1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
/**
* @file adc.cpp
* @brief Manages signal reading through the ADC.
*
* Copyright (C) 2020 Clyne Sullivan
*
* Distributed under the GNU GPL v3 or later. You should have received a copy of
* the GNU General Public License along with this program.
* If not, see <https://www.gnu.org/licenses/>.
*/
#include "adc.hpp"
#if defined(TARGET_PLATFORM_L4)
ADCDriver *ADC::m_driver = &ADCD1;
ADCDriver *ADC::m_driver2 = &ADCD3;
#else
ADCDriver *ADC::m_driver = &ADCD3;
//ADCDriver *ADC::m_driver2 = &ADCD1; // TODO
#endif
const ADCConfig ADC::m_config = {
.difsel = 0,
#if defined(TARGET_PLATFORM_H7)
.calibration = 0,
#endif
};
const ADCConfig ADC::m_config2 = {
.difsel = 0,
#if defined(TARGET_PLATFORM_H7)
.calibration = 0,
#endif
};
ADCConversionGroup ADC::m_group_config = {
.circular = true,
.num_channels = 1,
.end_cb = ADC::conversionCallback,
.error_cb = nullptr,
.cfgr = ADC_CFGR_EXTEN_RISING | ADC_CFGR_EXTSEL_SRC(13), /* TIM6_TRGO */
.cfgr2 = ADC_CFGR2_ROVSE | ADC_CFGR2_OVSR_1 | ADC_CFGR2_OVSS_0, // Oversampling 2x
#if defined(TARGET_PLATFORM_H7)
.ccr = 0,
.pcsel = 0,
.ltr1 = 0, .htr1 = 4095,
.ltr2 = 0, .htr2 = 4095,
.ltr3 = 0, .htr3 = 4095,
#else
.tr1 = ADC_TR(0, 4095),
.tr2 = ADC_TR(0, 4095),
.tr3 = ADC_TR(0, 4095),
.awd2cr = 0,
.awd3cr = 0,
#endif
.smpr = {
ADC_SMPR1_SMP_AN5(ADC_SMPR_SMP_12P5), 0
},
.sqr = {
ADC_SQR1_SQ1_N(ADC_CHANNEL_IN5),
0, 0, 0
},
};
static bool readAltDone = false;
static void readAltCallback(ADCDriver *)
{
readAltDone = true;
}
ADCConversionGroup ADC::m_group_config2 = {
.circular = false,
.num_channels = 1,
.end_cb = readAltCallback,
.error_cb = nullptr,
.cfgr = ADC_CFGR_EXTEN_RISING | ADC_CFGR_EXTSEL_SRC(13), /* TIM6_TRGO */
.cfgr2 = ADC_CFGR2_ROVSE | ADC_CFGR2_OVSR_1 | ADC_CFGR2_OVSS_0, // Oversampling 2x
#if defined(TARGET_PLATFORM_H7)
.ccr = 0,
.pcsel = 0,
.ltr1 = 0, .htr1 = 4095,
.ltr2 = 0, .htr2 = 4095,
.ltr3 = 0, .htr3 = 4095,
#else
.tr1 = ADC_TR(0, 4095),
.tr2 = ADC_TR(0, 4095),
.tr3 = ADC_TR(0, 4095),
.awd2cr = 0,
.awd3cr = 0,
#endif
.smpr = {
ADC_SMPR1_SMP_AN1(ADC_SMPR_SMP_12P5), 0
},
.sqr = {
ADC_SQR1_SQ1_N(ADC_CHANNEL_IN1),
0, 0, 0
},
};
adcsample_t *ADC::m_current_buffer = nullptr;
size_t ADC::m_current_buffer_size = 0;
ADC::Operation ADC::m_operation = nullptr;
void ADC::begin()
{
#if defined(TARGET_PLATFORM_H7)
palSetPadMode(GPIOF, 3, PAL_MODE_INPUT_ANALOG);
#else
palSetPadMode(GPIOA, 0, PAL_MODE_INPUT_ANALOG); // Algorithm in
palSetPadMode(GPIOC, 0, PAL_MODE_INPUT_ANALOG); // Potentiometer 1
#endif
adcStart(m_driver, &m_config);
adcStart(m_driver2, &m_config2);
}
void ADC::start(adcsample_t *buffer, size_t count, Operation operation)
{
m_current_buffer = buffer;
m_current_buffer_size = count;
m_operation = operation;
adcStartConversion(m_driver, &m_group_config, buffer, count);
SClock::start();
}
void ADC::stop()
{
SClock::stop();
adcStopConversion(m_driver);
m_current_buffer = nullptr;
m_current_buffer_size = 0;
m_operation = nullptr;
}
adcsample_t ADC::readAlt(unsigned int id)
{
if (id != 0)
return 0;
static adcsample_t result[32] = {};
readAltDone = false;
adcStartConversion(m_driver2, &m_group_config2, result, 32);
while (!readAltDone)
;
adcStopConversion(m_driver2);
return result[0];
}
void ADC::setRate(SClock::Rate rate)
{
#if defined(TARGET_PLATFORM_H7)
std::array<std::array<uint32_t, 2>, 6> m_rate_presets = {{
// Rate PLL N PLL P
{/* 8k */ 80, 20},
{/* 16k */ 80, 10},
{/* 20k */ 80, 8},
{/* 32k */ 80, 5},
{/* 48k */ 96, 4},
{/* 96k */ 288, 10}
}};
auto& preset = m_rate_presets[static_cast<unsigned int>(rate)];
auto pllbits = (preset[0] << RCC_PLL2DIVR_N2_Pos) |
(preset[1] << RCC_PLL2DIVR_P2_Pos);
adcStop(m_driver);
// Adjust PLL2
RCC->CR &= ~(RCC_CR_PLL2ON);
while ((RCC->CR & RCC_CR_PLL2RDY) == RCC_CR_PLL2RDY);
auto pll2divr = RCC->PLL2DIVR &
~(RCC_PLL2DIVR_N2_Msk | RCC_PLL2DIVR_P2_Msk);
pll2divr |= pllbits;
RCC->PLL2DIVR = pll2divr;
RCC->CR |= RCC_CR_PLL2ON;
while ((RCC->CR & RCC_CR_PLL2RDY) != RCC_CR_PLL2RDY);
m_group_config.smpr[0] = rate != SClock::Rate::R96K ? ADC_SMPR1_SMP_AN5(ADC_SMPR_SMP_12P5)
: ADC_SMPR1_SMP_AN5(ADC_SMPR_SMP_2P5);
adcStart(m_driver, &m_config);
#elif defined(TARGET_PLATFORM_L4)
std::array<std::array<uint32_t, 3>, 6> m_rate_presets = {{
// Rate PLLSAI2N R SMPR
{/* 8k */ 8, 1, ADC_SMPR_SMP_12P5},
{/* 16k */ 16, 1, ADC_SMPR_SMP_12P5},
{/* 20k */ 20, 1, ADC_SMPR_SMP_12P5},
{/* 32k */ 32, 1, ADC_SMPR_SMP_12P5},
{/* 48k */ 24, 0, ADC_SMPR_SMP_12P5},
{/* 96k */ 73, 1, ADC_SMPR_SMP_6P5} // Technically 96.05263kS/s
}};
auto& preset = m_rate_presets[static_cast<int>(rate)];
auto pllnr = (preset[0] << RCC_PLLSAI2CFGR_PLLSAI2N_Pos) |
(preset[1] << RCC_PLLSAI2CFGR_PLLSAI2R_Pos);
auto smpr = preset[2];
// Adjust PLLSAI2
RCC->CR &= ~(RCC_CR_PLLSAI2ON);
while ((RCC->CR & RCC_CR_PLLSAI2RDY) == RCC_CR_PLLSAI2RDY);
RCC->PLLSAI2CFGR = (RCC->PLLSAI2CFGR & ~(RCC_PLLSAI2CFGR_PLLSAI2N_Msk | RCC_PLLSAI2CFGR_PLLSAI2R_Msk)) | pllnr;
RCC->CR |= RCC_CR_PLLSAI2ON;
while ((RCC->CR & RCC_CR_PLLSAI2RDY) != RCC_CR_PLLSAI2RDY);
m_group_config.smpr[0] = ADC_SMPR1_SMP_AN5(smpr);
// Set 2x oversampling
m_group_config.cfgr2 = ADC_CFGR2_ROVSE | ADC_CFGR2_OVSR_0 | ADC_CFGR2_OVSS_1;
m_group_config2.cfgr2 = ADC_CFGR2_ROVSE | ADC_CFGR2_OVSR_0 | ADC_CFGR2_OVSS_1;
#endif
}
void ADC::setOperation(ADC::Operation operation)
{
m_operation = operation;
}
void ADC::conversionCallback(ADCDriver *driver)
{
if (m_operation != nullptr) {
auto half_size = m_current_buffer_size / 2;
if (adcIsBufferComplete(driver))
m_operation(m_current_buffer + half_size, half_size);
else
m_operation(m_current_buffer, half_size);
}
}
|