diff options
author | Clyne Sullivan <clyne@bitgloo.com> | 2025-01-29 21:34:25 -0500 |
---|---|---|
committer | Clyne Sullivan <clyne@bitgloo.com> | 2025-01-29 21:34:25 -0500 |
commit | 5b81bc8ccbd342b8566d88fc9f17a73aec03b5b6 (patch) | |
tree | cc57486912cfa74c6440d8b97c28f451ec787d78 /Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c |
initial commit
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c')
-rw-r--r-- | Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c | 273 |
1 files changed, 273 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c b/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c new file mode 100644 index 0000000..aac6fba --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c @@ -0,0 +1,273 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_cmplx_mag_f32.c + * Description: Floating-point complex magnitude + * + * $Date: 23 April 2021 + * $Revision: V1.9.0 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "dsp/complex_math_functions.h" + +/** + @ingroup groupCmplxMath + */ + +/** + @defgroup cmplx_mag Complex Magnitude + + Computes the magnitude of the elements of a complex data vector. + + The <code>pSrc</code> points to the source data and + <code>pDst</code> points to the where the result should be written. + <code>numSamples</code> specifies the number of complex samples + in the input array and the data is stored in an interleaved fashion + (real, imag, real, imag, ...). + The input array has a total of <code>2*numSamples</code> values; + the output array has a total of <code>numSamples</code> values. + + The underlying algorithm is used: + + <pre> + for (n = 0; n < numSamples; n++) { + pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2); + } + </pre> + + There are separate functions for floating-point, Q15, and Q31 data types. + */ + +/** + @addtogroup cmplx_mag + @{ + */ + +/** + @brief Floating-point complex magnitude. + @param[in] pSrc points to input vector + @param[out] pDst points to output vector + @param[in] numSamples number of samples in each vector + @return none + */ + +#if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE) +#include "arm_vec_math.h" +#endif + +#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) + +#include "arm_helium_utils.h" + + +void arm_cmplx_mag_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t numSamples) +{ + int32_t blockSize = numSamples; /* loop counters */ + uint32_t blkCnt; /* loop counters */ + f32x4x2_t vecSrc; + f32x4_t sum; + float32_t real, imag; /* Temporary variables to hold input values */ + + /* Compute 4 complex samples at a time */ + blkCnt = blockSize >> 2; + while (blkCnt > 0U) + { + q31x4_t newtonStartVec; + f32x4_t sumHalf, invSqrt; + + vecSrc = vld2q(pSrc); + pSrc += 8; + sum = vmulq(vecSrc.val[0], vecSrc.val[0]); + sum = vfmaq(sum, vecSrc.val[1], vecSrc.val[1]); + + /* + * inlined Fast SQRT using inverse SQRT newton-raphson method + */ + + /* compute initial value */ + newtonStartVec = vdupq_n_s32(INVSQRT_MAGIC_F32) - vshrq((q31x4_t) sum, 1); + sumHalf = sum * 0.5f; + /* + * compute 3 x iterations + * + * The more iterations, the more accuracy. + * If you need to trade a bit of accuracy for more performance, + * you can comment out the 3rd use of the macro. + */ + INVSQRT_NEWTON_MVE_F32(invSqrt, sumHalf, (f32x4_t) newtonStartVec); + INVSQRT_NEWTON_MVE_F32(invSqrt, sumHalf, invSqrt); + INVSQRT_NEWTON_MVE_F32(invSqrt, sumHalf, invSqrt); + /* + * set negative values to 0 + */ + invSqrt = vdupq_m(invSqrt, 0.0f, vcmpltq(invSqrt, 0.0f)); + /* + * sqrt(x) = x * invSqrt(x) + */ + sum = vmulq(sum, invSqrt); + vst1q(pDst, sum); + pDst += 4; + /* + * Decrement the blockSize loop counter + */ + blkCnt--; + } + /* + * tail + */ + blkCnt = blockSize & 3; + while (blkCnt > 0U) + { + /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ + + real = *pSrc++; + imag = *pSrc++; + + /* store result in destination buffer. */ + arm_sqrt_f32((real * real) + (imag * imag), pDst++); + + /* Decrement loop counter */ + blkCnt--; + } +} + +#else +void arm_cmplx_mag_f32( + const float32_t * pSrc, + float32_t * pDst, + uint32_t numSamples) +{ + uint32_t blkCnt; /* loop counter */ + float32_t real, imag; /* Temporary variables to hold input values */ + +#if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE) + + float32x4x2_t vecA; + float32x4_t vRealA; + float32x4_t vImagA; + float32x4_t vMagSqA; + + float32x4x2_t vecB; + float32x4_t vRealB; + float32x4_t vImagB; + float32x4_t vMagSqB; + + /* Loop unrolling: Compute 8 outputs at a time */ + blkCnt = numSamples >> 3; + + while (blkCnt > 0U) + { + /* out = sqrt((real * real) + (imag * imag)) */ + + vecA = vld2q_f32(pSrc); + pSrc += 8; + + vecB = vld2q_f32(pSrc); + pSrc += 8; + + vRealA = vmulq_f32(vecA.val[0], vecA.val[0]); + vImagA = vmulq_f32(vecA.val[1], vecA.val[1]); + vMagSqA = vaddq_f32(vRealA, vImagA); + + vRealB = vmulq_f32(vecB.val[0], vecB.val[0]); + vImagB = vmulq_f32(vecB.val[1], vecB.val[1]); + vMagSqB = vaddq_f32(vRealB, vImagB); + + /* Store the result in the destination buffer. */ + vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqA)); + pDst += 4; + + vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqB)); + pDst += 4; + + /* Decrement the loop counter */ + blkCnt--; + } + + blkCnt = numSamples & 7; + +#else + +#if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE) + + /* Loop unrolling: Compute 4 outputs at a time */ + blkCnt = numSamples >> 2U; + + while (blkCnt > 0U) + { + /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ + + real = *pSrc++; + imag = *pSrc++; + + /* store result in destination buffer. */ + arm_sqrt_f32((real * real) + (imag * imag), pDst++); + + real = *pSrc++; + imag = *pSrc++; + arm_sqrt_f32((real * real) + (imag * imag), pDst++); + + real = *pSrc++; + imag = *pSrc++; + arm_sqrt_f32((real * real) + (imag * imag), pDst++); + + real = *pSrc++; + imag = *pSrc++; + arm_sqrt_f32((real * real) + (imag * imag), pDst++); + + /* Decrement loop counter */ + blkCnt--; + } + + /* Loop unrolling: Compute remaining outputs */ + blkCnt = numSamples % 0x4U; + +#else + + /* Initialize blkCnt with number of samples */ + blkCnt = numSamples; + +#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ +#endif /* #if defined(ARM_MATH_NEON) */ + + while (blkCnt > 0U) + { + /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ + + real = *pSrc++; + imag = *pSrc++; + + /* store result in destination buffer. */ + arm_sqrt_f32((real * real) + (imag * imag), pDst++); + + /* Decrement loop counter */ + blkCnt--; + } + +} +#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ + +/** + @} end of cmplx_mag group + */ |