diff options
author | Clyne Sullivan <clyne@bitgloo.com> | 2025-02-02 11:26:53 -0500 |
---|---|---|
committer | Clyne Sullivan <clyne@bitgloo.com> | 2025-02-02 11:26:53 -0500 |
commit | 9c59a184dba820975e5da6fcd5d248aee87f7e2f (patch) | |
tree | 6b30516adc2ba0f7b0a8f5fb5d2e6966c03108d8 /Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q31.c | |
parent | d09f4289b5788d6a8b34e424841292e2b8529e56 (diff) |
add l476 implementationl476
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q31.c')
-rw-r--r-- | Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q31.c | 1101 |
1 files changed, 254 insertions, 847 deletions
diff --git a/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q31.c b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q31.c index 78ce505..785942f 100644 --- a/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q31.c +++ b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q31.c @@ -1,847 +1,254 @@ -/* ---------------------------------------------------------------------- - * Project: CMSIS DSP Library - * Title: arm_cfft_q31.c - * Description: Combined Radix Decimation in Frequency CFFT fixed point processing function - * - * $Date: 23 April 2021 - * $Revision: V1.9.0 - * - * Target Processor: Cortex-M and Cortex-A cores - * -------------------------------------------------------------------- */ -/* - * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#include "dsp/transform_functions.h" - - - -#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) - -#include "arm_vec_fft.h" - - -static void _arm_radix4_butterfly_q31_mve( - const arm_cfft_instance_q31 * S, - q31_t *pSrc, - uint32_t fftLen) -{ - q31x4_t vecTmp0, vecTmp1; - q31x4_t vecSum0, vecDiff0, vecSum1, vecDiff1; - q31x4_t vecA, vecB, vecC, vecD; - uint32_t blkCnt; - uint32_t n1, n2; - uint32_t stage = 0; - int32_t iter = 1; - static const int32_t strides[4] = { - (0 - 16) * (int32_t)sizeof(q31_t *), (1 - 16) * (int32_t)sizeof(q31_t *), - (8 - 16) * (int32_t)sizeof(q31_t *), (9 - 16) * (int32_t)sizeof(q31_t *) - }; - - - /* - * Process first stages - * Each stage in middle stages provides two down scaling of the input - */ - n2 = fftLen; - n1 = n2; - n2 >>= 2u; - - for (int k = fftLen / 4u; k > 1; k >>= 2u) - { - q31_t const *p_rearranged_twiddle_tab_stride2 = - &S->rearranged_twiddle_stride2[ - S->rearranged_twiddle_tab_stride2_arr[stage]]; - q31_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[ - S->rearranged_twiddle_tab_stride3_arr[stage]]; - q31_t const *p_rearranged_twiddle_tab_stride1 = - &S->rearranged_twiddle_stride1[ - S->rearranged_twiddle_tab_stride1_arr[stage]]; - - q31_t * pBase = pSrc; - for (int i = 0; i < iter; i++) - { - q31_t *inA = pBase; - q31_t *inB = inA + n2 * CMPLX_DIM; - q31_t *inC = inB + n2 * CMPLX_DIM; - q31_t *inD = inC + n2 * CMPLX_DIM; - q31_t const *pW1 = p_rearranged_twiddle_tab_stride1; - q31_t const *pW2 = p_rearranged_twiddle_tab_stride2; - q31_t const *pW3 = p_rearranged_twiddle_tab_stride3; - q31x4_t vecW; - - - blkCnt = n2 / 2; - /* - * load 2 x q31 complex pair - */ - vecA = vldrwq_s32(inA); - vecC = vldrwq_s32(inC); - while (blkCnt > 0U) - { - vecB = vldrwq_s32(inB); - vecD = vldrwq_s32(inD); - - vecSum0 = vhaddq(vecA, vecC); - vecDiff0 = vhsubq(vecA, vecC); - - vecSum1 = vhaddq(vecB, vecD); - vecDiff1 = vhsubq(vecB, vecD); - /* - * [ 1 1 1 1 ] * [ A B C D ]' .* 1 - */ - vecTmp0 = vhaddq(vecSum0, vecSum1); - vst1q(inA, vecTmp0); - inA += 4; - /* - * [ 1 -1 1 -1 ] * [ A B C D ]' - */ - vecTmp0 = vhsubq(vecSum0, vecSum1); - /* - * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2 - */ - vecW = vld1q(pW2); - pW2 += 4; - vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t); - - vst1q(inB, vecTmp1); - inB += 4; - /* - * [ 1 -i -1 +i ] * [ A B C D ]' - */ - vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1); - /* - * [ 1 -i -1 +i ] * [ A B C D ]'.* W1 - */ - vecW = vld1q(pW1); - pW1 += 4; - vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t); - vst1q(inC, vecTmp1); - inC += 4; - /* - * [ 1 +i -1 -i ] * [ A B C D ]' - */ - vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1); - /* - * [ 1 +i -1 -i ] * [ A B C D ]'.* W3 - */ - vecW = vld1q(pW3); - pW3 += 4; - vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t); - vst1q(inD, vecTmp1); - inD += 4; - - vecA = vldrwq_s32(inA); - vecC = vldrwq_s32(inC); - - blkCnt--; - } - pBase += CMPLX_DIM * n1; - } - n1 = n2; - n2 >>= 2u; - iter = iter << 2; - stage++; - } - - /* - * End of 1st stages process - * data is in 11.21(q21) format for the 1024 point as there are 3 middle stages - * data is in 9.23(q23) format for the 256 point as there are 2 middle stages - * data is in 7.25(q25) format for the 64 point as there are 1 middle stage - * data is in 5.27(q27) format for the 16 point as there are no middle stages - */ - - /* - * start of Last stage process - */ - uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides); - vecScGathAddr = vecScGathAddr + (uint32_t) pSrc; - - /* - * load scheduling - */ - vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64); - vecC = vldrwq_gather_base_s32(vecScGathAddr, 16); - - blkCnt = (fftLen >> 3); - while (blkCnt > 0U) - { - vecSum0 = vhaddq(vecA, vecC); - vecDiff0 = vhsubq(vecA, vecC); - - vecB = vldrwq_gather_base_s32(vecScGathAddr, 8); - vecD = vldrwq_gather_base_s32(vecScGathAddr, 24); - - vecSum1 = vhaddq(vecB, vecD); - vecDiff1 = vhsubq(vecB, vecD); - /* - * pre-load for next iteration - */ - vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64); - vecC = vldrwq_gather_base_s32(vecScGathAddr, 16); - - vecTmp0 = vhaddq(vecSum0, vecSum1); - vstrwq_scatter_base_s32(vecScGathAddr, -64, vecTmp0); - - vecTmp0 = vhsubq(vecSum0, vecSum1); - vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, vecTmp0); - - vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1); - vstrwq_scatter_base_s32(vecScGathAddr, -64 + 16, vecTmp0); - - vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1); - vstrwq_scatter_base_s32(vecScGathAddr, -64 + 24, vecTmp0); - - blkCnt--; - } - - /* - * output is in 11.21(q21) format for the 1024 point - * output is in 9.23(q23) format for the 256 point - * output is in 7.25(q25) format for the 64 point - * output is in 5.27(q27) format for the 16 point - */ -} - - -static void arm_cfft_radix4by2_q31_mve(const arm_cfft_instance_q31 *S, q31_t *pSrc, uint32_t fftLen) -{ - uint32_t n2; - q31_t *pIn0; - q31_t *pIn1; - const q31_t *pCoef = S->pTwiddle; - uint32_t blkCnt; - q31x4_t vecIn0, vecIn1, vecSum, vecDiff; - q31x4_t vecCmplxTmp, vecTw; - - n2 = fftLen >> 1; - pIn0 = pSrc; - pIn1 = pSrc + fftLen; - - blkCnt = n2 / 2; - - while (blkCnt > 0U) - { - vecIn0 = vld1q_s32(pIn0); - vecIn1 = vld1q_s32(pIn1); - - vecIn0 = vecIn0 >> 1; - vecIn1 = vecIn1 >> 1; - vecSum = vhaddq(vecIn0, vecIn1); - vst1q(pIn0, vecSum); - pIn0 += 4; - - vecTw = vld1q_s32(pCoef); - pCoef += 4; - vecDiff = vhsubq(vecIn0, vecIn1); - - vecCmplxTmp = MVE_CMPLX_MULT_FX_AxConjB(vecDiff, vecTw, q31x4_t); - vst1q(pIn1, vecCmplxTmp); - pIn1 += 4; - - blkCnt--; - } - - _arm_radix4_butterfly_q31_mve(S, pSrc, n2); - - _arm_radix4_butterfly_q31_mve(S, pSrc + fftLen, n2); - - pIn0 = pSrc; - blkCnt = (fftLen << 1) >> 2; - while (blkCnt > 0U) - { - vecIn0 = vld1q_s32(pIn0); - vecIn0 = vecIn0 << 1; - vst1q(pIn0, vecIn0); - pIn0 += 4; - blkCnt--; - } - /* - * tail - * (will be merged thru tail predication) - */ - blkCnt = (fftLen << 1) & 3; - if (blkCnt > 0U) - { - mve_pred16_t p0 = vctp32q(blkCnt); - - vecIn0 = vld1q_s32(pIn0); - vecIn0 = vecIn0 << 1; - vstrwq_p(pIn0, vecIn0, p0); - } - -} - -static void _arm_radix4_butterfly_inverse_q31_mve( - const arm_cfft_instance_q31 *S, - q31_t *pSrc, - uint32_t fftLen) -{ - q31x4_t vecTmp0, vecTmp1; - q31x4_t vecSum0, vecDiff0, vecSum1, vecDiff1; - q31x4_t vecA, vecB, vecC, vecD; - uint32_t blkCnt; - uint32_t n1, n2; - uint32_t stage = 0; - int32_t iter = 1; - static const int32_t strides[4] = { - (0 - 16) * (int32_t)sizeof(q31_t *), (1 - 16) * (int32_t)sizeof(q31_t *), - (8 - 16) * (int32_t)sizeof(q31_t *), (9 - 16) * (int32_t)sizeof(q31_t *) - }; - - /* - * Process first stages - * Each stage in middle stages provides two down scaling of the input - */ - n2 = fftLen; - n1 = n2; - n2 >>= 2u; - - for (int k = fftLen / 4u; k > 1; k >>= 2u) - { - q31_t const *p_rearranged_twiddle_tab_stride2 = - &S->rearranged_twiddle_stride2[ - S->rearranged_twiddle_tab_stride2_arr[stage]]; - q31_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[ - S->rearranged_twiddle_tab_stride3_arr[stage]]; - q31_t const *p_rearranged_twiddle_tab_stride1 = - &S->rearranged_twiddle_stride1[ - S->rearranged_twiddle_tab_stride1_arr[stage]]; - - q31_t * pBase = pSrc; - for (int i = 0; i < iter; i++) - { - q31_t *inA = pBase; - q31_t *inB = inA + n2 * CMPLX_DIM; - q31_t *inC = inB + n2 * CMPLX_DIM; - q31_t *inD = inC + n2 * CMPLX_DIM; - q31_t const *pW1 = p_rearranged_twiddle_tab_stride1; - q31_t const *pW2 = p_rearranged_twiddle_tab_stride2; - q31_t const *pW3 = p_rearranged_twiddle_tab_stride3; - q31x4_t vecW; - - blkCnt = n2 / 2; - /* - * load 2 x q31 complex pair - */ - vecA = vldrwq_s32(inA); - vecC = vldrwq_s32(inC); - while (blkCnt > 0U) - { - vecB = vldrwq_s32(inB); - vecD = vldrwq_s32(inD); - - vecSum0 = vhaddq(vecA, vecC); - vecDiff0 = vhsubq(vecA, vecC); - - vecSum1 = vhaddq(vecB, vecD); - vecDiff1 = vhsubq(vecB, vecD); - /* - * [ 1 1 1 1 ] * [ A B C D ]' .* 1 - */ - vecTmp0 = vhaddq(vecSum0, vecSum1); - vst1q(inA, vecTmp0); - inA += 4; - /* - * [ 1 -1 1 -1 ] * [ A B C D ]' - */ - vecTmp0 = vhsubq(vecSum0, vecSum1); - /* - * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2 - */ - vecW = vld1q(pW2); - pW2 += 4; - vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t); - - vst1q(inB, vecTmp1); - inB += 4; - /* - * [ 1 -i -1 +i ] * [ A B C D ]' - */ - vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1); - /* - * [ 1 -i -1 +i ] * [ A B C D ]'.* W1 - */ - vecW = vld1q(pW1); - pW1 += 4; - vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t); - vst1q(inC, vecTmp1); - inC += 4; - /* - * [ 1 +i -1 -i ] * [ A B C D ]' - */ - vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1); - /* - * [ 1 +i -1 -i ] * [ A B C D ]'.* W3 - */ - vecW = vld1q(pW3); - pW3 += 4; - vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t); - vst1q(inD, vecTmp1); - inD += 4; - - vecA = vldrwq_s32(inA); - vecC = vldrwq_s32(inC); - - blkCnt--; - } - pBase += CMPLX_DIM * n1; - } - n1 = n2; - n2 >>= 2u; - iter = iter << 2; - stage++; - } - - /* - * End of 1st stages process - * data is in 11.21(q21) format for the 1024 point as there are 3 middle stages - * data is in 9.23(q23) format for the 256 point as there are 2 middle stages - * data is in 7.25(q25) format for the 64 point as there are 1 middle stage - * data is in 5.27(q27) format for the 16 point as there are no middle stages - */ - - /* - * start of Last stage process - */ - uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides); - vecScGathAddr = vecScGathAddr + (uint32_t) pSrc; - - /* - * load scheduling - */ - vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64); - vecC = vldrwq_gather_base_s32(vecScGathAddr, 16); - - blkCnt = (fftLen >> 3); - while (blkCnt > 0U) - { - vecSum0 = vhaddq(vecA, vecC); - vecDiff0 = vhsubq(vecA, vecC); - - vecB = vldrwq_gather_base_s32(vecScGathAddr, 8); - vecD = vldrwq_gather_base_s32(vecScGathAddr, 24); - - vecSum1 = vhaddq(vecB, vecD); - vecDiff1 = vhsubq(vecB, vecD); - /* - * pre-load for next iteration - */ - vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64); - vecC = vldrwq_gather_base_s32(vecScGathAddr, 16); - - vecTmp0 = vhaddq(vecSum0, vecSum1); - vstrwq_scatter_base_s32(vecScGathAddr, -64, vecTmp0); - - vecTmp0 = vhsubq(vecSum0, vecSum1); - vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, vecTmp0); - - vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1); - vstrwq_scatter_base_s32(vecScGathAddr, -64 + 16, vecTmp0); - - vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1); - vstrwq_scatter_base_s32(vecScGathAddr, -64 + 24, vecTmp0); - - blkCnt--; - } - /* - * output is in 11.21(q21) format for the 1024 point - * output is in 9.23(q23) format for the 256 point - * output is in 7.25(q25) format for the 64 point - * output is in 5.27(q27) format for the 16 point - */ -} - -static void arm_cfft_radix4by2_inverse_q31_mve(const arm_cfft_instance_q31 *S, q31_t *pSrc, uint32_t fftLen) -{ - uint32_t n2; - q31_t *pIn0; - q31_t *pIn1; - const q31_t *pCoef = S->pTwiddle; - - //uint16_t twidCoefModifier = arm_cfft_radix2_twiddle_factor(S->fftLen); - //q31_t twidIncr = (2 * twidCoefModifier * sizeof(q31_t)); - uint32_t blkCnt; - //uint64x2_t vecOffs; - q31x4_t vecIn0, vecIn1, vecSum, vecDiff; - q31x4_t vecCmplxTmp, vecTw; - - n2 = fftLen >> 1; - - pIn0 = pSrc; - pIn1 = pSrc + fftLen; - //vecOffs[0] = 0; - //vecOffs[1] = (uint64_t) twidIncr; - blkCnt = n2 / 2; - - while (blkCnt > 0U) - { - vecIn0 = vld1q_s32(pIn0); - vecIn1 = vld1q_s32(pIn1); - - vecIn0 = vecIn0 >> 1; - vecIn1 = vecIn1 >> 1; - vecSum = vhaddq(vecIn0, vecIn1); - vst1q(pIn0, vecSum); - pIn0 += 4; - - //vecTw = (q31x4_t) vldrdq_gather_offset_s64(pCoef, vecOffs); - vecTw = vld1q_s32(pCoef); - pCoef += 4; - vecDiff = vhsubq(vecIn0, vecIn1); - - vecCmplxTmp = MVE_CMPLX_MULT_FX_AxB(vecDiff, vecTw, q31x4_t); - vst1q(pIn1, vecCmplxTmp); - pIn1 += 4; - - //vecOffs = vaddq((q31x4_t) vecOffs, 2 * twidIncr); - blkCnt--; - } - - _arm_radix4_butterfly_inverse_q31_mve(S, pSrc, n2); - - _arm_radix4_butterfly_inverse_q31_mve(S, pSrc + fftLen, n2); - - pIn0 = pSrc; - blkCnt = (fftLen << 1) >> 2; - while (blkCnt > 0U) - { - vecIn0 = vld1q_s32(pIn0); - vecIn0 = vecIn0 << 1; - vst1q(pIn0, vecIn0); - pIn0 += 4; - blkCnt--; - } - /* - * tail - * (will be merged thru tail predication) - */ - blkCnt = (fftLen << 1) & 3; - if (blkCnt > 0U) - { - mve_pred16_t p0 = vctp32q(blkCnt); - - vecIn0 = vld1q_s32(pIn0); - vecIn0 = vecIn0 << 1; - vstrwq_p(pIn0, vecIn0, p0); - } - -} - -/** - @ingroup groupTransforms - */ - -/** - @addtogroup ComplexFFT - @{ - */ - -/** - @brief Processing function for the Q31 complex FFT. - @param[in] S points to an instance of the fixed-point CFFT structure - @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place - @param[in] ifftFlag flag that selects transform direction - - value = 0: forward transform - - value = 1: inverse transform - @param[in] bitReverseFlag flag that enables / disables bit reversal of output - - value = 0: disables bit reversal of output - - value = 1: enables bit reversal of output - @return none - */ -void arm_cfft_q31( - const arm_cfft_instance_q31 * S, - q31_t * pSrc, - uint8_t ifftFlag, - uint8_t bitReverseFlag) -{ - uint32_t fftLen = S->fftLen; - - if (ifftFlag == 1U) { - - switch (fftLen) { - case 16: - case 64: - case 256: - case 1024: - case 4096: - _arm_radix4_butterfly_inverse_q31_mve(S, pSrc, fftLen); - break; - - case 32: - case 128: - case 512: - case 2048: - arm_cfft_radix4by2_inverse_q31_mve(S, pSrc, fftLen); - break; - } - } else { - switch (fftLen) { - case 16: - case 64: - case 256: - case 1024: - case 4096: - _arm_radix4_butterfly_q31_mve(S, pSrc, fftLen); - break; - - case 32: - case 128: - case 512: - case 2048: - arm_cfft_radix4by2_q31_mve(S, pSrc, fftLen); - break; - } - } - - - if (bitReverseFlag) - { - - arm_bitreversal_32_inpl_mve((uint32_t*)pSrc, S->bitRevLength, S->pBitRevTable); - - } -} -#else - -extern void arm_radix4_butterfly_q31( - q31_t * pSrc, - uint32_t fftLen, - const q31_t * pCoef, - uint32_t twidCoefModifier); - -extern void arm_radix4_butterfly_inverse_q31( - q31_t * pSrc, - uint32_t fftLen, - const q31_t * pCoef, - uint32_t twidCoefModifier); - -extern void arm_bitreversal_32( - uint32_t * pSrc, - const uint16_t bitRevLen, - const uint16_t * pBitRevTable); - -void arm_cfft_radix4by2_q31( - q31_t * pSrc, - uint32_t fftLen, - const q31_t * pCoef); - -void arm_cfft_radix4by2_inverse_q31( - q31_t * pSrc, - uint32_t fftLen, - const q31_t * pCoef); - - -/** - @ingroup groupTransforms - */ - -/** - @addtogroup ComplexFFT - @{ - */ - -/** - @brief Processing function for the Q31 complex FFT. - @param[in] S points to an instance of the fixed-point CFFT structure - @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place - @param[in] ifftFlag flag that selects transform direction - - value = 0: forward transform - - value = 1: inverse transform - @param[in] bitReverseFlag flag that enables / disables bit reversal of output - - value = 0: disables bit reversal of output - - value = 1: enables bit reversal of output - @return none - */ -void arm_cfft_q31( - const arm_cfft_instance_q31 * S, - q31_t * p1, - uint8_t ifftFlag, - uint8_t bitReverseFlag) -{ - uint32_t L = S->fftLen; - - if (ifftFlag == 1U) - { - switch (L) - { - case 16: - case 64: - case 256: - case 1024: - case 4096: - arm_radix4_butterfly_inverse_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 ); - break; - - case 32: - case 128: - case 512: - case 2048: - arm_cfft_radix4by2_inverse_q31 ( p1, L, S->pTwiddle ); - break; - } - } - else - { - switch (L) - { - case 16: - case 64: - case 256: - case 1024: - case 4096: - arm_radix4_butterfly_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 ); - break; - - case 32: - case 128: - case 512: - case 2048: - arm_cfft_radix4by2_q31 ( p1, L, S->pTwiddle ); - break; - } - } - - if ( bitReverseFlag ) - arm_bitreversal_32 ((uint32_t*) p1, S->bitRevLength, S->pBitRevTable); -} - -/** - @} end of ComplexFFT group - */ - -void arm_cfft_radix4by2_q31( - q31_t * pSrc, - uint32_t fftLen, - const q31_t * pCoef) -{ - uint32_t i, l; - uint32_t n2; - q31_t xt, yt, cosVal, sinVal; - q31_t p0, p1; - - n2 = fftLen >> 1U; - for (i = 0; i < n2; i++) - { - cosVal = pCoef[2 * i]; - sinVal = pCoef[2 * i + 1]; - - l = i + n2; - - xt = (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U); - pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U); - - yt = (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U); - pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U); - - mult_32x32_keep32_R(p0, xt, cosVal); - mult_32x32_keep32_R(p1, yt, cosVal); - multAcc_32x32_keep32_R(p0, yt, sinVal); - multSub_32x32_keep32_R(p1, xt, sinVal); - - pSrc[2 * l] = p0 << 1; - pSrc[2 * l + 1] = p1 << 1; - } - - - /* first col */ - arm_radix4_butterfly_q31 (pSrc, n2, (q31_t*)pCoef, 2U); - - /* second col */ - arm_radix4_butterfly_q31 (pSrc + fftLen, n2, (q31_t*)pCoef, 2U); - - n2 = fftLen >> 1U; - for (i = 0; i < n2; i++) - { - p0 = pSrc[4 * i + 0]; - p1 = pSrc[4 * i + 1]; - xt = pSrc[4 * i + 2]; - yt = pSrc[4 * i + 3]; - - p0 <<= 1U; - p1 <<= 1U; - xt <<= 1U; - yt <<= 1U; - - pSrc[4 * i + 0] = p0; - pSrc[4 * i + 1] = p1; - pSrc[4 * i + 2] = xt; - pSrc[4 * i + 3] = yt; - } - -} - -void arm_cfft_radix4by2_inverse_q31( - q31_t * pSrc, - uint32_t fftLen, - const q31_t * pCoef) -{ - uint32_t i, l; - uint32_t n2; - q31_t xt, yt, cosVal, sinVal; - q31_t p0, p1; - - n2 = fftLen >> 1U; - for (i = 0; i < n2; i++) - { - cosVal = pCoef[2 * i]; - sinVal = pCoef[2 * i + 1]; - - l = i + n2; - - xt = (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U); - pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U); - - yt = (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U); - pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U); - - mult_32x32_keep32_R(p0, xt, cosVal); - mult_32x32_keep32_R(p1, yt, cosVal); - multSub_32x32_keep32_R(p0, yt, sinVal); - multAcc_32x32_keep32_R(p1, xt, sinVal); - - pSrc[2 * l] = p0 << 1U; - pSrc[2 * l + 1] = p1 << 1U; - } - - /* first col */ - arm_radix4_butterfly_inverse_q31( pSrc, n2, (q31_t*)pCoef, 2U); - - /* second col */ - arm_radix4_butterfly_inverse_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2U); - - n2 = fftLen >> 1U; - for (i = 0; i < n2; i++) - { - p0 = pSrc[4 * i + 0]; - p1 = pSrc[4 * i + 1]; - xt = pSrc[4 * i + 2]; - yt = pSrc[4 * i + 3]; - - p0 <<= 1U; - p1 <<= 1U; - xt <<= 1U; - yt <<= 1U; - - pSrc[4 * i + 0] = p0; - pSrc[4 * i + 1] = p1; - pSrc[4 * i + 2] = xt; - pSrc[4 * i + 3] = yt; - } -} -#endif /* defined(ARM_MATH_MVEI) */ +/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_cfft_q31.c
+ * Description: Combined Radix Decimation in Frequency CFFT fixed point processing function
+ *
+ * $Date: 18. March 2019
+ * $Revision: V1.6.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+extern void arm_radix4_butterfly_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ const q31_t * pCoef,
+ uint32_t twidCoefModifier);
+
+extern void arm_radix4_butterfly_inverse_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ const q31_t * pCoef,
+ uint32_t twidCoefModifier);
+
+extern void arm_bitreversal_32(
+ uint32_t * pSrc,
+ const uint16_t bitRevLen,
+ const uint16_t * pBitRevTable);
+
+void arm_cfft_radix4by2_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ const q31_t * pCoef);
+
+void arm_cfft_radix4by2_inverse_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ const q31_t * pCoef);
+
+/**
+ @ingroup groupTransforms
+ */
+
+/**
+ @addtogroup ComplexFFT
+ @{
+ */
+
+/**
+ @brief Processing function for the Q31 complex FFT.
+ @param[in] S points to an instance of the fixed-point CFFT structure
+ @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
+ @param[in] ifftFlag flag that selects transform direction
+ - value = 0: forward transform
+ - value = 1: inverse transform
+ @param[in] bitReverseFlag flag that enables / disables bit reversal of output
+ - value = 0: disables bit reversal of output
+ - value = 1: enables bit reversal of output
+ @return none
+ */
+
+void arm_cfft_q31(
+ const arm_cfft_instance_q31 * S,
+ q31_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag)
+{
+ uint32_t L = S->fftLen;
+
+ if (ifftFlag == 1U)
+ {
+ switch (L)
+ {
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ arm_radix4_butterfly_inverse_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_inverse_q31 ( p1, L, S->pTwiddle );
+ break;
+ }
+ }
+ else
+ {
+ switch (L)
+ {
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ arm_radix4_butterfly_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_q31 ( p1, L, S->pTwiddle );
+ break;
+ }
+ }
+
+ if ( bitReverseFlag )
+ arm_bitreversal_32 ((uint32_t*) p1, S->bitRevLength, S->pBitRevTable);
+}
+
+/**
+ @} end of ComplexFFT group
+ */
+
+void arm_cfft_radix4by2_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ const q31_t * pCoef)
+{
+ uint32_t i, l;
+ uint32_t n2;
+ q31_t xt, yt, cosVal, sinVal;
+ q31_t p0, p1;
+
+ n2 = fftLen >> 1U;
+ for (i = 0; i < n2; i++)
+ {
+ cosVal = pCoef[2 * i];
+ sinVal = pCoef[2 * i + 1];
+
+ l = i + n2;
+
+ xt = (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U);
+ pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U);
+
+ yt = (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U);
+ pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U);
+
+ mult_32x32_keep32_R(p0, xt, cosVal);
+ mult_32x32_keep32_R(p1, yt, cosVal);
+ multAcc_32x32_keep32_R(p0, yt, sinVal);
+ multSub_32x32_keep32_R(p1, xt, sinVal);
+
+ pSrc[2 * l] = p0 << 1;
+ pSrc[2 * l + 1] = p1 << 1;
+ }
+
+ /* first col */
+ arm_radix4_butterfly_q31 (pSrc, n2, (q31_t*)pCoef, 2U);
+
+ /* second col */
+ arm_radix4_butterfly_q31 (pSrc + fftLen, n2, (q31_t*)pCoef, 2U);
+
+ n2 = fftLen >> 1U;
+ for (i = 0; i < n2; i++)
+ {
+ p0 = pSrc[4 * i + 0];
+ p1 = pSrc[4 * i + 1];
+ xt = pSrc[4 * i + 2];
+ yt = pSrc[4 * i + 3];
+
+ p0 <<= 1U;
+ p1 <<= 1U;
+ xt <<= 1U;
+ yt <<= 1U;
+
+ pSrc[4 * i + 0] = p0;
+ pSrc[4 * i + 1] = p1;
+ pSrc[4 * i + 2] = xt;
+ pSrc[4 * i + 3] = yt;
+ }
+
+}
+
+void arm_cfft_radix4by2_inverse_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ const q31_t * pCoef)
+{
+ uint32_t i, l;
+ uint32_t n2;
+ q31_t xt, yt, cosVal, sinVal;
+ q31_t p0, p1;
+
+ n2 = fftLen >> 1U;
+ for (i = 0; i < n2; i++)
+ {
+ cosVal = pCoef[2 * i];
+ sinVal = pCoef[2 * i + 1];
+
+ l = i + n2;
+
+ xt = (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U);
+ pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U);
+
+ yt = (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U);
+ pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U);
+
+ mult_32x32_keep32_R(p0, xt, cosVal);
+ mult_32x32_keep32_R(p1, yt, cosVal);
+ multSub_32x32_keep32_R(p0, yt, sinVal);
+ multAcc_32x32_keep32_R(p1, xt, sinVal);
+
+ pSrc[2 * l] = p0 << 1U;
+ pSrc[2 * l + 1] = p1 << 1U;
+ }
+
+ /* first col */
+ arm_radix4_butterfly_inverse_q31( pSrc, n2, (q31_t*)pCoef, 2U);
+
+ /* second col */
+ arm_radix4_butterfly_inverse_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2U);
+
+ n2 = fftLen >> 1U;
+ for (i = 0; i < n2; i++)
+ {
+ p0 = pSrc[4 * i + 0];
+ p1 = pSrc[4 * i + 1];
+ xt = pSrc[4 * i + 2];
+ yt = pSrc[4 * i + 3];
+
+ p0 <<= 1U;
+ p1 <<= 1U;
+ xt <<= 1U;
+ yt <<= 1U;
+
+ pSrc[4 * i + 0] = p0;
+ pSrc[4 * i + 1] = p1;
+ pSrc[4 * i + 2] = xt;
+ pSrc[4 * i + 3] = yt;
+ }
+}
|