blob: 41a31992cbaf6709f7a9676ba40796cdcdab12e4 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
/**
* @file clock.c
* Basic clock utilities
*
* Copyright (C) 2018 Clyne Sullivan
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "clock.h"
#include "task.h"
#include <arch/stm/stm32l476xx.h>
// ticks since init
volatile uint32_t clock_ticks = 0;
volatile uint8_t tim2_finished = 1;
void clock_svc(uint32_t n, uint32_t *ret, uint32_t *args)
{
if (n == 0)
task_sleep(args[0]);
else if (n == 1)
clock_udelay(args[0]);
else if (n == 2)
*((unsigned int *)ret) = clock_millis();
}
void clock_init(void)
{
// turn on HSI (16MHz)
RCC->CR |= RCC_CR_HSION;
while ((RCC->CR & RCC_CR_HSIRDY) != RCC_CR_HSIRDY);
// get PLLR to 80MHz (max)
// VCO = C * (N/M) -> 16 * (10/1) = 160
// SCLK = VCO / R = 160 / 2 = 80 MHz
RCC->PLLCFGR &= ~(RCC_PLLCFGR_PLLSRC);
RCC->PLLCFGR |= RCC_PLLCFGR_PLLSRC_HSI;
RCC->PLLCFGR &= ~(RCC_PLLCFGR_PLLN | RCC_PLLCFGR_PLLM);
RCC->PLLCFGR |= 10 << RCC_PLLCFGR_PLLN_Pos;
RCC->PLLCFGR &= ~(RCC_PLLCFGR_PLLR | RCC_PLLCFGR_PLLQ); // /2
RCC->PLLCFGR |= RCC_PLLCFGR_PLLREN | RCC_PLLCFGR_PLLQEN;
// start PLL
RCC->CR |= RCC_CR_PLLON;
while ((RCC->CR & RCC_CR_PLLRDY) != RCC_CR_PLLRDY);
// set system clock to PLL
RCC->CFGR &= ~(RCC_CFGR_SW);
RCC->CFGR &= ~(RCC_CFGR_HPRE_Msk);
RCC->CFGR |= RCC_CFGR_SW_PLL;
while ((RCC->CFGR & RCC_CFGR_SWS_PLL) != RCC_CFGR_SWS_PLL);
// SysTick init. 80MHz / 80000 = 1kHz, ms precision
SysTick->LOAD = 80000;
SysTick->CTRL |= 0x07; // no div, interrupt, enable
// Prepare TIM2 for microsecond timing
NVIC_EnableIRQ(TIM2_IRQn);
RCC->APB1ENR1 |= RCC_APB1ENR1_TIM2EN;
TIM2->DIER |= TIM_DIER_UIE;
TIM2->PSC = 40 - 1;
TIM2->ARR = 100;
TIM2->CR1 |= TIM_CR1_OPM | TIM_CR1_CEN;
}
void clock_delay(uint32_t count)
{
uint32_t target = clock_ticks + count;
while (clock_ticks < target);
}
void clock_udelay(uint32_t count)
{
tim2_finished = 0;
TIM2->ARR = count;
TIM2->CR1 |= TIM_CR1_CEN;
while (tim2_finished == 0);
}
uint32_t clock_millis(void)
{
return clock_ticks;
}
void SysTick_Handler(void)
{
// just keep counting
clock_ticks++;
// task switch every four ticks (4ms)
if (!(clock_ticks & 3))
SCB->ICSR |= SCB_ICSR_PENDSVSET_Msk;
}
void TIM2_IRQHandler(void)
{
TIM2->SR &= ~(TIM_SR_UIF);
tim2_finished |= 1;
}
|