aboutsummaryrefslogtreecommitdiffstats
path: root/source/main.cpp
blob: fbadd2315c069bd3914fcdcb7411353381383122 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
/**
 * @file main.cpp
 * @brief Program entry point.
 *
 * Copyright (C) 2020 Clyne Sullivan
 *
 * Distributed under the GNU GPL v3 or later. You should have received a copy of
 * the GNU General Public License along with this program.
 * If not, see <https://www.gnu.org/licenses/>.
 */

#include "ch.h"
#include "hal.h"

static_assert(sizeof(adcsample_t) == sizeof(uint16_t));
static_assert(sizeof(dacsample_t) == sizeof(uint16_t));

#include "adc.hpp"
#include "cordic.hpp"
#include "dac.hpp"
#include "elf_load.hpp"
#include "error.hpp"
#include "samplebuffer.hpp"
#include "sclock.hpp"
#include "usbserial.hpp"

#include <array>

constexpr unsigned int MAX_ELF_FILE_SIZE = 16 * 1024;

enum class RunStatus : char
{
    Idle = '1',
    Running,
    Recovering
};
static RunStatus run_status = RunStatus::Idle;

#define MSG_CONVFIRST          (1)
#define MSG_CONVSECOND         (2)
#define MSG_CONVFIRST_MEASURE  (3)
#define MSG_CONVSECOND_MEASURE (4)

#define MSG_FOR_FIRST(m)   (m & 1)
#define MSG_FOR_MEASURE(m) (m > 2)

static ErrorManager EM;

static msg_t conversionMBBuffer[2];
static MAILBOX_DECL(conversionMB, conversionMBBuffer, 2);

// Thread for LED status and wakeup hold
#if defined(TARGET_PLATFORM_H7)
__attribute__((section(".stacks")))
static THD_WORKING_AREA(monitorThreadWA, 1024);
static THD_FUNCTION(monitorThread, arg);
#endif

// Thread for managing the conversion task
__attribute__((section(".stacks")))
static THD_WORKING_AREA(conversionThreadMonitorWA, 1024);
static THD_FUNCTION(conversionThreadMonitor, arg);
static thread_t *conversionThreadHandle = nullptr;

// Thread for unprivileged algorithm execution
__attribute__((section(".stacks")))
static THD_WORKING_AREA(conversionThreadWA, 128); // All we do is enter unprivileged mode.
static THD_FUNCTION(conversionThread, arg);
constexpr unsigned int conversionThreadUPWASize = 
#if defined(TARGET_PLATFORM_H7)
                                                  62 * 1024;
#else
                                                  15 * 1024;
#endif
__attribute__((section(".convdata")))
static THD_WORKING_AREA(conversionThreadUPWA, conversionThreadUPWASize);
__attribute__((section(".convdata")))
static thread_t *conversionThreadMonitorHandle = nullptr;

// Thread for USB monitoring
__attribute__((section(".stacks")))
static THD_WORKING_AREA(communicationThreadWA, 4096);
static THD_FUNCTION(communicationThread, arg);

static time_measurement_t conversion_time_measurement;
#if defined(TARGET_PLATFORM_H7)
__attribute__((section(".convdata")))
static SampleBuffer samplesIn  (reinterpret_cast<Sample *>(0x38000000)); // 16k
__attribute__((section(".convdata")))
static SampleBuffer samplesOut (reinterpret_cast<Sample *>(0x30004000)); // 16k
static SampleBuffer samplesSigGen (reinterpret_cast<Sample *>(0x30000000)); // 16k
#else
__attribute__((section(".convdata")))
static SampleBuffer samplesIn  (reinterpret_cast<Sample *>(0x20008000)); // 16k
__attribute__((section(".convdata")))
static SampleBuffer samplesOut (reinterpret_cast<Sample *>(0x2000C000)); // 16k
static SampleBuffer samplesSigGen (reinterpret_cast<Sample *>(0x20010000)); // 16k
#endif

static unsigned char elf_file_store[MAX_ELF_FILE_SIZE];
__attribute__((section(".convdata")))
static ELF::Entry elf_entry = nullptr;

__attribute__((section(".convcode")))
static void conversion_unprivileged_main();

static void mpu_setup();
static void abortAlgorithmFromISR();
static void signal_operate(adcsample_t *buffer, size_t count);
static void signal_operate_measure(adcsample_t *buffer, size_t count);

int main()
{
    // Initialize the RTOS
    halInit();
    chSysInit();

    SCB->CPACR |= 0xF << 20; // Enable FPU
    mpu_setup();

    palSetLineMode(LINE_BUTTON, PAL_MODE_INPUT);
    ADC::begin();
    DAC::begin();
    SClock::begin();
    USBSerial::begin();
    cordic::init();

    SClock::setRate(SClock::Rate::R32K);
    ADC::setRate(SClock::Rate::R32K);

    chTMObjectInit(&conversion_time_measurement);
#if defined(TARGET_PLATFORM_H7)
    chThdCreateStatic(
        monitorThreadWA, sizeof(monitorThreadWA),
        LOWPRIO,
        monitorThread, nullptr);
#endif
    conversionThreadMonitorHandle = chThdCreateStatic(
        conversionThreadMonitorWA, sizeof(conversionThreadMonitorWA),
        NORMALPRIO + 1,
        conversionThreadMonitor, nullptr);
    conversionThreadHandle = chThdCreateStatic(
        conversionThreadWA, sizeof(conversionThreadWA),
        HIGHPRIO,
        conversionThread,
        reinterpret_cast<void *>(reinterpret_cast<uint32_t>(conversionThreadUPWA) +
                                 conversionThreadUPWASize));
    chThdCreateStatic(
        communicationThreadWA, sizeof(communicationThreadWA),
        NORMALPRIO,
        communicationThread, nullptr);

    chThdExit(0);
    return 0;
}

THD_FUNCTION(communicationThread, arg)
{
    (void)arg;
	while (1) {
        if (USBSerial::isActive()) {
            // Attempt to receive a command packet
            if (unsigned char cmd[3]; USBSerial::read(&cmd[0], 1) > 0) {
                // Packet received, first byte represents the desired command/action
                switch (cmd[0]) {

                // 'a' - Read contents of ADC buffer.
                // 'A' - Write contents of ADC buffer.
                // 'B' - Set ADC/DAC buffer size.
                // 'd' - Read contents of DAC buffer.
                // 'D' - Set siggen size and write to its buffer.
                // 'E' - Load algorithm binary.
                // 'e' - Unload algorithm.
                // 'i' - Read "stmdsp" identifier string.
                // 'I' - Read status information.
                // 'M' - Begin conversion, measure algorithm execution time.
                // 'm' - Read last algorithm execution time.
                // 'R' - Begin conversion.
                // 'r' - Read or write sample rate.
                // 'S' - Stop conversion.
                // 's' - Get latest block of conversion results.
                // 't' - Get latest block of conversion input.
                // 'W' - Start signal generator (siggen).
                // 'w' - Stop siggen.

                case 'a':
                    USBSerial::write(samplesIn.bytedata(), samplesIn.bytesize());
                    break;
                case 'A':
                    USBSerial::read(samplesIn.bytedata(), samplesIn.bytesize());
                    break;

                case 'B':
                    if (EM.assert(run_status == RunStatus::Idle, Error::NotIdle) &&
                        EM.assert(USBSerial::read(&cmd[1], 2) == 2, Error::BadParamSize))
                    {
                        // count is multiplied by two since this command receives size of buffer
                        // for each algorithm application.
                        unsigned int count = (cmd[1] | (cmd[2] << 8)) * 2;
                        if (EM.assert(count <= MAX_SAMPLE_BUFFER_SIZE, Error::BadParam)) {
                            samplesIn.setSize(count);
                            samplesOut.setSize(count);
                        }
                    }
                    break;

                case 'd':
                    USBSerial::write(samplesOut.bytedata(), samplesOut.bytesize());
                    break;
                case 'D':
                    if (EM.assert(USBSerial::read(&cmd[1], 2) == 2, Error::BadParamSize)) {
                        unsigned int count = cmd[1] | (cmd[2] << 8);
                        if (EM.assert(count <= MAX_SAMPLE_BUFFER_SIZE, Error::BadParam)) {
                            samplesSigGen.setSize(count);
                            USBSerial::read(samplesSigGen.bytedata(), samplesSigGen.bytesize());
                        }
                    }
                    break;

                // 'E' - Reads in and loads the compiled conversion code binary from USB.
                case 'E':
                    if (EM.assert(run_status == RunStatus::Idle, Error::NotIdle) &&
                        EM.assert(USBSerial::read(&cmd[1], 2) == 2, Error::BadParamSize))
                    {
                        // Only load the binary if it can fit in the memory reserved for it.
                        unsigned int size = cmd[1] | (cmd[2] << 8);
                        if (EM.assert(size < sizeof(elf_file_store), Error::BadUserCodeSize)) {
                            USBSerial::read(elf_file_store, size);
                            elf_entry = ELF::load(elf_file_store);

                            EM.assert(elf_entry != nullptr, Error::BadUserCodeLoad);
                        }
                    }
                    break;

                // 'e' - Unloads the currently loaded conversion code
                case 'e':
                    elf_entry = nullptr;
                    break;

                // 'i' - Sends an identifying string to confirm that this is the stmdsp device.
                case 'i':
#if defined(TARGET_PLATFORM_H7)
                    USBSerial::write(reinterpret_cast<const uint8_t *>("stmdsph"), 7);
#else
                    USBSerial::write(reinterpret_cast<const uint8_t *>("stmdspl"), 7);
#endif
                    break;

                // 'I' - Sends the current run status.
                case 'I':
                    {
                        unsigned char buf[2] = {
                            static_cast<unsigned char>(run_status),
                            static_cast<unsigned char>(EM.pop())
                        };
                        USBSerial::write(buf, sizeof(buf));
                    }
                    break;

                // 'M' - Begins continuous sampling, but measures the execution time of the first
                //       sample processing. This duration can be later read through 'm'.
                case 'M':
                    if (EM.assert(run_status == RunStatus::Idle, Error::NotIdle)) {
                        run_status = RunStatus::Running;
                        samplesOut.clear();
                        ADC::start(samplesIn.data(), samplesIn.size(), signal_operate_measure);
                        DAC::start(0, samplesOut.data(), samplesOut.size());
                    }
                    break;

                // 'm' - Returns the last measured sample processing time, presumably in processor
                //       ticks.
                case 'm':
                    USBSerial::write(reinterpret_cast<uint8_t *>(&conversion_time_measurement.last),
                                     sizeof(rtcnt_t));
                    break;

                // 'R' - Begin continuous sampling/conversion of the ADC. Samples will go through
                //       the conversion code, and will be sent out over the DAC.
                case 'R':
                    if (EM.assert(run_status == RunStatus::Idle, Error::NotIdle)) {
                        run_status = RunStatus::Running;
                        samplesOut.clear();
                        ADC::start(samplesIn.data(), samplesIn.size(), signal_operate);
                        DAC::start(0, samplesOut.data(), samplesOut.size());
                    }
                    break;

                case 'r':
                    if (EM.assert(USBSerial::read(&cmd[1], 1) == 1, Error::BadParamSize)) {
                        if (cmd[1] == 0xFF) {
                            unsigned char r = SClock::getRate();
                            USBSerial::write(&r, 1);
                        } else {
                            auto r = static_cast<SClock::Rate>(cmd[1]);
                            SClock::setRate(r);
                            ADC::setRate(r);
                        }
                    }
                    break;

                // 'S' - Stops the continuous sampling/conversion.
                case 'S':
                    if (run_status == RunStatus::Running) {
                        DAC::stop(0);
                        ADC::stop();
                        run_status = RunStatus::Idle;
                    }
                    break;

                case 's':
                    if (auto samps = samplesOut.modified(); samps != nullptr) {
                        unsigned char buf[2] = {
                            static_cast<unsigned char>(samplesOut.size() / 2 & 0xFF),
                            static_cast<unsigned char>(((samplesOut.size() / 2) >> 8) & 0xFF)
                        };
                        USBSerial::write(buf, 2);
                        unsigned int total = samplesOut.bytesize() / 2;
                        unsigned int offset = 0;
                        unsigned char unused;
                        while (total > 512) {
                            USBSerial::write(reinterpret_cast<uint8_t *>(samps) + offset, 512);
                            while (USBSerial::read(&unused, 1) == 0);
                            offset += 512;
                            total -= 512;
                        }
                        USBSerial::write(reinterpret_cast<uint8_t *>(samps) + offset, total);
                        while (USBSerial::read(&unused, 1) == 0);
                    } else {
                        USBSerial::write(reinterpret_cast<const uint8_t *>("\0\0"), 2);
                    }
                    break;
                case 't':
                    if (auto samps = samplesIn.modified(); samps != nullptr) {
                        unsigned char buf[2] = {
                            static_cast<unsigned char>(samplesIn.size() / 2 & 0xFF),
                            static_cast<unsigned char>(((samplesIn.size() / 2) >> 8) & 0xFF)
                        };
                        USBSerial::write(buf, 2);
                        unsigned int total = samplesIn.bytesize() / 2;
                        unsigned int offset = 0;
                        unsigned char unused;
                        while (total > 512) {
                            USBSerial::write(reinterpret_cast<uint8_t *>(samps) + offset, 512);
                            while (USBSerial::read(&unused, 1) == 0);
                            offset += 512;
                            total -= 512;
                        }
                        USBSerial::write(reinterpret_cast<uint8_t *>(samps) + offset, total);
                        while (USBSerial::read(&unused, 1) == 0);
                    } else {
                        USBSerial::write(reinterpret_cast<const uint8_t *>("\0\0"), 2);
                    }
                    break;

                case 'W':
                    DAC::start(1, samplesSigGen.data(), samplesSigGen.size());
                    break;
                case 'w':
                    DAC::stop(1);
                    break;

                default:
                    break;
                }
            }
        }

		chThdSleepMicroseconds(100);
	}
}

THD_FUNCTION(conversionThreadMonitor, arg)
{
    (void)arg;
    while (1) {
        msg_t message;
        if (chMBFetchTimeout(&conversionMB, &message, TIME_INFINITE) == MSG_OK)
            chMsgSend(conversionThreadHandle, message);
    }
}

THD_FUNCTION(conversionThread, stack)
{
    elf_entry = nullptr;
    port_unprivileged_jump(reinterpret_cast<uint32_t>(conversion_unprivileged_main),
                           reinterpret_cast<uint32_t>(stack));
}

#if defined(TARGET_PLATFORM_H7)
THD_FUNCTION(monitorThread, arg)
{
    (void)arg;

    palSetLineMode(LINE_BUTTON, PAL_MODE_INPUT_PULLUP);

    while (1) {
        bool isidle = run_status == RunStatus::Idle;
        auto led = isidle ? LINE_LED_GREEN : LINE_LED_YELLOW;
        auto delay = isidle ? 500 : 250;

        palSetLine(led);
        chThdSleepMilliseconds(delay);
        palClearLine(led);
        chThdSleepMilliseconds(delay);

        if (run_status == RunStatus::Idle && palReadLine(LINE_BUTTON)) {
            palSetLine(LINE_LED_RED);
            palSetLine(LINE_LED_YELLOW);
            chSysLock();
            while (palReadLine(LINE_BUTTON))
                asm("nop");
            while (!palReadLine(LINE_BUTTON))
                asm("nop");
            chSysUnlock();
            palClearLine(LINE_LED_RED);
            palClearLine(LINE_LED_YELLOW);
            chThdSleepMilliseconds(500);
        }

        static bool erroron = false;
        if (auto err = EM.hasError(); err ^ erroron) {
            erroron = err;
            if (err)
                palSetLine(LINE_LED_RED);
            else
                palClearLine(LINE_LED_RED);
        }
    }
}
#endif

void conversion_unprivileged_main()
{
    while (1) {
        msg_t message;
        asm("svc 0; mov %0, r0" : "=r" (message)); // sleep until next message
        if (message != 0) {
            auto samples = MSG_FOR_FIRST(message) ? samplesIn.data() : samplesIn.middata();
            auto size = samplesIn.size() / 2;

            if (elf_entry) {
                if (!MSG_FOR_MEASURE(message)) {
                    // Remember the stack pointer in case the algorithm messes things up.
                    uint32_t sp;
                    asm("mov %0, sp" : "=r" (sp));
                    samples = elf_entry(samples, size);
                    asm("mov sp, %0" :: "r" (sp));
                } else {
                    uint32_t sp;
                    asm("mov %0, sp; eor r0, r0; svc 2" : "=r" (sp)); // start measurement
                    samples = elf_entry(samples, size);
                    asm("mov r0, #1; svc 2; mov sp, %0" :: "r" (sp)); // stop measurement
                } 
            }

            if (samples != nullptr) {
                if (MSG_FOR_FIRST(message))
                    samplesOut.modify(samples, size);
                else
                    samplesOut.midmodify(samples, size);
            }
        }
    }
}

void mpu_setup()
{
    // Set up MPU for user algorithm
#if defined(TARGET_PLATFORM_H7)
    // Region 2: Data for algorithm thread
    // Region 3: Code for algorithm thread
    // Region 4: User algorithm code
    mpuConfigureRegion(MPU_REGION_2,
                       0x20000000,
                       MPU_RASR_ATTR_AP_RW_RW | MPU_RASR_ATTR_NON_CACHEABLE |
                       MPU_RASR_SIZE_64K |
                       MPU_RASR_ENABLE);
    mpuConfigureRegion(MPU_REGION_3,
                       0x0807F800,
                       MPU_RASR_ATTR_AP_RO_RO | MPU_RASR_ATTR_NON_CACHEABLE |
                       MPU_RASR_SIZE_2K |
                       MPU_RASR_ENABLE);
    mpuConfigureRegion(MPU_REGION_4,
                       0x00000000,
                       MPU_RASR_ATTR_AP_RW_RW | MPU_RASR_ATTR_NON_CACHEABLE |
                       MPU_RASR_SIZE_64K |
                       MPU_RASR_ENABLE);
#else
    // Region 2: Data for algorithm thread and ADC/DAC buffers
    // Region 3: Code for algorithm thread
    // Region 4: User algorithm code
    mpuConfigureRegion(MPU_REGION_2,
                       0x20008000,
                       MPU_RASR_ATTR_AP_RW_RW | MPU_RASR_ATTR_NON_CACHEABLE |
                       MPU_RASR_SIZE_128K|
                       MPU_RASR_ENABLE);
    mpuConfigureRegion(MPU_REGION_3,
                       0x0807F800,
                       MPU_RASR_ATTR_AP_RO_RO | MPU_RASR_ATTR_NON_CACHEABLE |
                       MPU_RASR_SIZE_2K |
                       MPU_RASR_ENABLE);
    mpuConfigureRegion(MPU_REGION_4,
                       0x10000000,
                       MPU_RASR_ATTR_AP_RW_RW | MPU_RASR_ATTR_NON_CACHEABLE |
                       MPU_RASR_SIZE_32K |
                       MPU_RASR_ENABLE);
#endif
}

void abortAlgorithmFromISR()
{
    elf_entry = nullptr;
    EM.add(Error::ConversionAborted);
    run_status = RunStatus::Recovering;

    // Confirm that the exception return thread is the algorithm...
    uint32_t *psp;
	asm("mrs %0, psp" : "=r" (psp));
    if ((uint32_t)psp >= (uint32_t)conversionThreadUPWA &&
        (uint32_t)psp <= (uint32_t)conversionThreadUPWA + conversionThreadUPWASize)
    {
        // If it is, we can force the algorithm to exit by "resetting" its thread.
        // We do this by rebuilding the thread's stacked exception return.
        uint32_t *newpsp = reinterpret_cast<uint32_t *>(
            (char *)conversionThreadUPWA +
            conversionThreadUPWASize - 8 * sizeof(uint32_t));
        // Set the LR register to the thread's entry point.
        newpsp[5] = reinterpret_cast<uint32_t>(conversion_unprivileged_main);
        // Overwrite the instruction we'll return to with "bx lr" (jump to address in LR).
        newpsp[6] = psp[6];
        *reinterpret_cast<uint16_t *>(newpsp[6]) = 0x4770; // "bx lr"
        // Keep PSR contents (bit set forces Thumb mode, just in case).
        newpsp[7] = psp[7] | (1 << 24);
        // Set the new stack pointer.
	    asm("msr psp, %0" :: "r" (newpsp));
    }
}

void signal_operate(adcsample_t *buffer, size_t)
{
    chSysLockFromISR();

    if (chMBGetUsedCountI(&conversionMB) > 1) {
        chMBResetI(&conversionMB);
        chMBResumeX(&conversionMB);
        chSysUnlockFromISR();
        abortAlgorithmFromISR();
    } else {
        if (buffer == samplesIn.data()) {
            samplesIn.setModified();
            chMBPostI(&conversionMB, MSG_CONVFIRST);
        } else {
            samplesIn.setMidmodified();
            chMBPostI(&conversionMB, MSG_CONVSECOND);
        }
        chSysUnlockFromISR();
    }
}

void signal_operate_measure(adcsample_t *buffer, [[maybe_unused]] size_t count)
{
    chSysLockFromISR();
    if (buffer == samplesIn.data()) {
        samplesIn.setModified();
        chMBPostI(&conversionMB, MSG_CONVFIRST_MEASURE);
    } else {
        samplesIn.setMidmodified();
        chMBPostI(&conversionMB, MSG_CONVSECOND_MEASURE);
    }
    chSysUnlockFromISR();

    ADC::setOperation(signal_operate);
}

extern "C" {

__attribute__((naked))
void port_syscall(struct port_extctx *ctxp, uint32_t n)
{
    switch (n) {
    case 0:
        {
            chSysLock();
            chMsgWaitS();
            auto msg = chMsgGet(conversionThreadMonitorHandle);
            chMsgReleaseS(conversionThreadMonitorHandle, MSG_OK);
            chSysUnlock();
            ctxp->r0 = msg;
        }
        break;
    case 1:
        {
            using mathcall = void (*)();
            static mathcall funcs[3] = {
                reinterpret_cast<mathcall>(cordic::sin),
                reinterpret_cast<mathcall>(cordic::cos),
                reinterpret_cast<mathcall>(cordic::tan),
            };
#if defined(PLATFORM_H7)
            asm("vmov.f64 d0, %0, %1" :: "r" (ctxp->r1), "r" (ctxp->r2));
            if (ctxp->r0 < 3) {
                funcs[ctxp->r0]();
                asm("vmov.f64 %0, %1, d0" : "=r" (ctxp->r1), "=r" (ctxp->r2));
            } else {
                asm("eor r0, r0; vmov.f64 d0, r0, r0");
            }
#else
            asm("vmov.f32 s0, %0" :: "r" (ctxp->r1));
            if (ctxp->r0 < 3) {
                funcs[ctxp->r0]();
                asm("vmov.f32 %0, s0" : "=r" (ctxp->r1));
            } else {
                asm("eor r0, r0; vmov.f32 s0, r0");
            }
#endif
        }
        break;
    case 2:
        if (ctxp->r0 == 0) {
            chTMStartMeasurementX(&conversion_time_measurement);
        } else {
            chTMStopMeasurementX(&conversion_time_measurement);
            // Subtract measurement overhead from the result.
            // Running an empty algorithm ("bx lr") takes 196 cycles as of 2/4/21.
            // Only measures algorithm code time (loading args/storing result takes 9 cycles).
            constexpr rtcnt_t measurement_overhead = 196 - 1;
            if (conversion_time_measurement.last > measurement_overhead)
                conversion_time_measurement.last -= measurement_overhead;
        }
        break;
    case 3:
        ctxp->r0 = ADC::readAlt(0);
        break;
    default:
        while (1);
        break;
    }

    asm("svc 0");
    while (1);
}

__attribute__((naked))
void MemManage_Handler()
{
    // 1. Get the stack pointer.
    uint32_t lr;
	asm("mov %0, lr" : "=r" (lr));

    // 2. Recover from the fault.
    abortAlgorithmFromISR();

    // 3. Return.
    asm("mov lr, %0; bx lr" :: "r" (lr));
}

__attribute__((naked))
void HardFault_Handler()
{
    // Get the stack pointer.
    //uint32_t *stack;
    uint32_t lr;
	asm("mov %0, lr" : "=r" (lr));
	/*asm("\
		tst lr, #4; \
		ite eq; \
		mrseq %0, msp; \
		mrsne %0, psp; \
        mov %1, lr; \
	" : "=r" (stack), "=r" (lr));*/

    // If coming from the algorithm, attempt to recover; otherwise, give up.
    if (run_status != RunStatus::Running && (lr & 4) != 0)
        MemManage_Handler();

    while (1);
}

} // extern "C"