diff options
author | Clyne Sullivan <clyne@bitgloo.com> | 2025-02-02 11:26:53 -0500 |
---|---|---|
committer | Clyne Sullivan <clyne@bitgloo.com> | 2025-02-02 11:26:53 -0500 |
commit | 9c59a184dba820975e5da6fcd5d248aee87f7e2f (patch) | |
tree | 6b30516adc2ba0f7b0a8f5fb5d2e6966c03108d8 /Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c | |
parent | d09f4289b5788d6a8b34e424841292e2b8529e56 (diff) |
add l476 implementationl476
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c')
-rw-r--r-- | Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c | 1535 |
1 files changed, 534 insertions, 1001 deletions
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c index d1fd9ea..35517d6 100644 --- a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_f32.c @@ -1,1001 +1,534 @@ -/* ---------------------------------------------------------------------- - * Project: CMSIS DSP Library - * Title: arm_mat_mult_f32.c - * Description: Floating-point matrix multiplication - * - * $Date: 23 April 2021 - * $Revision: V1.9.0 - * - * Target Processor: Cortex-M and Cortex-A cores - * -------------------------------------------------------------------- */ -/* - * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "dsp/matrix_functions.h" - -#if defined(ARM_MATH_NEON) -#define GROUPOFROWS 8 -#endif - -/** - * @ingroup groupMatrix - */ - -/** - * @defgroup MatrixMult Matrix Multiplication - * - * Multiplies two matrices. - * - * \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices" - - * Matrix multiplication is only defined if the number of columns of the - * first matrix equals the number of rows of the second matrix. - * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results - * in an <code>M x P</code> matrix. - * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of - * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output - * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>. - */ - - -/** - * @addtogroup MatrixMult - * @{ - */ - - - -#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) - -#define MATRIX_DIM3 3 -#define MATRIX_DIM4 4 - -__STATIC_INLINE arm_status arm_mat_mult_f32_2x2_mve( - const arm_matrix_instance_f32 *pSrcA, - const arm_matrix_instance_f32 *pSrcB, - arm_matrix_instance_f32 *pDst) -{ - /* {a00, a00, a10, a10} */ - static const uint32_t offsetA0[4] = { 0, 0, 2, 2 }; - /* {b00, b01, b00, b01} */ - static const uint32_t offsetB0[4] = { 0, 1, 0, 1 }; - /* {a01, a01, a11, a11} */ - static const uint32_t offsetA1[4] = { 1, 1, 3, 3 }; - /* {b10, b11, b10, b11} */ - static const uint32_t offsetB1[4] = { 2, 3, 2, 3 }; - - uint32x4_t vecOffsA, vecOffsB; - f32x4_t vecInA, vecInB, vecDst; - - vecOffsA = vldrwq_u32((uint32_t const *) offsetA0); - vecOffsB = vldrwq_u32((uint32_t const *) offsetB0); - - vecInA = vldrwq_gather_shifted_offset((float32_t const *) pSrcA->pData, vecOffsA); - vecInB = vldrwq_gather_shifted_offset((float32_t const *) pSrcB->pData, vecOffsB); - - vecDst = vmulq(vecInA, vecInB); - - vecOffsA = vldrwq_u32((uint32_t const *) offsetA1); - vecOffsB = vldrwq_u32((uint32_t const *) offsetB1); - - vecInA = vldrwq_gather_shifted_offset((float32_t const *) pSrcA->pData, vecOffsA); - vecInB = vldrwq_gather_shifted_offset((float32_t const *) pSrcB->pData, vecOffsB); - - vecDst = vfmaq(vecDst, vecInA, vecInB); - - vstrwq_f32(pDst->pData, vecDst); - - return (ARM_MATH_SUCCESS); - -} - - -/* - * A = {{a00, a01, a02}, - * {a10, a11, a12}, - * {a20, a21, a22}} - * B = {{b00, b01, b02}, - * {b10, b11, b12}, - * {b20, b21, b22}} - * - * Dst = {{a00 b00 + a01 b10 + a02 b20, a00 b01 + a01 b11 + a02 b21, a00 b02 + a01 b12 + a02 b22}, - * {a10 b00 + a11 b10 + a12 b20, a10 b01 + a11 b11 + a12 b21, a10 b02 + a11 b12 + a12 b22}, - * {a20 b00 + a21 b10 + a22 b20, a20 b01 + a21 b11 + a22 b21, a20 b02 + a21 b12 + a22 b22}} - */ -__STATIC_INLINE arm_status arm_mat_mult_f32_3x3_mve( - const arm_matrix_instance_f32 *pSrcA, - const arm_matrix_instance_f32 *pSrcB, - arm_matrix_instance_f32 *pDst) -{ - float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */ - float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */ - float32_t *pOut = pDst->pData; /* output data matrix pointer */ - float32_t *pInA0, *pInA1, *pInA2; - f32x4_t vecMac0, vecMac1, vecMac2; - f32x4_t vecInB; - float32_t const *pSrBVec; - - pSrBVec = (float32_t const *) pInB; - - pInA0 = pInA; - pInA1 = pInA0 + MATRIX_DIM3; - pInA2 = pInA1 + MATRIX_DIM3; - /* enable predication to disable last (4th) vector element */ - mve_pred16_t p0 = vctp32q(MATRIX_DIM3); - - /* - * load {b0,0, b0,1, b0,2, 0} - */ - vecInB = vldrwq_z_f32(pSrBVec, p0); - pSrBVec += MATRIX_DIM3; - - vecMac0 = vmulq(vecInB, *pInA0++); - vecMac1 = vmulq(vecInB, *pInA1++); - vecMac2 = vmulq(vecInB, *pInA2++); - /* - * load {b1,0, b1,1, b1,2, 0} - */ - vecInB = vldrwq_z_f32(pSrBVec, p0); - pSrBVec += MATRIX_DIM3; - - vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++); - vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++); - vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++); - /* - * load {b2,0, b2,1 , b2,2, 0} - */ - vecInB = vldrwq_z_f32(pSrBVec, p0); - pSrBVec += MATRIX_DIM3; - - vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++); - vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++); - vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++); - - /* partial vector stores */ - vstrwq_p_f32(pOut, vecMac0, p0); - pOut += MATRIX_DIM3; - vstrwq_p_f32(pOut, vecMac1, p0); - pOut += MATRIX_DIM3; - vstrwq_p_f32(pOut, vecMac2, p0); - /* - * Return to application - */ - return (ARM_MATH_SUCCESS); -} - - - - -__STATIC_INLINE arm_status arm_mat_mult_f32_4x4_mve( - const arm_matrix_instance_f32 *pSrcA, - const arm_matrix_instance_f32 *pSrcB, - arm_matrix_instance_f32 *pDst) -{ - float32_t const *pSrBVec; - float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */ - float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */ - float32_t *pOut = pDst->pData; /* output data matrix pointer */ - float32_t *pInA0, *pInA1, *pInA2, *pInA3; - f32x4_t vecMac0, vecMac1, vecMac2, vecMac3; - f32x4_t vecInB; - - pSrBVec = (float32_t const *) pInB; - - pInA0 = pInA; - pInA1 = pInA0 + MATRIX_DIM4; - pInA2 = pInA1 + MATRIX_DIM4; - pInA3 = pInA2 + MATRIX_DIM4; - /* - * load {b0,0, b0,1, b0,2, b0,3} - */ - vecInB = vld1q(pSrBVec); - pSrBVec += MATRIX_DIM4; - - vecMac0 = vmulq(vecInB, *pInA0++); - vecMac1 = vmulq(vecInB, *pInA1++); - vecMac2 = vmulq(vecInB, *pInA2++); - vecMac3 = vmulq(vecInB, *pInA3++); - /* - * load {b1,0, b1,1, b1,2, b1,3} - */ - vecInB = vld1q(pSrBVec); - pSrBVec += MATRIX_DIM4; - - vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++); - vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++); - vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++); - vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++); - /* - * load {b2,0, b2,1, b2,2, b2,3} - */ - vecInB = vld1q(pSrBVec); - pSrBVec += MATRIX_DIM4; - - vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++); - vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++); - vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++); - vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++); - /* - * load {b3,0, b3,1, b3,2, b3,3} - */ - vecInB = vld1q(pSrBVec); - pSrBVec += MATRIX_DIM4; - - vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++); - vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++); - vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++); - vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++); - - vst1q(pOut, vecMac0); - pOut += MATRIX_DIM4; - vst1q(pOut, vecMac1); - pOut += MATRIX_DIM4; - vst1q(pOut, vecMac2); - pOut += MATRIX_DIM4; - vst1q(pOut, vecMac3); - /* - * Return to application - */ - return (ARM_MATH_SUCCESS); -} - - -/** - * @brief Floating-point matrix multiplication. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. - */ -arm_status arm_mat_mult_f32( - const arm_matrix_instance_f32 * pSrcA, - const arm_matrix_instance_f32 * pSrcB, - arm_matrix_instance_f32 * pDst) -{ - float32_t *pInB = pSrcB->pData; /* input data matrix pointer B */ - float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */ - float32_t *pOut = pDst->pData; /* output data matrix pointer */ - int numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ - int numColsB = pSrcB->numCols; /* number of columns of input matrix B */ - int numColsA = pSrcA->numCols; /* number of columns of input matrix A */ - uint32_t blkCnt; /* loop counters */ - uint32_t i; - arm_status status; - -#ifdef ARM_MATH_MATRIX_CHECK - - /* Check for matrix mismatch condition */ - if ((pSrcA->numCols != pSrcB->numRows) || - (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) - { - /* Set status as ARM_MATH_SIZE_MISMATCH */ - status = ARM_MATH_SIZE_MISMATCH; - } - else -#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ - { - /* small squared matrix specialized routines */ - if(numRowsA == numColsB && numColsB == numColsA) { - if (numRowsA == 1) - { - pOut[0] = pInA[0] * pInB[0]; - return(ARM_MATH_SUCCESS); - } - else if(numRowsA == 2) - return arm_mat_mult_f32_2x2_mve(pSrcA, pSrcB, pDst); - else if(numRowsA == 3) - return arm_mat_mult_f32_3x3_mve(pSrcA, pSrcB, pDst); - else if(numRowsA == 4) - return arm_mat_mult_f32_4x4_mve(pSrcA, pSrcB, pDst); - } - - /* main loop process 4 rows */ - i = numRowsA >> 2; - while (i > 0U) - { - float32_t *pInA0, *pInA1, *pInA2, *pInA3; - float32_t *pInB0; - float32_t *pOut0, *pOut1, *pOut2, *pOut3; - f32x4_t vecMac0, vecMac1, vecMac2, vecMac3; - f32x4_t vecInB; - - /* pointers to 4 consecutive output rows */ - pOut0 = pOut; - pOut1 = pOut0 + numColsB; - pOut2 = pOut1 + numColsB; - pOut3 = pOut2 + numColsB; - pInB0 = pInB; - - uint32_t k = numColsB >> 2; - while (k > 0U) - { - /* pointers to 4 consecutive Matrix A rows */ - pInA0 = pInA; - pInA1 = pInA0 + numColsA; - pInA2 = pInA1 + numColsA; - pInA3 = pInA2 + numColsA; - - vecMac0 = vdupq_n_f32(0.0f); - vecMac1 = vdupq_n_f32(0.0f); - vecMac2 = vdupq_n_f32(0.0f); - vecMac3 = vdupq_n_f32(0.0f); - - blkCnt = numColsA; - - while (blkCnt > 0U) - { - /* - * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3} - */ - vecInB = *(f32x4_t *)pInB0; /* vldrwq_f32(pInB0, 0); */ - - vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++); - vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++); - vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++); - vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++); - - pInB0 = pInB0 + numColsB; - /* - * Decrement the blockSize loop counter - */ - blkCnt--; - } - - /* Store the results (4 x 4 block) in the destination buffer */ - vst1q(pOut0, vecMac0); - pOut0 += 4; - vst1q(pOut1, vecMac1); - pOut1 += 4; - vst1q(pOut2, vecMac2); - pOut2 += 4; - vst1q(pOut3, vecMac3); - pOut3 += 4; - - /* - * rewind - */ - pInB0 -= (numColsB * numColsA) - 4; - k--; - } - - int colBLeft = numColsB & 3; - if (colBLeft) - { - pInA0 = pInA; - pInA1 = pInA0 + numColsA; - pInA2 = pInA1 + numColsA; - pInA3 = pInA2 + numColsA; - mve_pred16_t p0 = vctp32q(colBLeft); - - vecMac0 = vdupq_n_f32(0.0f); - vecMac1 = vdupq_n_f32(0.0f); - vecMac2 = vdupq_n_f32(0.0f); - vecMac3 = vdupq_n_f32(0.0f); - - blkCnt = numColsA; - - while (blkCnt > 0U) - { - /* - * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3} - */ - vecInB = vldrwq_z_f32(pInB0, p0); - - vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++); - vecMac1 = vfmaq(vecMac1, vecInB, *pInA1++); - vecMac2 = vfmaq(vecMac2, vecInB, *pInA2++); - vecMac3 = vfmaq(vecMac3, vecInB, *pInA3++); - - pInB0 = pInB0 + numColsB; - /* - * Decrement the blockSize loop counter - */ - blkCnt--; - } - - /* Store the results (4 x colBLeft block) in the destination buffer */ - vstrwq_p_f32(pOut0, vecMac0, p0); - vstrwq_p_f32(pOut1, vecMac1, p0); - vstrwq_p_f32(pOut2, vecMac2, p0); - vstrwq_p_f32(pOut3, vecMac3, p0); - } - - /* move to next rows */ - pInA += 4 * numColsA; - pOut += 4 * numColsB; - i--; - } - - /* - * non multiple of 4 rows for Matrix A - * process single row - */ - if (numRowsA & 3) - { - i = numRowsA & 3; - while (i > 0U) - { - float32_t *pInA0; - float32_t *pInB0; - float32_t *pOut0; - f32x4_t vecInB; - f32x4_t vecMac0; - - pOut0 = pOut; - pInB0 = pInB; - - uint32_t k = numColsB >> 2; - while (k > 0U) - { - pInA0 = pInA; - - vecMac0 = vdupq_n_f32(0.0f); - blkCnt = numColsA; - while (blkCnt > 0U) - { - /* - * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3} - */ - vecInB = *(f32x4_t *)pInB0; /* vldrwq_f32(pInB0, 0); */ - - vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++); - - pInB0 = pInB0 + numColsB; - /* - * Decrement the blockSize loop counter - */ - blkCnt--; - } - - /* Store the results (1 x 4 block) in the destination buffer */ - vst1q(pOut0, vecMac0); - pOut0 += 4; - - /* - * rewind - */ - pInB0 -= (numColsB * numColsA) - 4; - k--; - } - - int colBLeft = numColsB & 3; - if (colBLeft) - { - pInA0 = pInA; - mve_pred16_t p0 = vctp32q(colBLeft); - - vecMac0 = vdupq_n_f32(0.0f); - blkCnt = numColsA; - while (blkCnt > 0U) - { - /* - * load {bi,4n+0, bi,4n+1, bi,4n+2, bi,4n+3} - */ - vecInB = vldrwq_z_f32(pInB0, p0); - - vecMac0 = vfmaq(vecMac0, vecInB, *pInA0++); - - pInB0 = pInB0 + numColsB; - /* - * Decrement the blockSize loop counter - */ - blkCnt--; - } - /* Store the results (1 x colBLeft block) in the destination buffer */ - vstrwq_p_f32(pOut0, vecMac0, p0); - } - - /* move to next row */ - pInA += 1 * numColsA; - pOut += 1 * numColsB; - i--; - } - - } - status = ARM_MATH_SUCCESS; - } - - /* Return to application */ - return (status); -} -#else - -#if defined(ARM_MATH_NEON) -/** - * @brief Floating-point matrix multiplication. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. - */ -arm_status arm_mat_mult_f32( - const arm_matrix_instance_f32 * pSrcA, - const arm_matrix_instance_f32 * pSrcB, - arm_matrix_instance_f32 * pDst) -{ - float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ - float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ - float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */ - float32_t *pOut = pDst->pData; /* output data matrix pointer */ - float32_t *px; /* Temporary output data matrix pointer */ - float32_t sum; /* Accumulator */ - uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ - uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ - uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ - - - uint16_t col, i = 0U, j, row = numRowsA, rowCnt, colCnt; /* loop counters */ - arm_status status; /* status of matrix multiplication */ - - float32x4_t a0V, a1V, a2V, a3V, a4V, a5V, a6V, a7V; - float32x4_t acc0,acc1,acc2,acc3,acc4,acc5,acc6,acc7,temp; - float32x2_t accum = vdup_n_f32(0); - float32_t *pIn1B = pSrcA->pData; - float32_t *pIn1C = pSrcA->pData; - float32_t *pIn1D = pSrcA->pData; - float32_t *pIn1E = pSrcA->pData; - float32_t *pIn1F = pSrcA->pData; - float32_t *pIn1G = pSrcA->pData; - float32_t *pIn1H = pSrcA->pData; - - float32_t *pxB,*pxC, *pxD, *pxE, *pxF, *pxG, *pxH; /* Temporary output data matrix pointer */ - float32_t sum0,sum1, sum2,sum3, sum4, sum5 , sum6, sum7; - -#ifdef ARM_MATH_MATRIX_CHECK - - /* Check for matrix mismatch condition */ - if ((pSrcA->numCols != pSrcB->numRows) || - (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) - { - /* Set status as ARM_MATH_SIZE_MISMATCH */ - status = ARM_MATH_SIZE_MISMATCH; - } - else -#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ - { - /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ - /* Row loop */ - rowCnt = row >> 3; - - while(rowCnt > 0) - { - /* Output pointer is set to starting address of the row being processed */ - px = pOut + GROUPOFROWS*i; - pxB = px + numColsB; - pxC = px + 2*numColsB; - pxD = px + 3*numColsB; - pxE = px + 4*numColsB; - pxF = px + 5*numColsB; - pxG = px + 6*numColsB; - pxH = px + 7*numColsB; - - /* For every row wise process, the column loop counter is to be initiated */ - col = numColsB; - - /* For every row wise process, the pIn2 pointer is set - ** to the starting address of the pSrcB data */ - pIn2 = pSrcB->pData; - - j = 0U; - - /* Column loop */ - do - { - /* Set the variable sum, that acts as accumulator, to zero */ - sum0 = 0.0f; - sum1 = 0.0f; - sum2 = 0.0f; - sum3 = 0.0f; - sum4 = 0.0f; - sum5 = 0.0f; - sum6 = 0.0f; - sum7 = 0.0f; - - /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ - pIn1 = pInA; - pIn1B = pIn1 + numColsA; - pIn1C = pIn1 + 2*numColsA; - pIn1D = pIn1 + 3*numColsA; - pIn1E = pIn1 + 4*numColsA; - pIn1F = pIn1 + 5*numColsA; - pIn1G = pIn1 + 6*numColsA; - pIn1H = pIn1 + 7*numColsA; - - acc0 = vdupq_n_f32(0.0); - acc1 = vdupq_n_f32(0.0); - acc2 = vdupq_n_f32(0.0); - acc3 = vdupq_n_f32(0.0); - acc4 = vdupq_n_f32(0.0); - acc5 = vdupq_n_f32(0.0); - acc6 = vdupq_n_f32(0.0); - acc7 = vdupq_n_f32(0.0); - - /* Compute 4 MACs simultaneously. */ - colCnt = numColsA >> 2U; - - /* Matrix multiplication */ - while (colCnt > 0U) - { - /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */ - a0V = vld1q_f32(pIn1); - a1V = vld1q_f32(pIn1B); - a2V = vld1q_f32(pIn1C); - a3V = vld1q_f32(pIn1D); - a4V = vld1q_f32(pIn1E); - a5V = vld1q_f32(pIn1F); - a6V = vld1q_f32(pIn1G); - a7V = vld1q_f32(pIn1H); - - pIn1 += 4; - pIn1B += 4; - pIn1C += 4; - pIn1D += 4; - pIn1E += 4; - pIn1F += 4; - pIn1G += 4; - pIn1H += 4; - - temp = vsetq_lane_f32(*pIn2,temp,0); - pIn2 += numColsB; - temp = vsetq_lane_f32(*pIn2,temp,1); - pIn2 += numColsB; - temp = vsetq_lane_f32(*pIn2,temp,2); - pIn2 += numColsB; - temp = vsetq_lane_f32(*pIn2,temp,3); - pIn2 += numColsB; - - acc0 = vmlaq_f32(acc0,a0V,temp); - acc1 = vmlaq_f32(acc1,a1V,temp); - acc2 = vmlaq_f32(acc2,a2V,temp); - acc3 = vmlaq_f32(acc3,a3V,temp); - acc4 = vmlaq_f32(acc4,a4V,temp); - acc5 = vmlaq_f32(acc5,a5V,temp); - acc6 = vmlaq_f32(acc6,a6V,temp); - acc7 = vmlaq_f32(acc7,a7V,temp); - - /* Decrement the loop count */ - colCnt--; - } - - accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0)); - sum0 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1); - - accum = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1)); - sum1 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1); - - accum = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2)); - sum2 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1); - - accum = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3)); - sum3 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1); - - accum = vpadd_f32(vget_low_f32(acc4), vget_high_f32(acc4)); - sum4 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1); - - accum = vpadd_f32(vget_low_f32(acc5), vget_high_f32(acc5)); - sum5 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1); - - accum = vpadd_f32(vget_low_f32(acc6), vget_high_f32(acc6)); - sum6 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1); - - accum = vpadd_f32(vget_low_f32(acc7), vget_high_f32(acc7)); - sum7 += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1); - - /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - colCnt = numColsA & 3; - - while (colCnt > 0U) - { - /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */ - sum0 += *pIn1++ * (*pIn2); - sum1 += *pIn1B++ * (*pIn2); - sum2 += *pIn1C++ * (*pIn2); - sum3 += *pIn1D++ * (*pIn2); - sum4 += *pIn1E++ * (*pIn2); - sum5 += *pIn1F++ * (*pIn2); - sum6 += *pIn1G++ * (*pIn2); - sum7 += *pIn1H++ * (*pIn2); - pIn2 += numColsB; - - /* Decrement the loop counter */ - colCnt--; - } - - /* Store the result in the destination buffer */ - *px++ = sum0; - *pxB++ = sum1; - *pxC++ = sum2; - *pxD++ = sum3; - *pxE++ = sum4; - *pxF++ = sum5; - *pxG++ = sum6; - *pxH++ = sum7; - - /* Update the pointer pIn2 to point to the starting address of the next column */ - j++; - pIn2 = pSrcB->pData + j; - - /* Decrement the column loop counter */ - col--; - - } while (col > 0U); - - /* Update the pointer pInA to point to the starting address of the next row */ - i = i + numColsB; - pInA = pInA + GROUPOFROWS*numColsA; - - /* Decrement the row loop counter */ - rowCnt--; - } - - /* - - i was the index of a group of rows computed by previous loop. - Now i is the index of a row since below code is computing row per row - and no more group of row per group of rows. - - */ - - i = GROUPOFROWS*i; - rowCnt = row & 7; - - while(rowCnt > 0) - { - /* Output pointer is set to starting address of the row being processed */ - px = pOut + i; - - /* For every row wise process, the column loop counter is to be initiated */ - col = numColsB; - - /* For every row wise process, the pIn2 pointer is set - ** to the starting address of the pSrcB data */ - pIn2 = pSrcB->pData; - - j = 0U; - - /* Column loop */ - do - { - /* Set the variable sum, that acts as accumulator, to zero */ - sum = 0.0f; - - /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ - pIn1 = pInA; - - acc0 = vdupq_n_f32(0.0); - - /* Compute 4 MACs simultaneously. */ - colCnt = numColsA >> 2U; - - /* Matrix multiplication */ - while (colCnt > 0U) - { - /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */ - a0V = vld1q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2) - pIn1 += 4; - - temp = vsetq_lane_f32(*pIn2,temp,0); - pIn2 += numColsB; - temp = vsetq_lane_f32(*pIn2,temp,1); - pIn2 += numColsB; - temp = vsetq_lane_f32(*pIn2,temp,2); - pIn2 += numColsB; - temp = vsetq_lane_f32(*pIn2,temp,3); - pIn2 += numColsB; - - acc0 = vmlaq_f32(acc0,a0V,temp); - - /* Decrement the loop count */ - colCnt--; - } - - accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0)); - sum += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1); - - /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here. - ** No loop unrolling is used. */ - colCnt = numColsA % 0x4U; - - while (colCnt > 0U) - { - /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */ - sum += *pIn1++ * (*pIn2); - pIn2 += numColsB; - - /* Decrement the loop counter */ - colCnt--; - } - - /* Store the result in the destination buffer */ - *px++ = sum; - - /* Update the pointer pIn2 to point to the starting address of the next column */ - j++; - pIn2 = pSrcB->pData + j; - - /* Decrement the column loop counter */ - col--; - - } while (col > 0U); - - - /* Update the pointer pInA to point to the starting address of the next row */ - i = i + numColsB; - pInA = pInA + numColsA; - - /* Decrement the row loop counter */ - rowCnt--; - - } - /* Set status as ARM_MATH_SUCCESS */ - status = ARM_MATH_SUCCESS; - } - - /* Return to application */ - return (status); -} -#else -/** - * @brief Floating-point matrix multiplication. - * @param[in] *pSrcA points to the first input matrix structure - * @param[in] *pSrcB points to the second input matrix structure - * @param[out] *pDst points to output matrix structure - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. - */ -arm_status arm_mat_mult_f32( - const arm_matrix_instance_f32 * pSrcA, - const arm_matrix_instance_f32 * pSrcB, - arm_matrix_instance_f32 * pDst) -{ - float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */ - float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */ - float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */ - float32_t *pInB = pSrcB->pData; /* Input data matrix pointer B */ - float32_t *pOut = pDst->pData; /* Output data matrix pointer */ - float32_t *px; /* Temporary output data matrix pointer */ - float32_t sum; /* Accumulator */ - uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */ - uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */ - uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */ - uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */ - arm_status status; /* Status of matrix multiplication */ - -#ifdef ARM_MATH_MATRIX_CHECK - - /* Check for matrix mismatch condition */ - if ((pSrcA->numCols != pSrcB->numRows) || - (pSrcA->numRows != pDst->numRows) || - (pSrcB->numCols != pDst->numCols) ) - { - /* Set status as ARM_MATH_SIZE_MISMATCH */ - status = ARM_MATH_SIZE_MISMATCH; - } - else - -#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ - - { - /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ - /* row loop */ - do - { - /* Output pointer is set to starting address of row being processed */ - px = pOut + i; - - /* For every row wise process, column loop counter is to be initiated */ - col = numColsB; - - /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */ - pIn2 = pSrcB->pData; - - /* column loop */ - do - { - /* Set the variable sum, that acts as accumulator, to zero */ - sum = 0.0f; - - /* Initialize pointer pIn1 to point to starting address of column being processed */ - pIn1 = pInA; - -#if defined (ARM_MATH_LOOPUNROLL) - - /* Loop unrolling: Compute 4 MACs at a time. */ - colCnt = numColsA >> 2U; - - /* matrix multiplication */ - while (colCnt > 0U) - { - /* c(m,p) = a(m,1) * b(1,p) + a(m,2) * b(2,p) + .... + a(m,n) * b(n,p) */ - - /* Perform the multiply-accumulates */ - sum += *pIn1++ * *pIn2; - pIn2 += numColsB; - - sum += *pIn1++ * *pIn2; - pIn2 += numColsB; - - sum += *pIn1++ * *pIn2; - pIn2 += numColsB; - - sum += *pIn1++ * *pIn2; - pIn2 += numColsB; - - /* Decrement loop counter */ - colCnt--; - } - - /* Loop unrolling: Compute remaining MACs */ - colCnt = numColsA % 0x4U; - -#else - - /* Initialize cntCnt with number of columns */ - colCnt = numColsA; - -#endif /* #if defined (ARM_MATH_LOOPUNROLL) */ - - while (colCnt > 0U) - { - /* c(m,p) = a(m,1) * b(1,p) + a(m,2) * b(2,p) + .... + a(m,n) * b(n,p) */ - - /* Perform the multiply-accumulates */ - sum += *pIn1++ * *pIn2; - pIn2 += numColsB; - - /* Decrement loop counter */ - colCnt--; - } - - /* Store result in destination buffer */ - *px++ = sum; - - /* Decrement column loop counter */ - col--; - - /* Update pointer pIn2 to point to starting address of next column */ - pIn2 = pInB + (numColsB - col); - - } while (col > 0U); - - /* Update pointer pInA to point to starting address of next row */ - i = i + numColsB; - pInA = pInA + numColsA; - - /* Decrement row loop counter */ - row--; - - } while (row > 0U); - - /* Set status as ARM_MATH_SUCCESS */ - status = ARM_MATH_SUCCESS; - } - - /* Return to application */ - return (status); -} - -#endif /* #if defined(ARM_MATH_NEON) */ -#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ - -/** - * @} end of MatrixMult group - */ +/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_mult_f32.c
+ * Description: Floating-point matrix multiplication
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupMatrix
+ */
+
+/**
+ * @defgroup MatrixMult Matrix Multiplication
+ *
+ * Multiplies two matrices.
+ *
+ * \image html MatrixMultiplication.gif "Multiplication of two 3 x 3 matrices"
+
+ * Matrix multiplication is only defined if the number of columns of the
+ * first matrix equals the number of rows of the second matrix.
+ * Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
+ * in an <code>M x P</code> matrix.
+ * When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
+ * <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
+ * matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
+ */
+
+
+/**
+ * @addtogroup MatrixMult
+ * @{
+ */
+
+/**
+ * @brief Floating-point matrix multiplication.
+ * @param[in] *pSrcA points to the first input matrix structure
+ * @param[in] *pSrcB points to the second input matrix structure
+ * @param[out] *pDst points to output matrix structure
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ */
+#if defined(ARM_MATH_NEON)
+
+#define GROUPOFROWS 8
+
+arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
+ float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ float32_t *pOut = pDst->pData; /* output data matrix pointer */
+ float32_t *px; /* Temporary output data matrix pointer */
+ float32_t sum; /* Accumulator */
+ uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
+
+
+ float32_t in1, in2, in3, in4;
+ uint16_t col, i = 0U, j, row = numRowsA, rowCnt, colCnt; /* loop counters */
+ arm_status status; /* status of matrix multiplication */
+
+ float32x4_t a0V, a1V, a2V, a3V, a4V, a5V, a6V, a7V;
+ float32x4_t acc0,acc1,acc2,acc3,acc4,acc5,acc6,acc7,temp;
+ float32x2_t accum = vdup_n_f32(0);
+ float32_t *pIn1B = pSrcA->pData;
+ float32_t *pIn1C = pSrcA->pData;
+ float32_t *pIn1D = pSrcA->pData;
+ float32_t *pIn1E = pSrcA->pData;
+ float32_t *pIn1F = pSrcA->pData;
+ float32_t *pIn1G = pSrcA->pData;
+ float32_t *pIn1H = pSrcA->pData;
+
+ float32_t *pxB,*pxC, *pxD, *pxE, *pxF, *pxG, *pxH; /* Temporary output data matrix pointer */
+ float32_t sum0,sum1, sum2,sum3, sum4, sum5 , sum6, sum7;
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* Row loop */
+ rowCnt = row >> 3;
+
+ while(rowCnt > 0)
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + GROUPOFROWS*i;
+ pxB = px + numColsB;
+ pxC = px + 2*numColsB;
+ pxD = px + 3*numColsB;
+ pxE = px + 4*numColsB;
+ pxF = px + 5*numColsB;
+ pxG = px + 6*numColsB;
+ pxH = px + 7*numColsB;
+
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ j = 0U;
+
+ /* Column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum0 = 0.0f;
+ sum1 = 0.0f;
+ sum2 = 0.0f;
+ sum3 = 0.0f;
+ sum4 = 0.0f;
+ sum5 = 0.0f;
+ sum6 = 0.0f;
+ sum7 = 0.0f;
+
+ /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+ pIn1 = pInA;
+ pIn1B = pIn1 + numColsA;
+ pIn1C = pIn1 + 2*numColsA;
+ pIn1D = pIn1 + 3*numColsA;
+ pIn1E = pIn1 + 4*numColsA;
+ pIn1F = pIn1 + 5*numColsA;
+ pIn1G = pIn1 + 6*numColsA;
+ pIn1H = pIn1 + 7*numColsA;
+
+ acc0 = vdupq_n_f32(0.0);
+ acc1 = vdupq_n_f32(0.0);
+ acc2 = vdupq_n_f32(0.0);
+ acc3 = vdupq_n_f32(0.0);
+ acc4 = vdupq_n_f32(0.0);
+ acc5 = vdupq_n_f32(0.0);
+ acc6 = vdupq_n_f32(0.0);
+ acc7 = vdupq_n_f32(0.0);
+
+ /* Compute 4 MACs simultaneously. */
+ colCnt = numColsA >> 2U;
+
+ /* Matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ a0V = vld1q_f32(pIn1);
+ a1V = vld1q_f32(pIn1B);
+ a2V = vld1q_f32(pIn1C);
+ a3V = vld1q_f32(pIn1D);
+ a4V = vld1q_f32(pIn1E);
+ a5V = vld1q_f32(pIn1F);
+ a6V = vld1q_f32(pIn1G);
+ a7V = vld1q_f32(pIn1H);
+
+ pIn1 += 4;
+ pIn1B += 4;
+ pIn1C += 4;
+ pIn1D += 4;
+ pIn1E += 4;
+ pIn1F += 4;
+ pIn1G += 4;
+ pIn1H += 4;
+
+ temp[0] = *pIn2;
+ pIn2 += numColsB;
+ temp[1] = *pIn2;
+ pIn2 += numColsB;
+ temp[2] = *pIn2;
+ pIn2 += numColsB;
+ temp[3] = *pIn2;
+ pIn2 += numColsB;
+
+ acc0 = vmlaq_f32(acc0,a0V,temp);
+ acc1 = vmlaq_f32(acc1,a1V,temp);
+ acc2 = vmlaq_f32(acc2,a2V,temp);
+ acc3 = vmlaq_f32(acc3,a3V,temp);
+ acc4 = vmlaq_f32(acc4,a4V,temp);
+ acc5 = vmlaq_f32(acc5,a5V,temp);
+ acc6 = vmlaq_f32(acc6,a6V,temp);
+ acc7 = vmlaq_f32(acc7,a7V,temp);
+
+ /* Decrement the loop count */
+ colCnt--;
+ }
+
+ accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
+ sum0 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc1), vget_high_f32(acc1));
+ sum1 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc2), vget_high_f32(acc2));
+ sum2 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc3), vget_high_f32(acc3));
+ sum3 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc4), vget_high_f32(acc4));
+ sum4 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc5), vget_high_f32(acc5));
+ sum5 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc6), vget_high_f32(acc6));
+ sum6 += accum[0] + accum[1];
+
+ accum = vpadd_f32(vget_low_f32(acc7), vget_high_f32(acc7));
+ sum7 += accum[0] + accum[1];
+
+ /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ colCnt = numColsA & 3;
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ sum0 += *pIn1++ * (*pIn2);
+ sum1 += *pIn1B++ * (*pIn2);
+ sum2 += *pIn1C++ * (*pIn2);
+ sum3 += *pIn1D++ * (*pIn2);
+ sum4 += *pIn1E++ * (*pIn2);
+ sum5 += *pIn1F++ * (*pIn2);
+ sum6 += *pIn1G++ * (*pIn2);
+ sum7 += *pIn1H++ * (*pIn2);
+ pIn2 += numColsB;
+
+ /* Decrement the loop counter */
+ colCnt--;
+ }
+
+ /* Store the result in the destination buffer */
+ *px++ = sum0;
+ *pxB++ = sum1;
+ *pxC++ = sum2;
+ *pxD++ = sum3;
+ *pxE++ = sum4;
+ *pxF++ = sum5;
+ *pxG++ = sum6;
+ *pxH++ = sum7;
+
+ /* Update the pointer pIn2 to point to the starting address of the next column */
+ j++;
+ pIn2 = pSrcB->pData + j;
+
+ /* Decrement the column loop counter */
+ col--;
+
+ } while (col > 0U);
+
+ /* Update the pointer pInA to point to the starting address of the next row */
+ i = i + numColsB;
+ pInA = pInA + GROUPOFROWS*numColsA;
+
+ /* Decrement the row loop counter */
+ rowCnt--;
+ }
+
+ /*
+
+ i was the index of a group of rows computed by previous loop.
+ Now i is the index of a row since below code is computing row per row
+ and no more group of row per group of rows.
+
+ */
+
+ i = GROUPOFROWS*i;
+ rowCnt = row & 7;
+
+ while(rowCnt > 0)
+ {
+ /* Output pointer is set to starting address of the row being processed */
+ px = pOut + i;
+
+ /* For every row wise process, the column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, the pIn2 pointer is set
+ ** to the starting address of the pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ j = 0U;
+
+ /* Column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0.0f;
+
+ /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+ pIn1 = pInA;
+
+ acc0 = vdupq_n_f32(0.0);
+
+ /* Compute 4 MACs simultaneously. */
+ colCnt = numColsA >> 2U;
+
+ /* Matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ a0V = vld1q_f32(pIn1); // load & separate real/imag pSrcA (de-interleave 2)
+ pIn1 += 4;
+
+ temp[0] = *pIn2;
+ pIn2 += numColsB;
+ temp[1] = *pIn2;
+ pIn2 += numColsB;
+ temp[2] = *pIn2;
+ pIn2 += numColsB;
+ temp[3] = *pIn2;
+ pIn2 += numColsB;
+
+ acc0 = vmlaq_f32(acc0,a0V,temp);
+
+ /* Decrement the loop count */
+ colCnt--;
+ }
+
+ accum = vpadd_f32(vget_low_f32(acc0), vget_high_f32(acc0));
+ sum += accum[0] + accum[1];
+
+ /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
+ ** No loop unrolling is used. */
+ colCnt = numColsA % 0x4U;
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1)*b(1,1) + a(1,2)*b(2,1) + ... + a(m,p)*b(p,n) */
+ sum += *pIn1++ * (*pIn2);
+ pIn2 += numColsB;
+
+ /* Decrement the loop counter */
+ colCnt--;
+ }
+
+ /* Store the result in the destination buffer */
+ *px++ = sum;
+
+ /* Update the pointer pIn2 to point to the starting address of the next column */
+ j++;
+ pIn2 = pSrcB->pData + j;
+
+ /* Decrement the column loop counter */
+ col--;
+
+ } while (col > 0U);
+
+
+ /* Update the pointer pInA to point to the starting address of the next row */
+ i = i + numColsB;
+ pInA = pInA + numColsA;
+
+ /* Decrement the row loop counter */
+ rowCnt--;
+
+ }
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#else
+arm_status arm_mat_mult_f32(
+ const arm_matrix_instance_f32 * pSrcA,
+ const arm_matrix_instance_f32 * pSrcB,
+ arm_matrix_instance_f32 * pDst)
+{
+ float32_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
+ float32_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
+ float32_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
+ float32_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
+ float32_t *pOut = pDst->pData; /* Output data matrix pointer */
+ float32_t *px; /* Temporary output data matrix pointer */
+ float32_t sum; /* Accumulator */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
+ arm_status status; /* Status of matrix multiplication */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* Output pointer is set to starting address of row being processed */
+ px = pOut + i;
+
+ /* For every row wise process, column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ /* column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0.0f;
+
+ /* Initialize pointer pIn1 to point to starting address of column being processed */
+ pIn1 = pInA;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 MACs at a time. */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* Perform the multiply-accumulates */
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining MACs */
+ colCnt = numColsA % 0x4U;
+
+#else
+
+ /* Initialize cntCnt with number of columns */
+ colCnt = numColsA;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* Perform the multiply-accumulates */
+ sum += *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Store result in destination buffer */
+ *px++ = sum;
+
+ /* Decrement column loop counter */
+ col--;
+
+ /* Update pointer pIn2 to point to starting address of next column */
+ pIn2 = pInB + (numColsB - col);
+
+ } while (col > 0U);
+
+ /* Update pointer pInA to point to starting address of next row */
+ i = i + numColsB;
+ pInA = pInA + numColsA;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+#endif /* #if defined(ARM_MATH_NEON) */
+
+/**
+ * @} end of MatrixMult group
+ */
|