aboutsummaryrefslogtreecommitdiffstats
path: root/examples
diff options
context:
space:
mode:
Diffstat (limited to 'examples')
-rw-r--r--examples/1_convolve_simple.cpp29
-rw-r--r--examples/2_convolve_overlap_save.cpp47
-rw-r--r--examples/3_fir.cpp47
-rw-r--r--examples/4_fir_pro.cpp478
-rw-r--r--examples/5_fir_differentiator.cpp30
-rw-r--r--examples/6_iir_test.cpp13
-rw-r--r--examples/7_iir_echo.cpp22
7 files changed, 666 insertions, 0 deletions
diff --git a/examples/1_convolve_simple.cpp b/examples/1_convolve_simple.cpp
new file mode 100644
index 0000000..8de05d3
--- /dev/null
+++ b/examples/1_convolve_simple.cpp
@@ -0,0 +1,29 @@
+/**
+ * 1_convolve_simple.cpp
+ * Written by Clyne Sullivan.
+ *
+ * Computes a convolution in the simplest way possible. While the code is brief, it lacks many
+ * possible optimizations. The convolution's result will not fill the output buffer either, as the
+ * transient response is not calculated.
+ */
+
+Sample *process_data(Samples samples)
+{
+ // Define our output buffer. SIZE is the largest size of the 'samples' buffer.
+ static Sample buffer[samples.size()];
+
+ // Define our filter
+ constexpr unsigned int filter_size = 3;
+ float filter[filter_size] = {
+ 0.3333, 0.3333, 0.3333
+ };
+
+ // Begin convolving:
+ for (int n = 0; n < samples.size() - (filter_size - 1); n++) {
+ buffer[n] = 0;
+ for (int k = 0; k < filter_size; k++)
+ buffer[n] += samples[n + k] * filter[k];
+ }
+
+ return buffer;
+}
diff --git a/examples/2_convolve_overlap_save.cpp b/examples/2_convolve_overlap_save.cpp
new file mode 100644
index 0000000..57c020a
--- /dev/null
+++ b/examples/2_convolve_overlap_save.cpp
@@ -0,0 +1,47 @@
+/**
+ * 2_convolve_overlap_save.cpp
+ * Written by Clyne Sullivan.
+ *
+ * This convolution examples takes an overlap-save approach, where samples from the previous run
+ * are saved so that the overall operation is not interrupted (i.e. the observed output will
+ * transition smoothly between processed "chunks").
+ *
+ * Note that there are still improvements that can be made to the code; for example, notice every
+ * spot where an integer/float conversion is necessary. Operations like these may slow down the
+ * computation.
+ */
+
+Sample *process_data(Samples samples)
+{
+ static Sample buffer[samples.size()];
+
+ constexpr unsigned int filter_size = 3;
+ float filter[filter_size] = {
+ 0.3333, 0.3333, 0.3333
+ };
+
+ // Keep a buffer of extra samples for overlap-save
+ static Sample prev[filter_size];
+
+ for (int n = 0; n < samples.size(); n++) {
+ buffer[n] = 0;
+
+ for (int k = 0; k < filter_size; k++) {
+ int i = n - (filter_size - 1) + k;
+
+ // If i is >= 0, access current sample buffer.
+ // If i is < 0, provide the previous samples from the 'prev' buffer
+ if (i >= 0)
+ buffer[n] += samples[i] * filter[k];
+ else
+ buffer[n] += prev[filter_size - 1 + i] * filter[k];
+ }
+ }
+
+ // Save samples for the next convolution run
+ for (int i = 0; i < filter_size; i++)
+ prev[i] = samples[samples.size() - filter_size + i];
+
+ return buffer;
+}
+
diff --git a/examples/3_fir.cpp b/examples/3_fir.cpp
new file mode 100644
index 0000000..3a68500
--- /dev/null
+++ b/examples/3_fir.cpp
@@ -0,0 +1,47 @@
+/**
+ * 3_fir.cpp
+ * Written by Clyne Sullivan.
+ *
+ * The below code was written for applying FIR filters. While this is still essentially an overlap-
+ * save convolution, other optimizations have been made to allow for larger filters to be applied
+ * within the available execution time. Samples are also normalized so that they center around zero.
+ */
+
+Sample *process_data(Samples samples)
+{
+ static Sample buffer[samples.size()];
+
+ // Define the filter:
+ constexpr unsigned int filter_size = 3;
+ static float filter[filter_size] = {
+ // Put filter values here (note: precision will be truncated for 'float' size).
+ 0.3333, 0.3333, 0.3333
+ };
+
+ // Do an overlap-save convolution
+ static Sample prev[filter_size];
+
+ for (int n = 0; n < samples.size(); n++) {
+ // Using a float variable for accumulation allows for better code optimization
+ float v = 0;
+
+ for (int k = 0; k < filter_size; k++) {
+ int i = n - (filter_size - 1) + k;
+
+ auto s = i >= 0 ? samples[i] : prev[filter_size - 1 + i];
+ // Sample values are 0 to 4095. Below, the original sample is normalized to a -1.0 to
+ // 1.0 range for calculation.
+ v += (s / 2048.f - 1) * filter[k];
+ }
+
+ // Return value to sample range of 0-4095.
+ buffer[n] = (v + 1) * 2048.f;
+ }
+
+ // Save samples for next convolution
+ for (int i = 0; i < filter_size; i++)
+ prev[i] = samples[samples.size() - filter_size + i];
+
+ return buffer;
+}
+
diff --git a/examples/4_fir_pro.cpp b/examples/4_fir_pro.cpp
new file mode 100644
index 0000000..b1a6832
--- /dev/null
+++ b/examples/4_fir_pro.cpp
@@ -0,0 +1,478 @@
+#include <cstdint>
+using float32_t = float;
+
+typedef struct
+{
+ uint16_t numTaps; /**< number of filter coefficients in the filter. */
+ float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
+ float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
+} arm_fir_instance_f32;
+
+static void arm_fir_f32(const arm_fir_instance_f32 * S, float32_t * pSrc, float32_t * pDst, uint32_t blockSize);
+
+Sample *process_data(Samples samples)
+{
+ // 1. Define our array sizes (Be sure to set Run > Set buffer size... to below value!)
+ constexpr unsigned int buffer_size = 500;
+ constexpr unsigned int filter_size = 100;
+
+ // 2. Define our filter and the working arrays
+ static float filter[filter_size] = {
+ .01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+ .01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+ .01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+ .01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+ .01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+ .01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+ .01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+ .01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+ .01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,
+ .01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f,.01f
+ };
+ static float input[buffer_size];
+ static float output[buffer_size];
+ static float working[buffer_size + filter_size];
+
+ // 3. Scale 0-4095 interger sample values to +/- 1.0 floats
+ for (unsigned int i = 0; i < samples.size(); i++)
+ input[i] = (samples[i] - 2048) / 2048.f;
+
+ // 4. Compute the FIR
+ arm_fir_instance_f32 fir { filter_size, working, filter };
+ arm_fir_f32(&fir, input, output, samples.size());
+
+ // 5. Convert float results back to 0-4095 range for output
+ for (unsigned int i = 0; i < samples.size(); i++)
+ samples[i] = output[i] * 2048.f + 2048;
+
+ return samples.data();
+}
+
+// Below taken from the CMSIS DSP Library (find it on GitHub)
+void arm_fir_f32(
+ const arm_fir_instance_f32 * S,
+ float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ float32_t *pState = S->pState; /* State pointer */
+ float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
+ float32_t *pStateCurnt; /* Points to the current sample of the state */
+ float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
+ float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
+ float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
+ uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
+ uint32_t i, tapCnt, blkCnt; /* Loop counters */
+ float32_t p0,p1,p2,p3,p4,p5,p6,p7; /* Temporary product values */
+
+ /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
+ /* pStateCurnt points to the location where the new input data should be written */
+ pStateCurnt = &(S->pState[(numTaps - 1u)]);
+
+ /* Apply loop unrolling and compute 8 output values simultaneously.
+ * The variables acc0 ... acc7 hold output values that are being computed:
+ *
+ * acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
+ * acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
+ * acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
+ * acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
+ */
+ blkCnt = blockSize >> 3;
+
+ /* First part of the processing with loop unrolling. Compute 8 outputs at a time.
+ ** a second loop below computes the remaining 1 to 7 samples. */
+ while(blkCnt > 0u)
+ {
+ /* Copy four new input samples into the state buffer */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set all accumulators to zero */
+ acc0 = 0.0f;
+ acc1 = 0.0f;
+ acc2 = 0.0f;
+ acc3 = 0.0f;
+ acc4 = 0.0f;
+ acc5 = 0.0f;
+ acc6 = 0.0f;
+ acc7 = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize coeff pointer */
+ pb = (pCoeffs);
+
+ /* This is separated from the others to avoid
+ * a call to __aeabi_memmove which would be slower
+ */
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+ *pStateCurnt++ = *pSrc++;
+
+ /* Read the first seven samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
+ x0 = *px++;
+ x1 = *px++;
+ x2 = *px++;
+ x3 = *px++;
+ x4 = *px++;
+ x5 = *px++;
+ x6 = *px++;
+
+ /* Loop unrolling. Process 8 taps at a time. */
+ tapCnt = numTaps >> 3u;
+
+ /* Loop over the number of taps. Unroll by a factor of 8.
+ ** Repeat until we've computed numTaps-8 coefficients. */
+ while(tapCnt > 0u)
+ {
+ /* Read the b[numTaps-1] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-3] sample */
+ x7 = *(px++);
+
+ /* acc0 += b[numTaps-1] * x[n-numTaps] */
+ p0 = x0 * c0;
+
+ /* acc1 += b[numTaps-1] * x[n-numTaps-1] */
+ p1 = x1 * c0;
+
+ /* acc2 += b[numTaps-1] * x[n-numTaps-2] */
+ p2 = x2 * c0;
+
+ /* acc3 += b[numTaps-1] * x[n-numTaps-3] */
+ p3 = x3 * c0;
+
+ /* acc4 += b[numTaps-1] * x[n-numTaps-4] */
+ p4 = x4 * c0;
+
+ /* acc1 += b[numTaps-1] * x[n-numTaps-5] */
+ p5 = x5 * c0;
+
+ /* acc2 += b[numTaps-1] * x[n-numTaps-6] */
+ p6 = x6 * c0;
+
+ /* acc3 += b[numTaps-1] * x[n-numTaps-7] */
+ p7 = x7 * c0;
+
+ /* Read the b[numTaps-2] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-4] sample */
+ x0 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+
+ /* Perform the multiply-accumulate */
+ p0 = x1 * c0;
+ p1 = x2 * c0;
+ p2 = x3 * c0;
+ p3 = x4 * c0;
+ p4 = x5 * c0;
+ p5 = x6 * c0;
+ p6 = x7 * c0;
+ p7 = x0 * c0;
+
+ /* Read the b[numTaps-3] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-5] sample */
+ x1 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Perform the multiply-accumulates */
+ p0 = x2 * c0;
+ p1 = x3 * c0;
+ p2 = x4 * c0;
+ p3 = x5 * c0;
+ p4 = x6 * c0;
+ p5 = x7 * c0;
+ p6 = x0 * c0;
+ p7 = x1 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x2 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Perform the multiply-accumulates */
+ p0 = x3 * c0;
+ p1 = x4 * c0;
+ p2 = x5 * c0;
+ p3 = x6 * c0;
+ p4 = x7 * c0;
+ p5 = x0 * c0;
+ p6 = x1 * c0;
+ p7 = x2 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x3 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Perform the multiply-accumulates */
+ p0 = x4 * c0;
+ p1 = x5 * c0;
+ p2 = x6 * c0;
+ p3 = x7 * c0;
+ p4 = x0 * c0;
+ p5 = x1 * c0;
+ p6 = x2 * c0;
+ p7 = x3 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x4 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Perform the multiply-accumulates */
+ p0 = x5 * c0;
+ p1 = x6 * c0;
+ p2 = x7 * c0;
+ p3 = x0 * c0;
+ p4 = x1 * c0;
+ p5 = x2 * c0;
+ p6 = x3 * c0;
+ p7 = x4 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x5 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Perform the multiply-accumulates */
+ p0 = x6 * c0;
+ p1 = x7 * c0;
+ p2 = x0 * c0;
+ p3 = x1 * c0;
+ p4 = x2 * c0;
+ p5 = x3 * c0;
+ p6 = x4 * c0;
+ p7 = x5 * c0;
+
+ /* Read the b[numTaps-4] coefficient */
+ c0 = *(pb++);
+
+ /* Read x[n-numTaps-6] sample */
+ x6 = *(px++);
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Perform the multiply-accumulates */
+ p0 = x7 * c0;
+ p1 = x0 * c0;
+ p2 = x1 * c0;
+ p3 = x2 * c0;
+ p4 = x3 * c0;
+ p5 = x4 * c0;
+ p6 = x5 * c0;
+ p7 = x6 * c0;
+
+ tapCnt--;
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+ }
+
+ /* If the filter length is not a multiple of 8, compute the remaining filter taps */
+ tapCnt = numTaps % 0x8u;
+
+ while(tapCnt > 0u)
+ {
+ /* Read coefficients */
+ c0 = *(pb++);
+
+ /* Fetch 1 state variable */
+ x7 = *(px++);
+
+ /* Perform the multiply-accumulates */
+ p0 = x0 * c0;
+ p1 = x1 * c0;
+ p2 = x2 * c0;
+ p3 = x3 * c0;
+ p4 = x4 * c0;
+ p5 = x5 * c0;
+ p6 = x6 * c0;
+ p7 = x7 * c0;
+
+ /* Reuse the present sample states for next sample */
+ x0 = x1;
+ x1 = x2;
+ x2 = x3;
+ x3 = x4;
+ x4 = x5;
+ x5 = x6;
+ x6 = x7;
+
+ acc0 += p0;
+ acc1 += p1;
+ acc2 += p2;
+ acc3 += p3;
+ acc4 += p4;
+ acc5 += p5;
+ acc6 += p6;
+ acc7 += p7;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Advance the state pointer by 8 to process the next group of 8 samples */
+ pState = pState + 8;
+
+ /* The results in the 8 accumulators, store in the destination buffer. */
+ *pDst++ = acc0;
+ *pDst++ = acc1;
+ *pDst++ = acc2;
+ *pDst++ = acc3;
+ *pDst++ = acc4;
+ *pDst++ = acc5;
+ *pDst++ = acc6;
+ *pDst++ = acc7;
+
+ blkCnt--;
+ }
+
+ /* If the blockSize is not a multiple of 8, compute any remaining output samples here.
+ ** No loop unrolling is used. */
+ blkCnt = blockSize % 0x8u;
+
+ while(blkCnt > 0u)
+ {
+ /* Copy one sample at a time into state buffer */
+ *pStateCurnt++ = *pSrc++;
+
+ /* Set the accumulator to zero */
+ acc0 = 0.0f;
+
+ /* Initialize state pointer */
+ px = pState;
+
+ /* Initialize Coefficient pointer */
+ pb = (pCoeffs);
+
+ i = numTaps;
+
+ /* Perform the multiply-accumulates */
+ do
+ {
+ acc0 += *px++ * *pb++;
+ i--;
+
+ } while(i > 0u);
+
+ /* The result is store in the destination buffer. */
+ *pDst++ = acc0;
+
+ /* Advance state pointer by 1 for the next sample */
+ pState = pState + 1;
+
+ blkCnt--;
+ }
+
+ /* Processing is complete.
+ ** Now copy the last numTaps - 1 samples to the start of the state buffer.
+ ** This prepares the state buffer for the next function call. */
+
+ /* Points to the start of the state buffer */
+ pStateCurnt = S->pState;
+
+ tapCnt = (numTaps - 1u) >> 2u;
+
+ /* copy data */
+ while(tapCnt > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+
+ /* Calculate remaining number of copies */
+ tapCnt = (numTaps - 1u) % 0x4u;
+
+ /* Copy the remaining q31_t data */
+ while(tapCnt > 0u)
+ {
+ *pStateCurnt++ = *pState++;
+
+ /* Decrement the loop counter */
+ tapCnt--;
+ }
+}
diff --git a/examples/5_fir_differentiator.cpp b/examples/5_fir_differentiator.cpp
new file mode 100644
index 0000000..72415c6
--- /dev/null
+++ b/examples/5_fir_differentiator.cpp
@@ -0,0 +1,30 @@
+/**
+ * 5_fir_differentiator.cpp
+ * Written by Clyne Sullivan.
+ *
+ * Does an FIR differentiation on the incoming signal, so that the output is representative of the
+ * rate of change of the input.
+ * A scaling factor is applied so that the output's form is more clearly visible.
+ */
+
+Sample *process_data(Samples samples)
+{
+ constexpr int scaling_factor = 4;
+ static Sample output[samples.size()];
+ static Sample prev = 2048;
+
+ // Compute the first output value using the saved sample.
+ output[0] = 2048 + ((samples[0] - prev) * scaling_factor);
+
+ for (unsigned int i = 1; i < samples.size(); i++) {
+ // Take the rate of change and scale it.
+ // 2048 is added as the output should be centered in the voltage range.
+ output[i] = 2048 + ((samples[i] - samples[i - 1]) * scaling_factor);
+ }
+
+ // Save the last sample for the next iteration.
+ prev = samples[samples.size() - 1];
+
+ return output;
+}
+
diff --git a/examples/6_iir_test.cpp b/examples/6_iir_test.cpp
new file mode 100644
index 0000000..116a680
--- /dev/null
+++ b/examples/6_iir_test.cpp
@@ -0,0 +1,13 @@
+Sample *process_data(Samples samples)
+{
+ constexpr float alpha = 0.7;
+
+ static Sample prev = 2048;
+
+ samples[0] = (1 - alpha) * samples[0] + alpha * prev;
+ for (unsigned int i = 1; i < samples.size(); i++)
+ samples[i] = (1 - alpha) * samples[i] + alpha * samples[i - 1];
+ prev = samples[samples.size() - 1];
+
+ return samples.data();
+}
diff --git a/examples/7_iir_echo.cpp b/examples/7_iir_echo.cpp
new file mode 100644
index 0000000..57e5605
--- /dev/null
+++ b/examples/7_iir_echo.cpp
@@ -0,0 +1,22 @@
+Sample *process_data(Samples samples)
+{
+ constexpr float alpha = 0.75;
+ constexpr unsigned int D = 100;
+
+ static Sample output[samples.size()];
+ static Sample prev[D]; // prev[0] = output[0 - D]
+
+ // Do calculations with previous output
+ for (unsigned int i = 0; i < D; i++)
+ output[i] = samples[i] + alpha * (prev[i] - 2048);
+
+ // Do calculations with current samples
+ for (unsigned int i = D; i < samples.size(); i++)
+ output[i] = samples[i] + alpha * (output[i - D] - 2048);
+
+ // Save outputs for next computation
+ for (unsigned int i = 0; i < D; i++)
+ prev[i] = output[samples.size() - (D - i)];
+
+ return output;
+}