You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

317 lines
11 KiB
C++

/**
* @file main.cpp
* @brief Program entry point.
*
* Copyright (C) 2020 Clyne Sullivan
*
* Distributed under the GNU GPL v3 or later. You should have received a copy of
* the GNU General Public License along with this program.
* If not, see <https://www.gnu.org/licenses/>.
*/
#include "ch.h"
#include "hal.h"
#include "adc.hpp"
#include "dac.hpp"
#include "elf_load.hpp"
#include "usbserial.hpp"
#include <array>
constexpr unsigned int MAX_SAMPLE_BUFFER_SIZE = 8000;
enum class RunStatus : char
{
Idle = '1',
Converting,
Recovered
};
static RunStatus run_status = RunStatus::Idle;
#define MSG_CONVFIRST (1)
#define MSG_CONVSECOND (2)
#define MSG_CONVFIRST_MEASURE (3)
#define MSG_CONVSECOND_MEASURE (4)
static msg_t conversionMBBuffer[8];
static MAILBOX_DECL(conversionMB, conversionMBBuffer, 8);
static THD_WORKING_AREA(conversionThreadWA, 1024);
static THD_FUNCTION(conversionThread, arg);
static time_measurement_t conversion_time_measurement;
static_assert(sizeof(adcsample_t) == sizeof(uint16_t));
static_assert(sizeof(dacsample_t) == sizeof(uint16_t));
#if CACHE_LINE_SIZE > 0
CC_ALIGN(CACHE_LINE_SIZE)
#endif
static std::array<adcsample_t, CACHE_SIZE_ALIGN(adcsample_t, MAX_SAMPLE_BUFFER_SIZE)> adc_samples;
#if CACHE_LINE_SIZE > 0
CC_ALIGN(CACHE_LINE_SIZE)
#endif
static std::array<dacsample_t, CACHE_SIZE_ALIGN(dacsample_t, MAX_SAMPLE_BUFFER_SIZE)> dac_samples;
static uint8_t elf_file_store[12288];
static elf::entry_t elf_entry = nullptr;
static void signal_operate(adcsample_t *buffer, size_t count);
static void signal_operate_measure(adcsample_t *buffer, size_t count);
static void main_loop();
int main()
{
// Initialize the RTOS
halInit();
chSysInit();
// Enable FPU
SCB->CPACR |= 0xF << 20;
// Prepare LED
palSetPadMode(GPIOA, 5, PAL_MODE_OUTPUT_PUSHPULL);
palClearPad(GPIOA, 5);
adc::init();
dac::init();
usbserial::init();
// Start the conversion manager thread
chTMObjectInit(&conversion_time_measurement);
chThdCreateStatic(conversionThreadWA, sizeof(conversionThreadWA),
NORMALPRIO,
conversionThread, nullptr);
main_loop();
}
void main_loop()
{
static unsigned int dac_sample_count = MAX_SAMPLE_BUFFER_SIZE;
while (1) {
if (usbserial::is_active()) {
// Attempt to receive a command packet
if (char cmd[3]; usbserial::read(&cmd, 1) > 0) {
// Packet received, first byte represents the desired command/action
switch (cmd[0]) {
// 'r' - Conduct a single sample of the ADC, and send the results back over USB.
case 'r':
// Get the next two bytes of the packet to determine the desired sample size
if (run_status != RunStatus::Idle || usbserial::read(&cmd[1], 2) < 2)
break;
if (unsigned int desiredSize = cmd[1] | (cmd[2] << 8); desiredSize <= adc_samples.size()) {
adc::read(&adc_samples[0], desiredSize);
usbserial::write(adc_samples.data(), desiredSize * sizeof(adcsample_t));
}
break;
// 'R' - Begin continuous sampling/conversion of the ADC. Samples will go through
// the conversion code, and will be sent out over the DAC.
case 'R':
//if (run_status != RunStatus::Idle)
// break;
run_status = RunStatus::Converting;
dac_samples.fill(0);
adc::read_start(signal_operate, &adc_samples[0], adc_samples.size());
dac::write_start(&dac_samples[0], dac_samples.size());
break;
// 'M' - Begins continuous sampling, but measures the execution time of the first
// sample processing. This duration can be later read through 'm'.
case 'M':
run_status = RunStatus::Converting;
dac_samples.fill(0);
adc::read_start(signal_operate_measure, &adc_samples[0], adc_samples.size());
dac::write_start(&dac_samples[0], dac_samples.size());
break;
// 'm' - Returns the last measured sample processing time, presumably in processor
// ticks.
case 'm':
usbserial::write(&conversion_time_measurement.last, sizeof(rtcnt_t));
break;
// 's' - Sends the current contents of the DAC buffer back over USB.
case 's':
usbserial::write(dac_samples.data(), 1/*dac_samples.size()*/ * sizeof(dacsample_t));
break;
// 'S' - Stops the continuous sampling/conversion.
case 'S':
//if (run_status != RunStatus::Converting)
// break;
dac::write_stop();
adc::read_stop();
run_status = RunStatus::Idle;
break;
// 'e' - Reads in and loads the compiled conversion code binary from USB.
case 'e':
// Get the binary's size
if (usbserial::read(&cmd[1], 2) < 2)
break;
// Only load the binary if it can fit in the memory reserved for it.
if (unsigned int binarySize = cmd[1] | (cmd[2] << 8); binarySize < sizeof(elf_file_store)) {
usbserial::read(elf_file_store, binarySize);
elf_entry = elf::load(elf_file_store);
} else {
elf_entry = nullptr;
}
break;
// 'E' - Unloads the currently loaded conversion code
case 'E':
elf_entry = nullptr;
break;
// 'W' - Sets the number of samples for DAC writing with command 'w'.
// If the provided count is zero, DAC writing is stopped.
case 'W':
if (usbserial::read(&cmd[1], 2) < 2)
break;
if (unsigned int sampleCount = cmd[1] | (cmd[2] << 8); sampleCount <= dac_samples.size()) {
if (sampleCount > 0)
dac_sample_count = sampleCount;
else
dac::write_stop();
}
break;
// 'w' - Starts the DAC, looping over the given data (data size set by command 'W').
case 'w':
if (usbserial::read(&dac_samples[0], dac_sample_count * sizeof(dacsample_t) !=
dac_sample_count * sizeof(dacsample_t)))
{
break;
} else {
dac::write_start(&dac_samples[0], dac_sample_count);
}
break;
// 'i' - Sends an identifying string to confirm that this is the stmdsp device.
case 'i':
usbserial::write("stmdsp", 6);
break;
// 'I' - Sends the current run status.
case 'I':
usbserial::write(&run_status, sizeof(run_status));
break;
default:
break;
}
}
}
chThdSleepMilliseconds(1);
}
}
void conversion_abort()
{
elf_entry = nullptr;
dac::write_stop();
adc::read_stop();
run_status = RunStatus::Recovered;
}
THD_FUNCTION(conversionThread, arg)
{
(void)arg;
while (1) {
msg_t message;
if (chMBFetchTimeout(&conversionMB, &message, TIME_INFINITE) == MSG_OK) {
adcsample_t *samples = nullptr;
auto halfsize = adc_samples.size() / 2;
if (message == MSG_CONVFIRST) {
if (elf_entry)
samples = elf_entry(&adc_samples[0], halfsize);
if (!samples)
samples = &adc_samples[0];
std::copy(samples, samples + halfsize, &dac_samples[0]);
} else if (message == MSG_CONVSECOND) {
if (elf_entry)
samples = elf_entry(&adc_samples[halfsize], halfsize);
if (!samples)
samples = &adc_samples[halfsize];
std::copy(samples, samples + halfsize, &dac_samples[dac_samples.size() / 2]);
} else if (message == MSG_CONVFIRST_MEASURE) {
chTMStartMeasurementX(&conversion_time_measurement);
if (elf_entry)
samples = elf_entry(&adc_samples[0], halfsize);
chTMStopMeasurementX(&conversion_time_measurement);
if (!samples)
samples = &adc_samples[0];
std::copy(samples, samples + halfsize, &dac_samples[0]);
} else if (message == MSG_CONVSECOND_MEASURE) {
chTMStartMeasurementX(&conversion_time_measurement);
if (elf_entry)
samples = elf_entry(&adc_samples[halfsize], halfsize);
chTMStopMeasurementX(&conversion_time_measurement);
if (!samples)
samples = &adc_samples[halfsize];
std::copy(samples, samples + halfsize, &dac_samples[dac_samples.size() / 2]);
}
}
}
}
void signal_operate(adcsample_t *buffer, [[maybe_unused]] size_t count)
{
if (chMBGetUsedCountI(&conversionMB) > 1)
conversion_abort();
else
chMBPostI(&conversionMB, buffer == &adc_samples[0] ? MSG_CONVFIRST : MSG_CONVSECOND);
}
void signal_operate_measure(adcsample_t *buffer, [[maybe_unused]] size_t count)
{
chMBPostI(&conversionMB, buffer == &adc_samples[0] ? MSG_CONVFIRST_MEASURE : MSG_CONVSECOND_MEASURE);
adc::read_set_operation_func(signal_operate);
}
extern "C" {
__attribute__((naked))
void HardFault_Handler()
{
//asm("push {lr}");
uint32_t *stack;
uint32_t lr;
asm("\
tst lr, #4; \
ite eq; \
mrseq %0, msp; \
mrsne %0, psp; \
mov %1, lr; \
" : "=r" (stack), "=r" (lr));
//stack++;
stack[7] |= (1 << 24); // Keep Thumb mode enabled
conversion_abort();
// TODO test lr and decide how to recover
//if (run_status == RunStatus::Converting) {
stack[6] = stack[5]; // Escape from elf_entry code
//} else /*if (run_status == RunStatus::Recovered)*/ {
// stack[6] = (uint32_t)main_loop & ~1; // Return to safety
//}
//asm("pop {lr}; bx lr");
asm("bx lr");
}
} // extern "C"