);
if (!samples)
samples = &adc_samples[0];
std::copy(samples, samples + halfsize, &dac_samples[0]);
dac_samples_new = &dac_samples[0];
} else if (message == MSG_CONVSECOND_MEASURE) {
chTMStartMeasurementX(&conversion_time_measurement);
if (elf_entry)
samples = elf_entry(&adc_samples[halfsize], halfsize);
chTMStopMeasurementX(&conversion_time_measurement);
if (!samples)
samples = &adc_samples[halfsize];
std::copy(samples, samples + halfsize, &dac_samples[dac_sample_count / 2]);
dac_samples_new = &dac_samples[dac_sample_count / 2];
}
}
}
}
void signal_operate(adcsample_t *buffer, [[maybe_unused]] size_t count)
{
if (chMBGetUsedCountI(&conversionMB) > 1)
conversion_abort();
else
chMBPostI(&conversionMB, buffer == &adc_samples[0] ? MSG_CONVFIRST : MSG_CONVSECOND);
}
void signal_operate_measure(adcsample_t *buffer, [[maybe_unused]] size_t count)
{
chMBPostI(&conversionMB, buffer == &adc_samples[0] ? MSG_CONVFIRST_MEASURE : MSG_CONVSECOND_MEASURE);
ADC::setOperation(signal_operate);
}
extern "C" {
__attribute__((naked))
void HardFault_Handler()
{
//asm("push {lr}");
uint32_t *stack;
uint32_t lr;
asm("\
tst lr, #4; \
ite eq; \
mrseq %0, msp; \
mrsne %0, psp; \
mov %1, lr; \
" : "=r" (stack), "=r" (lr));
//stack++;
stack[7] |= (1 << 24); // Keep Thumb mode enabled
conversion_abort();
// TODO test lr and decide how to recover
//if (run_status == RunStatus::Converting) {
stack[6] = stack[5]; // Escape from elf_entry code
//} else /*if (run_status == RunStatus::Recovered)*/ {
// stack[6] = (uint32_t)main_loop & ~1; // Return to safety
//}
//asm("pop {lr}; bx lr");
asm("bx lr");
}
} // extern "C"