summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c
diff options
context:
space:
mode:
authorClyne Sullivan <clyne@bitgloo.com>2025-01-29 21:34:25 -0500
committerClyne Sullivan <clyne@bitgloo.com>2025-01-29 21:34:25 -0500
commit5b81bc8ccbd342b8566d88fc9f17a73aec03b5b6 (patch)
treecc57486912cfa74c6440d8b97c28f451ec787d78 /Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c
initial commit
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c273
1 files changed, 273 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c b/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c
new file mode 100644
index 0000000..aac6fba
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c
@@ -0,0 +1,273 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_cmplx_mag_f32.c
+ * Description: Floating-point complex magnitude
+ *
+ * $Date: 23 April 2021
+ * $Revision: V1.9.0
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dsp/complex_math_functions.h"
+
+/**
+ @ingroup groupCmplxMath
+ */
+
+/**
+ @defgroup cmplx_mag Complex Magnitude
+
+ Computes the magnitude of the elements of a complex data vector.
+
+ The <code>pSrc</code> points to the source data and
+ <code>pDst</code> points to the where the result should be written.
+ <code>numSamples</code> specifies the number of complex samples
+ in the input array and the data is stored in an interleaved fashion
+ (real, imag, real, imag, ...).
+ The input array has a total of <code>2*numSamples</code> values;
+ the output array has a total of <code>numSamples</code> values.
+
+ The underlying algorithm is used:
+
+ <pre>
+ for (n = 0; n < numSamples; n++) {
+ pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2);
+ }
+ </pre>
+
+ There are separate functions for floating-point, Q15, and Q31 data types.
+ */
+
+/**
+ @addtogroup cmplx_mag
+ @{
+ */
+
+/**
+ @brief Floating-point complex magnitude.
+ @param[in] pSrc points to input vector
+ @param[out] pDst points to output vector
+ @param[in] numSamples number of samples in each vector
+ @return none
+ */
+
+#if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
+#include "arm_vec_math.h"
+#endif
+
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#include "arm_helium_utils.h"
+
+
+void arm_cmplx_mag_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples)
+{
+ int32_t blockSize = numSamples; /* loop counters */
+ uint32_t blkCnt; /* loop counters */
+ f32x4x2_t vecSrc;
+ f32x4_t sum;
+ float32_t real, imag; /* Temporary variables to hold input values */
+
+ /* Compute 4 complex samples at a time */
+ blkCnt = blockSize >> 2;
+ while (blkCnt > 0U)
+ {
+ q31x4_t newtonStartVec;
+ f32x4_t sumHalf, invSqrt;
+
+ vecSrc = vld2q(pSrc);
+ pSrc += 8;
+ sum = vmulq(vecSrc.val[0], vecSrc.val[0]);
+ sum = vfmaq(sum, vecSrc.val[1], vecSrc.val[1]);
+
+ /*
+ * inlined Fast SQRT using inverse SQRT newton-raphson method
+ */
+
+ /* compute initial value */
+ newtonStartVec = vdupq_n_s32(INVSQRT_MAGIC_F32) - vshrq((q31x4_t) sum, 1);
+ sumHalf = sum * 0.5f;
+ /*
+ * compute 3 x iterations
+ *
+ * The more iterations, the more accuracy.
+ * If you need to trade a bit of accuracy for more performance,
+ * you can comment out the 3rd use of the macro.
+ */
+ INVSQRT_NEWTON_MVE_F32(invSqrt, sumHalf, (f32x4_t) newtonStartVec);
+ INVSQRT_NEWTON_MVE_F32(invSqrt, sumHalf, invSqrt);
+ INVSQRT_NEWTON_MVE_F32(invSqrt, sumHalf, invSqrt);
+ /*
+ * set negative values to 0
+ */
+ invSqrt = vdupq_m(invSqrt, 0.0f, vcmpltq(invSqrt, 0.0f));
+ /*
+ * sqrt(x) = x * invSqrt(x)
+ */
+ sum = vmulq(sum, invSqrt);
+ vst1q(pDst, sum);
+ pDst += 4;
+ /*
+ * Decrement the blockSize loop counter
+ */
+ blkCnt--;
+ }
+ /*
+ * tail
+ */
+ blkCnt = blockSize & 3;
+ while (blkCnt > 0U)
+ {
+ /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
+
+ real = *pSrc++;
+ imag = *pSrc++;
+
+ /* store result in destination buffer. */
+ arm_sqrt_f32((real * real) + (imag * imag), pDst++);
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+}
+
+#else
+void arm_cmplx_mag_f32(
+ const float32_t * pSrc,
+ float32_t * pDst,
+ uint32_t numSamples)
+{
+ uint32_t blkCnt; /* loop counter */
+ float32_t real, imag; /* Temporary variables to hold input values */
+
+#if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+ float32x4x2_t vecA;
+ float32x4_t vRealA;
+ float32x4_t vImagA;
+ float32x4_t vMagSqA;
+
+ float32x4x2_t vecB;
+ float32x4_t vRealB;
+ float32x4_t vImagB;
+ float32x4_t vMagSqB;
+
+ /* Loop unrolling: Compute 8 outputs at a time */
+ blkCnt = numSamples >> 3;
+
+ while (blkCnt > 0U)
+ {
+ /* out = sqrt((real * real) + (imag * imag)) */
+
+ vecA = vld2q_f32(pSrc);
+ pSrc += 8;
+
+ vecB = vld2q_f32(pSrc);
+ pSrc += 8;
+
+ vRealA = vmulq_f32(vecA.val[0], vecA.val[0]);
+ vImagA = vmulq_f32(vecA.val[1], vecA.val[1]);
+ vMagSqA = vaddq_f32(vRealA, vImagA);
+
+ vRealB = vmulq_f32(vecB.val[0], vecB.val[0]);
+ vImagB = vmulq_f32(vecB.val[1], vecB.val[1]);
+ vMagSqB = vaddq_f32(vRealB, vImagB);
+
+ /* Store the result in the destination buffer. */
+ vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqA));
+ pDst += 4;
+
+ vst1q_f32(pDst, __arm_vec_sqrt_f32_neon(vMagSqB));
+ pDst += 4;
+
+ /* Decrement the loop counter */
+ blkCnt--;
+ }
+
+ blkCnt = numSamples & 7;
+
+#else
+
+#if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+ /* Loop unrolling: Compute 4 outputs at a time */
+ blkCnt = numSamples >> 2U;
+
+ while (blkCnt > 0U)
+ {
+ /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
+
+ real = *pSrc++;
+ imag = *pSrc++;
+
+ /* store result in destination buffer. */
+ arm_sqrt_f32((real * real) + (imag * imag), pDst++);
+
+ real = *pSrc++;
+ imag = *pSrc++;
+ arm_sqrt_f32((real * real) + (imag * imag), pDst++);
+
+ real = *pSrc++;
+ imag = *pSrc++;
+ arm_sqrt_f32((real * real) + (imag * imag), pDst++);
+
+ real = *pSrc++;
+ imag = *pSrc++;
+ arm_sqrt_f32((real * real) + (imag * imag), pDst++);
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining outputs */
+ blkCnt = numSamples % 0x4U;
+
+#else
+
+ /* Initialize blkCnt with number of samples */
+ blkCnt = numSamples;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+#endif /* #if defined(ARM_MATH_NEON) */
+
+ while (blkCnt > 0U)
+ {
+ /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */
+
+ real = *pSrc++;
+ imag = *pSrc++;
+
+ /* store result in destination buffer. */
+ arm_sqrt_f32((real * real) + (imag * imag), pDst++);
+
+ /* Decrement loop counter */
+ blkCnt--;
+ }
+
+}
+#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
+
+/**
+ @} end of cmplx_mag group
+ */