diff options
author | Clyne Sullivan <clyne@bitgloo.com> | 2025-01-29 21:34:25 -0500 |
---|---|---|
committer | Clyne Sullivan <clyne@bitgloo.com> | 2025-01-29 21:34:25 -0500 |
commit | 5b81bc8ccbd342b8566d88fc9f17a73aec03b5b6 (patch) | |
tree | cc57486912cfa74c6440d8b97c28f451ec787d78 /Drivers/CMSIS/DSP/ComputeLibrary/Include |
initial commit
Diffstat (limited to 'Drivers/CMSIS/DSP/ComputeLibrary/Include')
-rw-r--r-- | Drivers/CMSIS/DSP/ComputeLibrary/Include/NEMath.h | 414 |
1 files changed, 414 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/ComputeLibrary/Include/NEMath.h b/Drivers/CMSIS/DSP/ComputeLibrary/Include/NEMath.h new file mode 100644 index 0000000..29838bd --- /dev/null +++ b/Drivers/CMSIS/DSP/ComputeLibrary/Include/NEMath.h @@ -0,0 +1,414 @@ +/* + * Copyright (c) 2016, 2019 ARM Limited. + * + * SPDX-License-Identifier: MIT + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to + * deal in the Software without restriction, including without limitation the + * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or + * sell copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ +#ifndef __ARM_COMPUTE_NEMATH_H__ +#define __ARM_COMPUTE_NEMATH_H__ + + +#if defined(ARM_MATH_NEON) +/** Calculate floor of a vector. + * + * @param[in] val Input vector value in F32 format. + * + * @return The calculated floor vector. + */ +static inline float32x4_t vfloorq_f32(float32x4_t val); + +/** Calculate inverse square root. + * + * @param[in] x Input value. + * + * @return The calculated inverse square root. + */ +static inline float32x2_t vinvsqrt_f32(float32x2_t x); + +/** Calculate inverse square root. + * + * @param[in] x Input value. + * + * @return The calculated inverse square root. + */ +static inline float32x4_t vinvsqrtq_f32(float32x4_t x); + +/** Calculate reciprocal. + * + * @param[in] x Input value. + * + * @return The calculated reciprocal. + */ +static inline float32x2_t vinv_f32(float32x2_t x); + +/** Calculate reciprocal. + * + * @param[in] x Input value. + * + * @return The calculated reciprocal. + */ +static inline float32x4_t vinvq_f32(float32x4_t x); + +/** Perform a 7th degree polynomial approximation using Estrin's method. + * + * @param[in] x Input vector value in F32 format. + * @param[in] coeffs Polynomial coefficients table. (array of flattened float32x4_t vectors) + * + * @return The calculated approximation. + */ +static inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const float32_t *coeffs); + +/** Calculate exponential + * + * @param[in] x Input vector value in F32 format. + * + * @return The calculated exponent. + */ +static inline float32x4_t vexpq_f32(float32x4_t x); + +/** Calculate logarithm + * + * @param[in] x Input vector value in F32 format. + * + * @return The calculated logarithm. + */ +static inline float32x4_t vlogq_f32(float32x4_t x); + +/** Calculate hyperbolic tangent. + * + * tanh(x) = (e^2x - 1)/(e^2x + 1) + * + * @note We clamp x to [-5,5] to avoid overflowing issues. + * + * @param[in] val Input vector value in F32 format. + * + * @return The calculated Hyperbolic Tangent. + */ +static inline float32x4_t vtanhq_f32(float32x4_t val); + +/** Calculate n power of a number. + * + * pow(x,n) = e^(n*log(x)) + * + * @param[in] val Input vector value in F32 format. + * @param[in] n Powers to raise the input to. + * + * @return The calculated power. + */ +static inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n); + +#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC +/** Calculate hyperbolic tangent. + * + * tanh(x) = (e^2x - 1)/(e^2x + 1) + * + * @note We clamp x to [-5,5] to avoid overflowing issues. + * + * @param[in] val Input vector value in F32 format. + * + * @return The calculated Hyperbolic Tangent. + */ +static inline float16x8_t vtanhq_f16(float16x8_t val); + +/** Calculate reciprocal. + * + * @param[in] x Input value. + * + * @return The calculated reciprocal. + */ +static inline float16x4_t vinv_f16(float16x4_t x); + +/** Calculate reciprocal. + * + * @param[in] x Input value. + * + * @return The calculated reciprocal. + */ +static inline float16x8_t vinvq_f16(float16x8_t x); + +/** Calculate inverse square root. + * + * @param[in] x Input value. + * + * @return The calculated inverse square root. + */ +static inline float16x4_t vinvsqrt_f16(float16x4_t x); + +/** Calculate inverse square root. + * + * @param[in] x Input value. + * + * @return The calculated inverse square root. + */ +static inline float16x8_t vinvsqrtq_f16(float16x8_t x); + +/** Calculate exponential + * + * @param[in] x Input vector value in F16 format. + * + * @return The calculated exponent. + */ +static inline float16x8_t vexpq_f16(float16x8_t x); + +/** Calculate n power of a number. + * + * pow(x,n) = e^(n*log(x)) + * + * @param[in] val Input vector value in F16 format. + * @param[in] n Powers to raise the input to. + * + * @return The calculated power. + */ +static inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n); +#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ + +/** Exponent polynomial coefficients */ +extern const float32_t exp_tab[4*8]; + + +/** Logarithm polynomial coefficients */ +extern const float32_t log_tab[4*8]; + +#ifndef DOXYGEN_SKIP_THIS +inline float32x4_t vfloorq_f32(float32x4_t val) +{ + static const float32_t CONST_1[4] = {1.f,1.f,1.f,1.f}; + + const int32x4_t z = vcvtq_s32_f32(val); + const float32x4_t r = vcvtq_f32_s32(z); + + return vbslq_f32(vcgtq_f32(r, val), vsubq_f32(r, vld1q_f32(CONST_1)), r); +} + +inline float32x2_t vinvsqrt_f32(float32x2_t x) +{ + float32x2_t sqrt_reciprocal = vrsqrte_f32(x); + sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); + sqrt_reciprocal = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); + + return sqrt_reciprocal; +} + +inline float32x4_t vinvsqrtq_f32(float32x4_t x) +{ + float32x4_t sqrt_reciprocal = vrsqrteq_f32(x); + sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); + sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); + + return sqrt_reciprocal; +} + +inline float32x2_t vinv_f32(float32x2_t x) +{ + float32x2_t recip = vrecpe_f32(x); + recip = vmul_f32(vrecps_f32(x, recip), recip); + recip = vmul_f32(vrecps_f32(x, recip), recip); + return recip; +} + +inline float32x4_t vinvq_f32(float32x4_t x) +{ + float32x4_t recip = vrecpeq_f32(x); + recip = vmulq_f32(vrecpsq_f32(x, recip), recip); + recip = vmulq_f32(vrecpsq_f32(x, recip), recip); + return recip; +} + +inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const float32_t *coeffs) +{ + float32x4_t A = vmlaq_f32(vld1q_f32(&coeffs[4*0]), vld1q_f32(&coeffs[4*4]), x); + float32x4_t B = vmlaq_f32(vld1q_f32(&coeffs[4*2]), vld1q_f32(&coeffs[4*6]), x); + float32x4_t C = vmlaq_f32(vld1q_f32(&coeffs[4*1]), vld1q_f32(&coeffs[4*5]), x); + float32x4_t D = vmlaq_f32(vld1q_f32(&coeffs[4*3]), vld1q_f32(&coeffs[4*7]), x); + float32x4_t x2 = vmulq_f32(x, x); + float32x4_t x4 = vmulq_f32(x2, x2); + float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4); + return res; +} + +inline float32x4_t vexpq_f32(float32x4_t x) +{ + static const float32_t CONST_LN2[4] = {0.6931471805f,0.6931471805f,0.6931471805f,0.6931471805f}; // ln(2) + static const float32_t CONST_INV_LN2[4] = {1.4426950408f,1.4426950408f,1.4426950408f,1.4426950408f}; // 1/ln(2) + static const float32_t CONST_0[4] = {0.f,0.f,0.f,0.f}; + static const int32_t CONST_NEGATIVE_126[4] = {-126,-126,-126,-126}; + + // Perform range reduction [-log(2),log(2)] + int32x4_t m = vcvtq_s32_f32(vmulq_f32(x, vld1q_f32(CONST_INV_LN2))); + float32x4_t val = vmlsq_f32(x, vcvtq_f32_s32(m), vld1q_f32(CONST_LN2)); + + // Polynomial Approximation + float32x4_t poly = vtaylor_polyq_f32(val, exp_tab); + + // Reconstruct + poly = vreinterpretq_f32_s32(vqaddq_s32(vreinterpretq_s32_f32(poly), vqshlq_n_s32(m, 23))); + poly = vbslq_f32(vcltq_s32(m, vld1q_s32(CONST_NEGATIVE_126)), vld1q_f32(CONST_0), poly); + + return poly; +} + +inline float32x4_t vlogq_f32(float32x4_t x) +{ + static const int32_t CONST_127[4] = {127,127,127,127}; // 127 + static const float32_t CONST_LN2[4] = {0.6931471805f,0.6931471805f,0.6931471805f,0.6931471805f}; // ln(2) + + // Extract exponent + int32x4_t m = vsubq_s32(vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), vld1q_s32(CONST_127)); + float32x4_t val = vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23))); + + // Polynomial Approximation + float32x4_t poly = vtaylor_polyq_f32(val, log_tab); + + // Reconstruct + poly = vmlaq_f32(poly, vcvtq_f32_s32(m), vld1q_f32(CONST_LN2)); + + return poly; +} + +inline float32x4_t vtanhq_f32(float32x4_t val) +{ + static const float32_t CONST_1[4] = {1.f,1.f,1.f,1.f}; + static const float32_t CONST_2[4] = {2.f,2.f,2.f,2.f}; + static const float32_t CONST_MIN_TANH[4] = {-10.f,-10.f,-10.f,-10.f}; + static const float32_t CONST_MAX_TANH[4] = {10.f,10.f,10.f,10.f}; + + float32x4_t x = vminq_f32(vmaxq_f32(val, vld1q_f32(CONST_MIN_TANH)), vld1q_f32(CONST_MAX_TANH)); + float32x4_t exp2x = vexpq_f32(vmulq_f32(vld1q_f32(CONST_2), x)); + float32x4_t num = vsubq_f32(exp2x, vld1q_f32(CONST_1)); + float32x4_t den = vaddq_f32(exp2x, vld1q_f32(CONST_1)); + float32x4_t tanh = vmulq_f32(num, vinvq_f32(den)); + return tanh; +} + +inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n) +{ + return vexpq_f32(vmulq_f32(n, vlogq_f32(val))); +} +#endif /* DOXYGEN_SKIP_THIS */ + +#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC +/** Exponent polynomial coefficients */ +/** Logarithm polynomial coefficients */ +#ifndef DOXYGEN_SKIP_THIS +inline float16x8_t vfloorq_f16(float16x8_t val) +{ + static const float16_t CONST_1[8] = {1.f,1.f,1.f,1.f,1.f,1.f,1.f,1.f}; + + const int16x8_t z = vcvtq_s16_f16(val); + const float16x8_t r = vcvtq_f16_s16(z); + + return vbslq_f16(vcgtq_f16(r, val), vsubq_f16(r, vld1q_f16(CONST_1)), r); +} +inline float16x4_t vinvsqrt_f16(float16x4_t x) +{ + float16x4_t sqrt_reciprocal = vrsqrte_f16(x); + sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); + sqrt_reciprocal = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); + return sqrt_reciprocal; +} + +inline float16x8_t vinvsqrtq_f16(float16x8_t x) +{ + float16x8_t sqrt_reciprocal = vrsqrteq_f16(x); + sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); + sqrt_reciprocal = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal); + return sqrt_reciprocal; +} + +inline float16x4_t vinv_f16(float16x4_t x) +{ + float16x4_t recip = vrecpe_f16(x); + recip = vmul_f16(vrecps_f16(x, recip), recip); + recip = vmul_f16(vrecps_f16(x, recip), recip); + return recip; +} + +inline float16x8_t vinvq_f16(float16x8_t x) +{ + float16x8_t recip = vrecpeq_f16(x); + recip = vmulq_f16(vrecpsq_f16(x, recip), recip); + recip = vmulq_f16(vrecpsq_f16(x, recip), recip); + return recip; +} + +inline float16x8_t vtanhq_f16(float16x8_t val) +{ + const float16_t CONST_1[8] = {1.f,1.f,1.f,1.f,1.f,1.f,1.f,1.f}; + const float16_t CONST_2[8] = {2.f,2.f,2.f,2.f,2.f,2.f,2.f,2.f}; + const float16_t CONST_MIN_TANH[8] = {-10.f,-10.f,-10.f,-10.f,-10.f,-10.f,-10.f,-10.f}; + const float16_t CONST_MAX_TANH[8] = {10.f,10.f,10.f,10.f,10.f,10.f,10.f,10.f}; + + const float16x8_t x = vminq_f16(vmaxq_f16(val, vld1q_f16(CONST_MIN_TANH)), vld1q_f16(CONST_MAX_TANH)); + const float16x8_t exp2x = vexpq_f16(vmulq_f16(vld1q_f16(CONST_2), x)); + const float16x8_t num = vsubq_f16(exp2x, vld1q_f16(CONST_1)); + const float16x8_t den = vaddq_f16(exp2x, vld1q_f16(CONST_1)); + const float16x8_t tanh = vmulq_f16(num, vinvq_f16(den)); + return tanh; +} + +inline float16x8_t vtaylor_polyq_f16(float16x8_t x, const float16_t *coeffs) +{ + const float16x8_t A = vaddq_f16(vld1q_f16(&coeffs[8*0]), vmulq_f16(vld1q_f16(&coeffs[8*4]), x)); + const float16x8_t B = vaddq_f16(vld1q_f16(&coeffs[8*2]), vmulq_f16(vld1q_f16(&coeffs[8*6]), x)); + const float16x8_t C = vaddq_f16(vld1q_f16(&coeffs[8*1]), vmulq_f16(vld1q_f16(&coeffs[8*5]), x)); + const float16x8_t D = vaddq_f16(vld1q_f16(&coeffs[8*3]), vmulq_f16(vld1q_f16(&coeffs[8*7]), x)); + const float16x8_t x2 = vmulq_f16(x, x); + const float16x8_t x4 = vmulq_f16(x2, x2); + const float16x8_t res = vaddq_f16(vaddq_f16(A, vmulq_f16(B, x2)), vmulq_f16(vaddq_f16(C, vmulq_f16(D, x2)), x4)); + return res; +} + +inline float16x8_t vexpq_f16(float16x8_t x) +{ + // TODO (COMPMID-1535) : Revisit FP16 approximations + const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x)); + const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x)); + + const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vexpq_f32(x_low)), vexpq_f32(x_high)); + return res; +} + +inline float16x8_t vlogq_f16(float16x8_t x) +{ + // TODO (COMPMID-1535) : Revisit FP16 approximations + const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x)); + const float32x4_t x_low = vcvt_f32_f16(vget_low_f16(x)); + + const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vlogq_f32(x_low)), vlogq_f32(x_high)); + return res; +} + +inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n) +{ + // TODO (giaiod01) - COMPMID-1535 + float32x4_t n0_f32 = vcvt_f32_f16(vget_low_f16(n)); + float32x4_t n1_f32 = vcvt_f32_f16(vget_high_f16(n)); + float32x4_t val0_f32 = vcvt_f32_f16(vget_low_f16(val)); + float32x4_t val1_f32 = vcvt_f32_f16(vget_high_f16(val)); + + float32x4_t res0_f32 = vexpq_f32(vmulq_f32(n0_f32, vlogq_f32(val0_f32))); + float32x4_t res1_f32 = vexpq_f32(vmulq_f32(n1_f32, vlogq_f32(val1_f32))); + + return vcombine_f16(vcvt_f16_f32(res0_f32), vcvt_f16_f32(res1_f32)); +} +#endif /* DOXYGEN_SKIP_THIS */ +#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */ +#endif +#endif /* __ARM_COMPUTE_NEMATH_H__ */ |