diff options
author | Clyne Sullivan <clyne@bitgloo.com> | 2025-01-29 21:34:25 -0500 |
---|---|---|
committer | Clyne Sullivan <clyne@bitgloo.com> | 2025-01-29 21:34:25 -0500 |
commit | 5b81bc8ccbd342b8566d88fc9f17a73aec03b5b6 (patch) | |
tree | cc57486912cfa74c6440d8b97c28f451ec787d78 /Drivers/CMSIS/DSP/Source/BayesFunctions |
initial commit
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/BayesFunctions')
5 files changed, 682 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/BayesFunctions/BayesFunctions.c b/Drivers/CMSIS/DSP/Source/BayesFunctions/BayesFunctions.c new file mode 100644 index 0000000..4a553dc --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/BayesFunctions/BayesFunctions.c @@ -0,0 +1,29 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: BayesFunctions.c + * Description: Combination of all bayes function source files. + * + * $Date: 16. March 2020 + * $Revision: V1.0.0 + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2020 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_gaussian_naive_bayes_predict_f32.c" diff --git a/Drivers/CMSIS/DSP/Source/BayesFunctions/BayesFunctionsF16.c b/Drivers/CMSIS/DSP/Source/BayesFunctions/BayesFunctionsF16.c new file mode 100644 index 0000000..57ced8c --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/BayesFunctions/BayesFunctionsF16.c @@ -0,0 +1,27 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: BayesFunctions.c + * Description: Combination of all bayes function f16 source files. + * + * + * Target Processor: Cortex-M cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2020 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "arm_gaussian_naive_bayes_predict_f16.c" diff --git a/Drivers/CMSIS/DSP/Source/BayesFunctions/CMakeLists.txt b/Drivers/CMSIS/DSP/Source/BayesFunctions/CMakeLists.txt new file mode 100644 index 0000000..72a202d --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/BayesFunctions/CMakeLists.txt @@ -0,0 +1,23 @@ +cmake_minimum_required (VERSION 3.14) + +project(CMSISDSPBayes) + +include(configLib) +include(configDsp) + +file(GLOB SRC "./*_*.c") + +add_library(CMSISDSPBayes STATIC) + +target_sources(CMSISDSPBayes PRIVATE arm_gaussian_naive_bayes_predict_f32.c) + +configLib(CMSISDSPBayes ${ROOT}) +configDsp(CMSISDSPBayes ${ROOT}) + +### Includes +target_include_directories(CMSISDSPBayes PUBLIC "${DSP}/Include") + +if ((NOT ARMAC5) AND (NOT DISABLEFLOAT16)) +target_sources(CMSISDSPBayes PRIVATE arm_gaussian_naive_bayes_predict_f16.c) +endif() + diff --git a/Drivers/CMSIS/DSP/Source/BayesFunctions/arm_gaussian_naive_bayes_predict_f16.c b/Drivers/CMSIS/DSP/Source/BayesFunctions/arm_gaussian_naive_bayes_predict_f16.c new file mode 100644 index 0000000..e3b2ef6 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/BayesFunctions/arm_gaussian_naive_bayes_predict_f16.c @@ -0,0 +1,207 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_naive_gaussian_bayes_predict_f16 + * Description: Naive Gaussian Bayesian Estimator + * + * $Date: 23 April 2021 + * $Revision: V1.9.0 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "dsp/bayes_functions_f16.h" + +#if defined(ARM_FLOAT16_SUPPORTED) + +#include <limits.h> +#include <math.h> + + +/** + * @addtogroup groupBayes + * @{ + */ + +/** + * @brief Naive Gaussian Bayesian Estimator + * + * @param[in] *S points to a naive bayes instance structure + * @param[in] *in points to the elements of the input vector. + * @param[out] *pOutputProbabilities points to a buffer of length numberOfClasses containing estimated probabilities + * @param[out] *pBufferB points to a temporary buffer of length numberOfClasses + * @return The predicted class + * + * + */ + +#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) + +#include "arm_helium_utils.h" +#include "arm_vec_math_f16.h" + +uint32_t arm_gaussian_naive_bayes_predict_f16(const arm_gaussian_naive_bayes_instance_f16 *S, + const float16_t * in, + float16_t *pOutputProbabilities, + float16_t *pBufferB + ) +{ + uint32_t nbClass; + const float16_t *pTheta = S->theta; + const float16_t *pSigma = S->sigma; + float16_t *buffer = pOutputProbabilities; + const float16_t *pIn = in; + float16_t result; + f16x8_t vsigma; + _Float16 tmp; + f16x8_t vacc1, vacc2; + uint32_t index; + float16_t *logclassPriors=pBufferB; + float16_t *pLogPrior = logclassPriors; + + arm_vlog_f16((float16_t *) S->classPriors, logclassPriors, S->numberOfClasses); + + pTheta = S->theta; + pSigma = S->sigma; + + for (nbClass = 0; nbClass < S->numberOfClasses; nbClass++) { + pIn = in; + + vacc1 = vdupq_n_f16(0.0f16); + vacc2 = vdupq_n_f16(0.0f16); + + uint32_t blkCnt =S->vectorDimension >> 3; + while (blkCnt > 0U) { + f16x8_t vinvSigma, vtmp; + + vsigma = vaddq_n_f16(vld1q(pSigma), S->epsilon); + vacc1 = vaddq(vacc1, vlogq_f16(vmulq_n_f16(vsigma, 2.0f16 * (_Float16)PI))); + + vinvSigma = vrecip_medprec_f16(vsigma); + + vtmp = vsubq(vld1q(pIn), vld1q(pTheta)); + /* squaring */ + vtmp = vmulq(vtmp, vtmp); + + vacc2 = vfmaq(vacc2, vtmp, vinvSigma); + + pIn += 8; + pTheta += 8; + pSigma += 8; + blkCnt--; + } + + blkCnt = S->vectorDimension & 7; + if (blkCnt > 0U) { + mve_pred16_t p0 = vctp16q(blkCnt); + f16x8_t vinvSigma, vtmp; + + vsigma = vaddq_n_f16(vld1q(pSigma), S->epsilon); + vacc1 = + vaddq_m_f16(vacc1, vacc1, vlogq_f16(vmulq_n_f16(vsigma, 2.0f16 * (_Float16)PI)), p0); + + vinvSigma = vrecip_medprec_f16(vsigma); + + vtmp = vsubq(vld1q(pIn), vld1q(pTheta)); + /* squaring */ + vtmp = vmulq(vtmp, vtmp); + + vacc2 = vfmaq_m_f16(vacc2, vtmp, vinvSigma, p0); + + pTheta += blkCnt; + pSigma += blkCnt; + } + + tmp = -0.5f16 * (_Float16)vecAddAcrossF16Mve(vacc1); + tmp -= 0.5f16 * (_Float16)vecAddAcrossF16Mve(vacc2); + + *buffer = (_Float16)tmp + (_Float16)*pLogPrior++; + buffer++; + } + + arm_max_f16(pOutputProbabilities, S->numberOfClasses, &result, &index); + + return (index); +} + +#else + +uint32_t arm_gaussian_naive_bayes_predict_f16(const arm_gaussian_naive_bayes_instance_f16 *S, + const float16_t * in, + float16_t *pOutputProbabilities, + float16_t *pBufferB) +{ + uint32_t nbClass; + uint32_t nbDim; + const float16_t *pPrior = S->classPriors; + const float16_t *pTheta = S->theta; + const float16_t *pSigma = S->sigma; + float16_t *buffer = pOutputProbabilities; + const float16_t *pIn=in; + float16_t result; + _Float16 sigma; + _Float16 tmp; + _Float16 acc1,acc2; + uint32_t index; + (void)pBufferB; + + pTheta=S->theta; + pSigma=S->sigma; + + for(nbClass = 0; nbClass < S->numberOfClasses; nbClass++) + { + + + pIn = in; + + tmp = 0.0f16; + acc1 = 0.0f16; + acc2 = 0.0f16; + for(nbDim = 0; nbDim < S->vectorDimension; nbDim++) + { + sigma = (_Float16)*pSigma + (_Float16)S->epsilon; + acc1 += (_Float16)logf(2.0f * PI * (float32_t)sigma); + acc2 += ((_Float16)*pIn - (_Float16)*pTheta) * ((_Float16)*pIn - (_Float16)*pTheta) / (_Float16)sigma; + + pIn++; + pTheta++; + pSigma++; + } + + tmp = -0.5f16 * (_Float16)acc1; + tmp -= 0.5f16 * (_Float16)acc2; + + + *buffer = (_Float16)tmp + (_Float16)logf((float32_t)*pPrior++); + buffer++; + } + + arm_max_f16(pOutputProbabilities,S->numberOfClasses,&result,&index); + + return(index); +} + +#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ + +/** + * @} end of groupBayes group + */ + +#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */ + diff --git a/Drivers/CMSIS/DSP/Source/BayesFunctions/arm_gaussian_naive_bayes_predict_f32.c b/Drivers/CMSIS/DSP/Source/BayesFunctions/arm_gaussian_naive_bayes_predict_f32.c new file mode 100644 index 0000000..56331ff --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/BayesFunctions/arm_gaussian_naive_bayes_predict_f32.c @@ -0,0 +1,396 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_naive_gaussian_bayes_predict_f32 + * Description: Naive Gaussian Bayesian Estimator + * + * $Date: 23 April 2021 + * $Revision: V1.9.0 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "dsp/bayes_functions.h" +#include <limits.h> +#include <math.h> + +#define PI_F 3.1415926535897932384626433832795f +#define DPI_F (2.0f*3.1415926535897932384626433832795f) + +/** + * @addtogroup groupBayes + * @{ + */ + +/** + * @brief Naive Gaussian Bayesian Estimator + * + * @param[in] *S points to a naive bayes instance structure + * @param[in] *in points to the elements of the input vector. + * @param[out] *pOutputProbabilities points to a buffer of length numberOfClasses containing estimated probabilities + * @param[out] *pBufferB points to a temporary buffer of length numberOfClasses + * @return The predicted class + * + * + */ + +#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) + +#include "arm_helium_utils.h" +#include "arm_vec_math.h" + +uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S, + const float32_t * in, + float32_t *pOutputProbabilities, + float32_t *pBufferB + ) +{ + uint32_t nbClass; + const float32_t *pTheta = S->theta; + const float32_t *pSigma = S->sigma; + float32_t *buffer = pOutputProbabilities; + const float32_t *pIn = in; + float32_t result; + f32x4_t vsigma; + float32_t tmp; + f32x4_t vacc1, vacc2; + uint32_t index; + float32_t *logclassPriors=pBufferB; + float32_t *pLogPrior = logclassPriors; + + arm_vlog_f32((float32_t *) S->classPriors, logclassPriors, S->numberOfClasses); + + pTheta = S->theta; + pSigma = S->sigma; + + for (nbClass = 0; nbClass < S->numberOfClasses; nbClass++) { + pIn = in; + + vacc1 = vdupq_n_f32(0); + vacc2 = vdupq_n_f32(0); + + uint32_t blkCnt =S->vectorDimension >> 2; + while (blkCnt > 0U) { + f32x4_t vinvSigma, vtmp; + + vsigma = vaddq_n_f32(vld1q(pSigma), S->epsilon); + vacc1 = vaddq(vacc1, vlogq_f32(vmulq_n_f32(vsigma, 2.0f * PI))); + + vinvSigma = vrecip_medprec_f32(vsigma); + + vtmp = vsubq(vld1q(pIn), vld1q(pTheta)); + /* squaring */ + vtmp = vmulq(vtmp, vtmp); + + vacc2 = vfmaq(vacc2, vtmp, vinvSigma); + + pIn += 4; + pTheta += 4; + pSigma += 4; + blkCnt--; + } + + blkCnt = S->vectorDimension & 3; + if (blkCnt > 0U) { + mve_pred16_t p0 = vctp32q(blkCnt); + f32x4_t vinvSigma, vtmp; + + vsigma = vaddq_n_f32(vld1q(pSigma), S->epsilon); + vacc1 = + vaddq_m_f32(vacc1, vacc1, vlogq_f32(vmulq_n_f32(vsigma, 2.0f * PI)), p0); + + vinvSigma = vrecip_medprec_f32(vsigma); + + vtmp = vsubq(vld1q(pIn), vld1q(pTheta)); + /* squaring */ + vtmp = vmulq(vtmp, vtmp); + + vacc2 = vfmaq_m_f32(vacc2, vtmp, vinvSigma, p0); + + pTheta += blkCnt; + pSigma += blkCnt; + } + + tmp = -0.5f * vecAddAcrossF32Mve(vacc1); + tmp -= 0.5f * vecAddAcrossF32Mve(vacc2); + + *buffer = tmp + *pLogPrior++; + buffer++; + } + + arm_max_f32(pOutputProbabilities, S->numberOfClasses, &result, &index); + + return (index); +} + +#else + +#if defined(ARM_MATH_NEON) + +#include "NEMath.h" + + + +uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S, + const float32_t * in, + float32_t *pOutputProbabilities, + float32_t *pBufferB) +{ + + const float32_t *pPrior = S->classPriors; + + const float32_t *pTheta = S->theta; + const float32_t *pSigma = S->sigma; + + const float32_t *pTheta1 = S->theta + S->vectorDimension; + const float32_t *pSigma1 = S->sigma + S->vectorDimension; + + float32_t *buffer = pOutputProbabilities; + const float32_t *pIn=in; + + float32_t result; + float32_t sigma,sigma1; + float32_t tmp,tmp1; + uint32_t index; + uint32_t vecBlkCnt; + uint32_t classBlkCnt; + float32x4_t epsilonV; + float32x4_t sigmaV,sigmaV1; + float32x4_t tmpV,tmpVb,tmpV1; + float32x2_t tmpV2; + float32x4_t thetaV,thetaV1; + float32x4_t inV; + (void)pBufferB; + + epsilonV = vdupq_n_f32(S->epsilon); + + classBlkCnt = S->numberOfClasses >> 1; + while(classBlkCnt > 0) + { + + + pIn = in; + + tmp = logf(*pPrior++); + tmp1 = logf(*pPrior++); + tmpV = vdupq_n_f32(0.0f); + tmpV1 = vdupq_n_f32(0.0f); + + vecBlkCnt = S->vectorDimension >> 2; + while(vecBlkCnt > 0) + { + sigmaV = vld1q_f32(pSigma); + thetaV = vld1q_f32(pTheta); + + sigmaV1 = vld1q_f32(pSigma1); + thetaV1 = vld1q_f32(pTheta1); + + inV = vld1q_f32(pIn); + + sigmaV = vaddq_f32(sigmaV, epsilonV); + sigmaV1 = vaddq_f32(sigmaV1, epsilonV); + + tmpVb = vmulq_n_f32(sigmaV,DPI_F); + tmpVb = vlogq_f32(tmpVb); + tmpV = vmlsq_n_f32(tmpV,tmpVb,0.5f); + + tmpVb = vmulq_n_f32(sigmaV1,DPI_F); + tmpVb = vlogq_f32(tmpVb); + tmpV1 = vmlsq_n_f32(tmpV1,tmpVb,0.5f); + + tmpVb = vsubq_f32(inV,thetaV); + tmpVb = vmulq_f32(tmpVb,tmpVb); + tmpVb = vmulq_f32(tmpVb, vinvq_f32(sigmaV)); + tmpV = vmlsq_n_f32(tmpV,tmpVb,0.5f); + + tmpVb = vsubq_f32(inV,thetaV1); + tmpVb = vmulq_f32(tmpVb,tmpVb); + tmpVb = vmulq_f32(tmpVb, vinvq_f32(sigmaV1)); + tmpV1 = vmlsq_n_f32(tmpV1,tmpVb,0.5f); + + pIn += 4; + pTheta += 4; + pSigma += 4; + pTheta1 += 4; + pSigma1 += 4; + + vecBlkCnt--; + } + tmpV2 = vpadd_f32(vget_low_f32(tmpV),vget_high_f32(tmpV)); + tmp += vget_lane_f32(tmpV2, 0) + vget_lane_f32(tmpV2, 1); + + tmpV2 = vpadd_f32(vget_low_f32(tmpV1),vget_high_f32(tmpV1)); + tmp1 += vget_lane_f32(tmpV2, 0) + vget_lane_f32(tmpV2, 1); + + vecBlkCnt = S->vectorDimension & 3; + while(vecBlkCnt > 0) + { + sigma = *pSigma + S->epsilon; + sigma1 = *pSigma1 + S->epsilon; + + tmp -= 0.5f*logf(2.0f * PI_F * sigma); + tmp -= 0.5f*(*pIn - *pTheta) * (*pIn - *pTheta) / sigma; + + tmp1 -= 0.5f*logf(2.0f * PI_F * sigma1); + tmp1 -= 0.5f*(*pIn - *pTheta1) * (*pIn - *pTheta1) / sigma1; + + pIn++; + pTheta++; + pSigma++; + pTheta1++; + pSigma1++; + vecBlkCnt--; + } + + *buffer++ = tmp; + *buffer++ = tmp1; + + pSigma += S->vectorDimension; + pTheta += S->vectorDimension; + pSigma1 += S->vectorDimension; + pTheta1 += S->vectorDimension; + + classBlkCnt--; + } + + classBlkCnt = S->numberOfClasses & 1; + + while(classBlkCnt > 0) + { + + + pIn = in; + + tmp = logf(*pPrior++); + tmpV = vdupq_n_f32(0.0f); + + vecBlkCnt = S->vectorDimension >> 2; + while(vecBlkCnt > 0) + { + sigmaV = vld1q_f32(pSigma); + thetaV = vld1q_f32(pTheta); + inV = vld1q_f32(pIn); + + sigmaV = vaddq_f32(sigmaV, epsilonV); + + tmpVb = vmulq_n_f32(sigmaV,DPI_F); + tmpVb = vlogq_f32(tmpVb); + tmpV = vmlsq_n_f32(tmpV,tmpVb,0.5f); + + tmpVb = vsubq_f32(inV,thetaV); + tmpVb = vmulq_f32(tmpVb,tmpVb); + tmpVb = vmulq_f32(tmpVb, vinvq_f32(sigmaV)); + tmpV = vmlsq_n_f32(tmpV,tmpVb,0.5f); + + pIn += 4; + pTheta += 4; + pSigma += 4; + + vecBlkCnt--; + } + tmpV2 = vpadd_f32(vget_low_f32(tmpV),vget_high_f32(tmpV)); + tmp += vget_lane_f32(tmpV2, 0) + vget_lane_f32(tmpV2, 1); + + vecBlkCnt = S->vectorDimension & 3; + while(vecBlkCnt > 0) + { + sigma = *pSigma + S->epsilon; + tmp -= 0.5f*logf(2.0f * PI_F * sigma); + tmp -= 0.5f*(*pIn - *pTheta) * (*pIn - *pTheta) / sigma; + + pIn++; + pTheta++; + pSigma++; + vecBlkCnt--; + } + + *buffer++ = tmp; + + classBlkCnt--; + } + + arm_max_f32(pOutputProbabilities,S->numberOfClasses,&result,&index); + + return(index); +} + +#else + +uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S, + const float32_t * in, + float32_t *pOutputProbabilities, + float32_t *pBufferB) +{ + uint32_t nbClass; + uint32_t nbDim; + const float32_t *pPrior = S->classPriors; + const float32_t *pTheta = S->theta; + const float32_t *pSigma = S->sigma; + float32_t *buffer = pOutputProbabilities; + const float32_t *pIn=in; + float32_t result; + float32_t sigma; + float32_t tmp; + float32_t acc1,acc2; + uint32_t index; + + (void)pBufferB; + + pTheta=S->theta; + pSigma=S->sigma; + + for(nbClass = 0; nbClass < S->numberOfClasses; nbClass++) + { + + + pIn = in; + + tmp = 0.0; + acc1 = 0.0f; + acc2 = 0.0f; + for(nbDim = 0; nbDim < S->vectorDimension; nbDim++) + { + sigma = *pSigma + S->epsilon; + acc1 += logf(2.0f * PI_F * sigma); + acc2 += (*pIn - *pTheta) * (*pIn - *pTheta) / sigma; + + pIn++; + pTheta++; + pSigma++; + } + + tmp = -0.5f * acc1; + tmp -= 0.5f * acc2; + + + *buffer = tmp + logf(*pPrior++); + buffer++; + } + + arm_max_f32(pOutputProbabilities,S->numberOfClasses,&result,&index); + + return(index); +} + +#endif +#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ + +/** + * @} end of groupBayes group + */ |