1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
#include "communication.hpp"
#include "ch.h"
#include "hal.h"
#include "periph/adc.hpp"
#include "periph/dac.hpp"
#include "periph/usbserial.hpp"
#include "elfload.hpp"
#include "error.hpp"
#include "conversion.hpp"
#include "runstatus.hpp"
#include "samples.hpp"
#include <algorithm>
#include <tuple>
__attribute__((section(".stacks")))
std::array<char, 4096> CommunicationManager::m_thread_stack = {};
void CommunicationManager::begin()
{
chThdCreateStatic(m_thread_stack.data(),
m_thread_stack.size(),
NORMALPRIO,
threadComm,
nullptr);
}
static void writeADCBuffer(unsigned char *);
static void setBufferSize(unsigned char *);
static void updateGenerator(unsigned char *);
static void loadAlgorithm(unsigned char *);
static void readStatus(unsigned char *);
static void startConversionMeasure(unsigned char *);
static void startConversion(unsigned char *);
static void stopConversion(unsigned char *);
static void startGenerator(unsigned char *);
static void readADCBuffer(unsigned char *);
static void readDACBuffer(unsigned char *);
static void unloadAlgorithm(unsigned char *);
static void readIdentifier(unsigned char *);
static void readExecTime(unsigned char *);
static void sampleRate(unsigned char *);
static void readConversionResults(unsigned char *);
static void readConversionInput(unsigned char *);
static void readMessage(unsigned char *);
static void stopGenerator(unsigned char *);
static const std::array<std::pair<char, void (*)(unsigned char *)>, 19> commandTable {{
{'A', writeADCBuffer},
{'B', setBufferSize},
{'D', updateGenerator},
{'E', loadAlgorithm},
{'I', readStatus},
{'M', startConversionMeasure},
{'R', startConversion},
{'S', stopConversion},
{'W', startGenerator},
{'a', readADCBuffer},
{'d', readDACBuffer},
{'e', unloadAlgorithm},
{'i', readIdentifier},
{'m', readExecTime},
{'r', sampleRate},
{'s', readConversionResults},
{'t', readConversionInput},
{'u', readMessage},
{'w', stopGenerator}
}};
void CommunicationManager::threadComm(void *)
{
while (1) {
if (USBSerial::isActive()) {
// Attempt to receive a command packet
if (unsigned char cmd[3]; USBSerial::read(&cmd[0], 1) > 0) {
// Packet received, first byte represents the desired command/action
auto func = std::find_if(commandTable.cbegin(), commandTable.cend(),
[&cmd](const auto& f) { return f.first == cmd[0]; });
if (func != commandTable.cend())
func->second(cmd);
}
}
chThdSleepMicroseconds(100);
}
}
void writeADCBuffer(unsigned char *)
{
USBSerial::read(Samples::In.bytedata(), Samples::In.bytesize());
}
void setBufferSize(unsigned char *cmd)
{
if (EM.assert(run_status == RunStatus::Idle, Error::NotIdle) &&
EM.assert(USBSerial::read(&cmd[1], 2) == 2, Error::BadParamSize))
{
// count is multiplied by two since this command receives size of buffer
// for each algorithm application.
unsigned int count = (cmd[1] | (cmd[2] << 8)) * 2;
if (EM.assert(count <= MAX_SAMPLE_BUFFER_SIZE, Error::BadParam)) {
Samples::In.setSize(count);
Samples::Out.setSize(count);
}
}
}
void updateGenerator(unsigned char *cmd)
{
if (EM.assert(USBSerial::read(&cmd[1], 2) == 2, Error::BadParamSize)) {
unsigned int count = cmd[1] | (cmd[2] << 8);
if (EM.assert(count <= MAX_SAMPLE_BUFFER_SIZE, Error::BadParam)) {
if (!DAC::isSigGenRunning()) {
Samples::Generator.setSize(count);
USBSerial::read(
reinterpret_cast<uint8_t *>(Samples::Generator.data()),
Samples::Generator.bytesize());
} else {
const int more = DAC::sigGenWantsMore();
if (more == -1) {
USBSerial::write(reinterpret_cast<const uint8_t *>("\0"), 1);
} else {
USBSerial::write(reinterpret_cast<const uint8_t *>("\1"), 1);
// Receive streamed samples in half-buffer chunks.
USBSerial::read(reinterpret_cast<uint8_t *>(
more == 0 ? Samples::Generator.data() : Samples::Generator.middata()),
Samples::Generator.bytesize() / 2);
}
}
}
}
}
void loadAlgorithm(unsigned char *cmd)
{
if (EM.assert(run_status == RunStatus::Idle, Error::NotIdle) &&
EM.assert(USBSerial::read(&cmd[1], 2) == 2, Error::BadParamSize))
{
// Only load the binary if it can fit in the memory reserved for it.
unsigned int size = cmd[1] | (cmd[2] << 8);
if (EM.assert(size < MAX_ELF_FILE_SIZE, Error::BadUserCodeSize)) {
USBSerial::read(ELFManager::fileBuffer(), size);
auto success = ELFManager::loadFromInternalBuffer();
EM.assert(success, Error::BadUserCodeLoad);
}
}
}
void readStatus(unsigned char *)
{
unsigned char buf[2] = {
static_cast<unsigned char>(run_status),
static_cast<unsigned char>(EM.pop())
};
USBSerial::write(buf, sizeof(buf));
}
void startConversionMeasure(unsigned char *)
{
if (EM.assert(run_status == RunStatus::Idle, Error::NotIdle)) {
run_status = RunStatus::Running;
ConversionManager::startMeasured();
}
}
void startConversion(unsigned char *)
{
if (EM.assert(run_status == RunStatus::Idle, Error::NotIdle)) {
run_status = RunStatus::Running;
ConversionManager::start();
}
}
void stopConversion(unsigned char *)
{
if (run_status == RunStatus::Running) {
ConversionManager::stop();
run_status = RunStatus::Idle;
}
}
void startGenerator(unsigned char *)
{
DAC::start(1, Samples::Generator.data(), Samples::Generator.size());
}
void readADCBuffer(unsigned char *)
{
USBSerial::write(Samples::In.bytedata(), Samples::In.bytesize());
}
void readDACBuffer(unsigned char *)
{
USBSerial::write(Samples::Out.bytedata(), Samples::Out.bytesize());
}
void unloadAlgorithm(unsigned char *)
{
ELFManager::unload();
}
void readIdentifier(unsigned char *)
{
#if defined(TARGET_PLATFORM_H7)
USBSerial::write(reinterpret_cast<const uint8_t *>("stmdsph"), 7);
#else
USBSerial::write(reinterpret_cast<const uint8_t *>("stmdspl"), 7);
#endif
}
void readExecTime(unsigned char *)
{
// Stores the measured execution time.
extern time_measurement_t conversion_time_measurement;
USBSerial::write(reinterpret_cast<uint8_t *>(&conversion_time_measurement.last),
sizeof(rtcnt_t));
}
void sampleRate(unsigned char *cmd)
{
if (EM.assert(USBSerial::read(&cmd[1], 1) == 1, Error::BadParamSize)) {
if (cmd[1] == 0xFF) {
unsigned char r = SClock::getRate();
USBSerial::write(&r, 1);
} else {
auto r = static_cast<SClock::Rate>(cmd[1]);
SClock::setRate(r);
ADC::setRate(r);
}
}
}
void readConversionResults(unsigned char *)
{
if (auto samps = Samples::Out.modified(); samps != nullptr) {
unsigned char buf[2] = {
static_cast<unsigned char>(Samples::Out.size() / 2 & 0xFF),
static_cast<unsigned char>(((Samples::Out.size() / 2) >> 8) & 0xFF)
};
USBSerial::write(buf, 2);
unsigned int total = Samples::Out.bytesize() / 2;
unsigned int offset = 0;
unsigned char unused;
while (total > 512) {
USBSerial::write(reinterpret_cast<uint8_t *>(samps) + offset, 512);
while (USBSerial::read(&unused, 1) == 0);
offset += 512;
total -= 512;
}
USBSerial::write(reinterpret_cast<uint8_t *>(samps) + offset, total);
while (USBSerial::read(&unused, 1) == 0);
} else {
USBSerial::write(reinterpret_cast<const uint8_t *>("\0\0"), 2);
}
}
void readConversionInput(unsigned char *)
{
if (auto samps = Samples::In.modified(); samps != nullptr) {
unsigned char buf[2] = {
static_cast<unsigned char>(Samples::In.size() / 2 & 0xFF),
static_cast<unsigned char>(((Samples::In.size() / 2) >> 8) & 0xFF)
};
USBSerial::write(buf, 2);
unsigned int total = Samples::In.bytesize() / 2;
unsigned int offset = 0;
unsigned char unused;
while (total > 512) {
USBSerial::write(reinterpret_cast<uint8_t *>(samps) + offset, 512);
while (USBSerial::read(&unused, 1) == 0);
offset += 512;
total -= 512;
}
USBSerial::write(reinterpret_cast<uint8_t *>(samps) + offset, total);
while (USBSerial::read(&unused, 1) == 0);
} else {
USBSerial::write(reinterpret_cast<const uint8_t *>("\0\0"), 2);
}
}
void readMessage(unsigned char *)
{
//USBSerial::write(reinterpret_cast<uint8_t *>(userMessageBuffer), userMessageSize);
}
void stopGenerator(unsigned char *)
{
DAC::stop(1);
}
|