summaryrefslogtreecommitdiffstats
path: root/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp.c
diff options
context:
space:
mode:
authorClyne Sullivan <clyne@bitgloo.com>2025-01-29 21:34:25 -0500
committerClyne Sullivan <clyne@bitgloo.com>2025-01-29 21:34:25 -0500
commit5b81bc8ccbd342b8566d88fc9f17a73aec03b5b6 (patch)
treecc57486912cfa74c6440d8b97c28f451ec787d78 /Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp.c
initial commit
Diffstat (limited to 'Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp.c')
-rw-r--r--Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp.c5619
1 files changed, 5619 insertions, 0 deletions
diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp.c
new file mode 100644
index 0000000..c30a418
--- /dev/null
+++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_cryp.c
@@ -0,0 +1,5619 @@
+/**
+ ******************************************************************************
+ * @file stm32u0xx_hal_cryp.c
+ * @author MCD Application Team
+ * @brief CRYP HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Cryptography (CRYP) peripheral:
+ * + Initialization, de-initialization, set config and get config functions
+ * + AES processing functions
+ * + DMA callback functions
+ * + CRYP IRQ handler management
+ * + Peripheral State functions
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * Copyright (c) 2023 STMicroelectronics.
+ * All rights reserved.
+ *
+ * This software is licensed under terms that can be found in the LICENSE file
+ * in the root directory of this software component.
+ * If no LICENSE file comes with this software, it is provided AS-IS.
+ *
+ ******************************************************************************
+ @verbatim
+ ==============================================================================
+ ##### How to use this driver #####
+ ==============================================================================
+ [..]
+ The CRYP HAL driver can be used in CRYP or TinyAES peripheral as follows:
+
+ (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
+ (##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE()
+ or __HAL_RCC_AES_CLK_ENABLE for TinyAES peripheral
+ (##) In case of using interrupts (e.g. HAL_CRYP_Encrypt_IT())
+ (+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
+ (+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
+ (+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
+ (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_Encrypt_DMA())
+ (+++) Enable the DMAx interface clock using __RCC_DMAx_CLK_ENABLE()
+ (+++) Configure and enable two DMA streams one for managing data transfer from
+ memory to peripheral (input stream) and another stream for managing data
+ transfer from peripheral to memory (output stream)
+ (+++) Associate the initialized DMA handle to the CRYP DMA handle
+ using __HAL_LINKDMA()
+ (+++) Configure the priority and enable the NVIC for the transfer complete
+ interrupt on the two DMA channels. The output channel should have higher
+ priority than the input channel HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
+
+ (#)Initialize the CRYP according to the specified parameters :
+ (##) The data type: 1-bit, 8-bit, 16-bit or 32-bit.
+ (##) The key size: 128, 192 or 256.
+ (##) The AlgoMode DES/ TDES Algorithm ECB/CBC or AES Algorithm ECB/CBC/CTR/GCM or CCM.
+ (##) The initialization vector (counter). It is not used in ECB mode.
+ (##) The key buffer used for encryption/decryption.
+ (+++) In some specific configurations, the key is written by the application
+ code out of the HAL scope. In that case, user can still resort to the
+ HAL APIs as usual but must make sure that pKey pointer is set to NULL.
+ (##) The DataWidthUnit field. It specifies whether the data length (or the payload length for authentication
+ algorithms) is in words or bytes.
+ (##) The Header used only in AES GCM and CCM Algorithm for authentication.
+ (##) The HeaderSize providing the size of the header buffer in words or bytes,
+ depending upon HeaderWidthUnit field.
+ (##) The HeaderWidthUnit field. It specifies whether the header length (for authentication algorithms)
+ is in words or bytes.
+ (##) The B0 block is the first authentication block used only in AES CCM mode.
+ (##) The KeyIVConfigSkip used to process several messages in a row (please see more information below).
+
+ (#)Three processing (encryption/decryption) functions are available:
+ (##) Polling mode: encryption and decryption APIs are blocking functions
+ i.e. they process the data and wait till the processing is finished,
+ e.g. HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
+ (##) Interrupt mode: encryption and decryption APIs are not blocking functions
+ i.e. they process the data under interrupt,
+ e.g. HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
+ (##) DMA mode: encryption and decryption APIs are not blocking functions
+ i.e. the data transfer is ensured by DMA,
+ e.g. HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
+
+ (#)When the processing function is called at first time after HAL_CRYP_Init()
+ the CRYP peripheral is configured and processes the buffer in input.
+ At second call, no need to Initialize the CRYP, user have to get current configuration via
+ HAL_CRYP_GetConfig() API, then only HAL_CRYP_SetConfig() is requested to set
+ new parameters, finally user can start encryption/decryption.
+
+ (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
+
+ (#)To process a single message with consecutive calls to HAL_CRYP_Encrypt() or HAL_CRYP_Decrypt()
+ without having to configure again the Key or the Initialization Vector between each API call,
+ the field KeyIVConfigSkip of the initialization structure must be set to CRYP_KEYIVCONFIG_ONCE.
+ Same is true for consecutive calls of HAL_CRYP_Encrypt_IT(), HAL_CRYP_Decrypt_IT(), HAL_CRYP_Encrypt_DMA()
+ or HAL_CRYP_Decrypt_DMA().
+
+ [..]
+ The cryptographic processor supports following standards:
+ (#) The data encryption standard (DES) and Triple-DES (TDES) supported only by CRYP1 peripheral:
+ (##)64-bit data block processing
+ (##) chaining modes supported :
+ (+++) Electronic Code Book(ECB)
+ (+++) Cipher Block Chaining (CBC)
+ (##) keys length supported :64-bit, 128-bit and 192-bit.
+ (#) The advanced encryption standard (AES) supported by CRYP1 & TinyAES peripheral:
+ (##)128-bit data block processing
+ (##) chaining modes supported :
+ (+++) Electronic Code Book(ECB)
+ (+++) Cipher Block Chaining (CBC)
+ (+++) Counter mode (CTR)
+ (+++) Galois/counter mode (GCM/GMAC)
+ (+++) Counter with Cipher Block Chaining-Message(CCM)
+ (##) keys length Supported :
+ (+++) for CRYP1 peripheral: 128-bit, 192-bit and 256-bit.
+ (+++) for TinyAES peripheral: 128-bit and 256-bit
+
+ [..]
+ (@) Specific care must be taken to format the key and the Initialization Vector IV!
+
+ [..] If the key is defined as a 128-bit long array key[127..0] = {b127 ... b0} where
+ b127 is the MSB and b0 the LSB, the key must be stored in MCU memory
+ (+) as a sequence of words where the MSB word comes first (occupies the
+ lowest memory address)
+ (++) address n+0 : 0b b127 .. b120 b119 .. b112 b111 .. b104 b103 .. b96
+ (++) address n+4 : 0b b95 .. b88 b87 .. b80 b79 .. b72 b71 .. b64
+ (++) address n+8 : 0b b63 .. b56 b55 .. b48 b47 .. b40 b39 .. b32
+ (++) address n+C : 0b b31 .. b24 b23 .. b16 b15 .. b8 b7 .. b0
+ [..] Hereafter, another illustration when considering a 128-bit long key made of 16 bytes {B15..B0}.
+ The 4 32-bit words that make the key must be stored as follows in MCU memory:
+ (+) address n+0 : 0x B15 B14 B13 B12
+ (+) address n+4 : 0x B11 B10 B9 B8
+ (+) address n+8 : 0x B7 B6 B5 B4
+ (+) address n+C : 0x B3 B2 B1 B0
+ [..] which leads to the expected setting
+ (+) AES_KEYR3 = 0x B15 B14 B13 B12
+ (+) AES_KEYR2 = 0x B11 B10 B9 B8
+ (+) AES_KEYR1 = 0x B7 B6 B5 B4
+ (+) AES_KEYR0 = 0x B3 B2 B1 B0
+
+ [..] Same format must be applied for a 256-bit long key made of 32 bytes {B31..B0}.
+ The 8 32-bit words that make the key must be stored as follows in MCU memory:
+ (+) address n+00 : 0x B31 B30 B29 B28
+ (+) address n+04 : 0x B27 B26 B25 B24
+ (+) address n+08 : 0x B23 B22 B21 B20
+ (+) address n+0C : 0x B19 B18 B17 B16
+ (+) address n+10 : 0x B15 B14 B13 B12
+ (+) address n+14 : 0x B11 B10 B9 B8
+ (+) address n+18 : 0x B7 B6 B5 B4
+ (+) address n+1C : 0x B3 B2 B1 B0
+ [..] which leads to the expected setting
+ (+) AES_KEYR7 = 0x B31 B30 B29 B28
+ (+) AES_KEYR6 = 0x B27 B26 B25 B24
+ (+) AES_KEYR5 = 0x B23 B22 B21 B20
+ (+) AES_KEYR4 = 0x B19 B18 B17 B16
+ (+) AES_KEYR3 = 0x B15 B14 B13 B12
+ (+) AES_KEYR2 = 0x B11 B10 B9 B8
+ (+) AES_KEYR1 = 0x B7 B6 B5 B4
+ (+) AES_KEYR0 = 0x B3 B2 B1 B0
+
+ [..] Initialization Vector IV (4 32-bit words) format must follow the same as
+ that of a 128-bit long key.
+
+ [..] Note that key and IV registers are not sensitive to swap mode selection.
+
+ [..] This section describes the AES Galois/counter mode (GCM) supported by both CRYP1 and TinyAES peripherals:
+ (#) Algorithm supported :
+ (##) Galois/counter mode (GCM)
+ (##) Galois message authentication code (GMAC) :is exactly the same as
+ GCM algorithm composed only by an header.
+ (#) Four phases are performed in GCM :
+ (##) Init phase: peripheral prepares the GCM hash subkey (H) and do the IV processing
+ (##) Header phase: peripheral processes the Additional Authenticated Data (AAD), with hash
+ computation only.
+ (##) Payload phase: peripheral processes the plaintext (P) with hash computation + keystream
+ encryption + data XORing. It works in a similar way for ciphertext (C).
+ (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data.
+ (#) structure of message construction in GCM is defined as below :
+ (##) 16 bytes Initial Counter Block (ICB)composed of IV and counter
+ (##) The authenticated header A (also knows as Additional Authentication Data AAD)
+ this part of the message is only authenticated, not encrypted.
+ (##) The plaintext message P is both authenticated and encrypted as ciphertext.
+ GCM standard specifies that ciphertext has same bit length as the plaintext.
+ (##) The last block is composed of the length of A (on 64 bits) and the length of ciphertext
+ (on 64 bits)
+
+ [..] A more detailed description of the GCM message structure is available below.
+
+ [..] This section describe The AES Counter with Cipher Block Chaining-Message
+ Authentication Code (CCM) supported by both CRYP1 and TinyAES peripheral:
+ (#) Specific parameters for CCM :
+
+ (##) B0 block : follows NIST Special Publication 800-38C,
+ (##) B1 block (header)
+ (##) CTRx block : control blocks
+
+ [..] A detailed description of the CCM message structure is available below.
+
+ (#) Four phases are performed in CCM for CRYP1 peripheral:
+ (##) Init phase: peripheral prepares the GCM hash subkey (H) and do the IV processing
+ (##) Header phase: peripheral processes the Additional Authenticated Data (AAD), with hash
+ computation only.
+ (##) Payload phase: peripheral processes the plaintext (P) with hash computation + keystream
+ encryption + data XORing. It works in a similar way for ciphertext (C).
+ (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data.
+ (#) CCM in TinyAES peripheral:
+ (##) To perform message payload encryption or decryption AES is configured in CTR mode.
+ (##) For authentication two phases are performed :
+ - Header phase: peripheral processes the Additional Authenticated Data (AAD) first, then the cleartext message
+ only cleartext payload (not the ciphertext payload) is used and no output.
+ (##) Final phase: peripheral generates the authenticated tag (T) using the last block of data.
+
+ *** Callback registration ***
+ =============================
+
+ [..]
+ The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS when set to 1
+ allows the user to configure dynamically the driver callbacks.
+ Use Functions HAL_CRYP_RegisterCallback() or HAL_CRYP_RegisterXXXCallback()
+ to register an interrupt callback.
+
+ [..]
+ Function HAL_CRYP_RegisterCallback() allows to register following callbacks:
+ (+) InCpltCallback : Input FIFO transfer completed callback.
+ (+) OutCpltCallback : Output FIFO transfer completed callback.
+ (+) ErrorCallback : callback for error detection.
+ (+) MspInitCallback : CRYP MspInit.
+ (+) MspDeInitCallback : CRYP MspDeInit.
+ This function takes as parameters the HAL peripheral handle, the Callback ID
+ and a pointer to the user callback function.
+
+ [..]
+ Use function HAL_CRYP_UnRegisterCallback() to reset a callback to the default
+ weak function.
+ HAL_CRYP_UnRegisterCallback() takes as parameters the HAL peripheral handle,
+ and the Callback ID.
+ This function allows to reset following callbacks:
+ (+) InCpltCallback : Input FIFO transfer completed callback.
+ (+) OutCpltCallback : Output FIFO transfer completed callback.
+ (+) ErrorCallback : callback for error detection.
+ (+) MspInitCallback : CRYP MspInit.
+ (+) MspDeInitCallback : CRYP MspDeInit.
+
+ [..]
+ By default, after the HAL_CRYP_Init() and when the state is HAL_CRYP_STATE_RESET
+ all callbacks are set to the corresponding weak functions :
+ examples HAL_CRYP_InCpltCallback() , HAL_CRYP_OutCpltCallback().
+ Exception done for MspInit and MspDeInit functions that are
+ reset to the legacy weak function in the HAL_CRYP_Init()/ HAL_CRYP_DeInit() only when
+ these callbacks are null (not registered beforehand).
+ if not, MspInit or MspDeInit are not null, the HAL_CRYP_Init() / HAL_CRYP_DeInit()
+ keep and use the user MspInit/MspDeInit functions (registered beforehand)
+
+ [..]
+ Callbacks can be registered/unregistered in HAL_CRYP_STATE_READY state only.
+ Exception done MspInit/MspDeInit callbacks that can be registered/unregistered
+ in HAL_CRYP_STATE_READY or HAL_CRYP_STATE_RESET state,
+ thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
+ In that case first register the MspInit/MspDeInit user callbacks
+ using HAL_CRYP_RegisterCallback() before calling HAL_CRYP_DeInit()
+ or HAL_CRYP_Init() function.
+
+ [..]
+ When The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS is set to 0 or
+ not defined, the callback registration feature is not available and all callbacks
+ are set to the corresponding weak functions.
+
+
+ *** Suspend/Resume feature ***
+ ==============================
+
+ [..]
+ The compilation define USE_HAL_CRYP_SUSPEND_RESUME when set to 1
+ allows the user to resort to the suspend/resume feature.
+ A low priority block processing can be suspended to process a high priority block
+ instead. When the high priority block processing is over, the low priority block
+ processing can be resumed, restarting from the point where it was suspended. This
+ feature is applicable only in non-blocking interrupt mode.
+
+ [..] User must resort to HAL_CRYP_Suspend() to suspend the low priority block
+ processing. This API manages the hardware block processing suspension and saves all the
+ internal data that will be needed to restart later on. Upon HAL_CRYP_Suspend() completion,
+ the user can launch the processing of any other block (high priority block processing).
+
+ [..] When the high priority block processing is over, user must invoke HAL_CRYP_Resume()
+ to resume the low priority block processing. Ciphering (or deciphering) restarts from
+ the suspension point and ends as usual.
+
+ [..] HAL_CRYP_Suspend() reports an error when the suspension request is sent too late
+ (i.e when the low priority block processing is about to end). There is no use to
+ suspend the tag generation processing for authentication algorithms.
+
+ [..]
+ (@) If the key is written out of HAL scope (case pKey pointer set to NULL by the user),
+ the block processing suspension/resumption mechanism is NOT applicable.
+
+ [..]
+ (@) If the Key and Initialization Vector are configured only once and configuration is
+ skipped for consecutive processings (case KeyIVConfigSkip set to CRYP_KEYIVCONFIG_ONCE),
+ the block processing suspension/resumption mechanism is NOT applicable.
+
+ @endverbatim
+ ******************************************************************************
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32u0xx_hal.h"
+
+/** @addtogroup STM32U0xx_HAL_Driver
+ * @{
+ */
+
+/** @addtogroup CRYP
+ * @{
+ */
+
+#if defined(AES)
+#ifdef HAL_CRYP_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/** @addtogroup CRYP_Private_Defines
+ * @{
+ */
+#define CRYP_TIMEOUT_KEYPREPARATION 82U /* The latency of key preparation operation is 82 clock cycles.*/
+#define CRYP_TIMEOUT_GCMCCMINITPHASE 299U /* The latency of GCM/CCM init phase to prepare hash subkey
+ is 299 clock cycles.*/
+#define CRYP_TIMEOUT_GCMCCMHEADERPHASE 290U /* The latency of GCM/CCM header phase is 290 clock cycles.*/
+
+#define CRYP_PHASE_READY 0x00000001U /*!< CRYP peripheral is ready for initialization. */
+#define CRYP_PHASE_PROCESS 0x00000002U /*!< CRYP peripheral is in processing phase */
+#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
+#define CRYP_PHASE_HEADER_SUSPENDED 0x00000004U /*!< GCM/GMAC/CCM header phase is suspended */
+#define CRYP_PHASE_PAYLOAD_SUSPENDED 0x00000005U /*!< GCM/CCM payload phase is suspended */
+#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
+#define CRYP_PHASE_HEADER_DMA_FEED 0x00000006U /*!< GCM/GMAC/CCM header is fed to the peripheral in DMA mode */
+
+#define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode(Mode 1) */
+#define CRYP_OPERATINGMODE_KEYDERIVATION AES_CR_MODE_0 /*!< Key derivation mode only used when performing ECB and CBC decryptions (Mode 2) */
+#define CRYP_OPERATINGMODE_DECRYPT AES_CR_MODE_1 /*!< Decryption (Mode 3) */
+#define CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT AES_CR_MODE /*!< Key derivation and decryption only used when performing ECB and CBC decryptions (Mode 4) */
+#define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */
+#define CRYP_PHASE_HEADER AES_CR_GCMPH_0 /*!< GCM/GMAC or CCM header phase */
+#define CRYP_PHASE_PAYLOAD AES_CR_GCMPH_1 /*!< GCM(/CCM) payload phase */
+#define CRYP_PHASE_FINAL AES_CR_GCMPH /*!< GCM/GMAC or CCM final phase */
+
+/* CTR1 information to use in CCM algorithm */
+#define CRYP_CCM_CTR1_0 0x07FFFFFFU
+#define CRYP_CCM_CTR1_1 0xFFFFFF00U
+#define CRYP_CCM_CTR1_2 0x00000001U
+
+/**
+ * @}
+ */
+
+/* Private macro -------------------------------------------------------------*/
+/** @addtogroup CRYP_Private_Macros
+ * @{
+ */
+
+#define CRYP_SET_PHASE(__HANDLE__, __PHASE__) MODIFY_REG((__HANDLE__)->Instance->CR,\
+ AES_CR_GCMPH, (uint32_t)(__PHASE__))
+
+/**
+ * @}
+ */
+
+/* Private struct -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/** @addtogroup CRYP_Private_Functions
+ * @{
+ */
+
+static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
+static HAL_StatusTypeDef CRYP_SetHeaderDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size);
+static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
+static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
+static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
+static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize);
+static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp);
+static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_GCMCCM_SetPayloadPhase_DMA(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
+static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcrypt, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp);
+static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+static void CRYP_ClearCCFlagWhenHigh(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
+#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
+static void CRYP_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output);
+static void CRYP_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input);
+static void CRYP_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output);
+static void CRYP_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input);
+static void CRYP_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output, uint32_t KeySize);
+static void CRYP_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint32_t KeySize);
+static void CRYP_PhaseProcessingResume(CRYP_HandleTypeDef *hcryp);
+#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
+
+
+/**
+ * @}
+ */
+
+/* Exported functions ---------------------------------------------------------*/
+
+/** @addtogroup CRYP_Exported_Functions
+ * @{
+ */
+
+/** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions
+ * @brief Initialization and Configuration functions.
+ *
+@verbatim
+ ========================================================================================
+ ##### Initialization, de-initialization and Set and Get configuration functions #####
+ ========================================================================================
+ [..] This section provides functions allowing to:
+ (+) Initialize the CRYP
+ (+) DeInitialize the CRYP
+ (+) Initialize the CRYP MSP
+ (+) DeInitialize the CRYP MSP
+ (+) configure CRYP (HAL_CRYP_SetConfig) with the specified parameters in the CRYP_ConfigTypeDef
+ Parameters which are configured in This section are :
+ (++) Key size
+ (++) Data Type : 32,16, 8 or 1bit
+ (++) AlgoMode :
+ (+++) for CRYP1 peripheral :
+ ECB and CBC in DES/TDES Standard
+ ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard.
+ (+++) for TinyAES2 peripheral, only ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard are supported.
+ (+) Get CRYP configuration (HAL_CRYP_GetConfig) from the specified parameters in the CRYP_HandleTypeDef
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initializes the CRYP according to the specified
+ * parameters in the CRYP_ConfigTypeDef and creates the associated handle.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp)
+{
+ /* Check the CRYP handle allocation */
+ if (hcryp == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check parameters */
+ assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize));
+ assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType));
+ assert_param(IS_CRYP_ALGORITHM(hcryp->Init.Algorithm));
+ assert_param(IS_CRYP_INIT(hcryp->Init.KeyIVConfigSkip));
+
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ if (hcryp->State == HAL_CRYP_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ hcryp->Lock = HAL_UNLOCKED;
+
+ hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
+ hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
+ hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
+
+ if (hcryp->MspInitCallback == NULL)
+ {
+ hcryp->MspInitCallback = HAL_CRYP_MspInit; /* Legacy weak MspInit */
+ }
+
+ /* Init the low level hardware */
+ hcryp->MspInitCallback(hcryp);
+ }
+#else
+ if (hcryp->State == HAL_CRYP_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ hcryp->Lock = HAL_UNLOCKED;
+
+ /* Init the low level hardware */
+ HAL_CRYP_MspInit(hcryp);
+ }
+#endif /* (USE_HAL_CRYP_REGISTER_CALLBACKS) */
+
+ /* Set the key size (This bit field is do not care in the DES or TDES modes), data type and Algorithm */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD,
+ hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
+
+ /* Reset Error Code field */
+ hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
+
+ /* Reset peripheral Key and IV configuration flag */
+ hcryp->KeyIVConfig = 0U;
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Set the default CRYP phase */
+ hcryp->Phase = CRYP_PHASE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief De-Initializes the CRYP peripheral.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp)
+{
+ /* Check the CRYP handle allocation */
+ if (hcryp == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Set the default CRYP phase */
+ hcryp->Phase = CRYP_PHASE_READY;
+
+ /* Reset CrypInCount and CrypOutCount */
+ hcryp->CrypInCount = 0;
+ hcryp->CrypOutCount = 0;
+ hcryp->CrypHeaderCount = 0;
+
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+
+ if (hcryp->MspDeInitCallback == NULL)
+ {
+ hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; /* Legacy weak MspDeInit */
+ }
+ /* DeInit the low level hardware */
+ hcryp->MspDeInitCallback(hcryp);
+
+#else
+
+ /* DeInit the low level hardware: CLOCK, NVIC.*/
+ HAL_CRYP_MspDeInit(hcryp);
+
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_RESET;
+
+ /* Release Lock */
+ __HAL_UNLOCK(hcryp);
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Configure the CRYP according to the specified
+ * parameters in the CRYP_ConfigTypeDef
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure
+ * @param pConf pointer to a CRYP_ConfigTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_SetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf)
+{
+ /* Check the CRYP handle allocation */
+ if ((hcryp == NULL) || (pConf == NULL))
+ {
+ return HAL_ERROR;
+ }
+
+ /* Check parameters */
+ assert_param(IS_CRYP_KEYSIZE(pConf->KeySize));
+ assert_param(IS_CRYP_DATATYPE(pConf->DataType));
+ assert_param(IS_CRYP_ALGORITHM(pConf->Algorithm));
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Set CRYP parameters */
+ hcryp->Init.DataType = pConf->DataType;
+ hcryp->Init.pKey = pConf->pKey;
+ hcryp->Init.Algorithm = pConf->Algorithm;
+ hcryp->Init.KeySize = pConf->KeySize;
+ hcryp->Init.pInitVect = pConf->pInitVect;
+ hcryp->Init.Header = pConf->Header;
+ hcryp->Init.HeaderSize = pConf->HeaderSize;
+ hcryp->Init.B0 = pConf->B0;
+ hcryp->Init.DataWidthUnit = pConf->DataWidthUnit;
+ hcryp->Init.HeaderWidthUnit = pConf->HeaderWidthUnit;
+ hcryp->Init.KeyIVConfigSkip = pConf->KeyIVConfigSkip;
+
+ /* Set the key size (This bit field is do not care in the DES or TDES modes), data type and operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD,
+ hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
+
+ /*clear error flags*/
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_ERR_CLEAR);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Reset Error Code field */
+ hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Set the default CRYP phase */
+ hcryp->Phase = CRYP_PHASE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+ }
+ else
+ {
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ return HAL_ERROR;
+ }
+}
+
+/**
+ * @brief Get CRYP Configuration parameters in associated handle.
+ * @param pConf pointer to a CRYP_ConfigTypeDef structure
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_GetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf)
+{
+ /* Check the CRYP handle allocation */
+ if ((hcryp == NULL) || (pConf == NULL))
+ {
+ return HAL_ERROR;
+ }
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Get CRYP parameters */
+ pConf->DataType = hcryp->Init.DataType;
+ pConf->pKey = hcryp->Init.pKey;
+ pConf->Algorithm = hcryp->Init.Algorithm;
+ pConf->KeySize = hcryp->Init.KeySize ;
+ pConf->pInitVect = hcryp->Init.pInitVect;
+ pConf->Header = hcryp->Init.Header ;
+ pConf->HeaderSize = hcryp->Init.HeaderSize;
+ pConf->B0 = hcryp->Init.B0;
+ pConf->DataWidthUnit = hcryp->Init.DataWidthUnit;
+ pConf->HeaderWidthUnit = hcryp->Init.HeaderWidthUnit;
+ pConf->KeyIVConfigSkip = hcryp->Init.KeyIVConfigSkip;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+ }
+ else
+ {
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ return HAL_ERROR;
+ }
+}
+/**
+ * @brief Initializes the CRYP MSP.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval None
+ */
+__weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hcryp);
+
+ /* NOTE : This function should not be modified; when the callback is needed,
+ the HAL_CRYP_MspInit can be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitializes CRYP MSP.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval None
+ */
+__weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hcryp);
+
+ /* NOTE : This function should not be modified; when the callback is needed,
+ the HAL_CRYP_MspDeInit can be implemented in the user file
+ */
+}
+
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+/**
+ * @brief Register a User CRYP Callback
+ * To be used instead of the weak predefined callback
+ * @param hcryp cryp handle
+ * @param CallbackID ID of the callback to be registered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
+ * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
+ * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
+ * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
+ * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
+ * @param pCallback pointer to the Callback function
+ * @retval status
+ */
+HAL_StatusTypeDef HAL_CRYP_RegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID,
+ pCRYP_CallbackTypeDef pCallback)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (pCallback == NULL)
+ {
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
+
+ return HAL_ERROR;
+ }
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ switch (CallbackID)
+ {
+ case HAL_CRYP_INPUT_COMPLETE_CB_ID :
+ hcryp->InCpltCallback = pCallback;
+ break;
+
+ case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
+ hcryp->OutCpltCallback = pCallback;
+ break;
+
+ case HAL_CRYP_ERROR_CB_ID :
+ hcryp->ErrorCallback = pCallback;
+ break;
+
+ case HAL_CRYP_MSPINIT_CB_ID :
+ hcryp->MspInitCallback = pCallback;
+ break;
+
+ case HAL_CRYP_MSPDEINIT_CB_ID :
+ hcryp->MspDeInitCallback = pCallback;
+ break;
+
+ default :
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (hcryp->State == HAL_CRYP_STATE_RESET)
+ {
+ switch (CallbackID)
+ {
+ case HAL_CRYP_MSPINIT_CB_ID :
+ hcryp->MspInitCallback = pCallback;
+ break;
+
+ case HAL_CRYP_MSPDEINIT_CB_ID :
+ hcryp->MspDeInitCallback = pCallback;
+ break;
+
+ default :
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(hcryp);
+
+ return status;
+}
+
+/**
+ * @brief Unregister an CRYP Callback
+ * CRYP callback is redirected to the weak predefined callback
+ * @param hcryp cryp handle
+ * @param CallbackID ID of the callback to be unregistered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
+ * @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
+ * @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
+ * @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
+ * @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
+ * @retval status
+ */
+HAL_StatusTypeDef HAL_CRYP_UnRegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ switch (CallbackID)
+ {
+ case HAL_CRYP_INPUT_COMPLETE_CB_ID :
+ hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
+ break;
+
+ case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
+ hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
+ break;
+
+ case HAL_CRYP_ERROR_CB_ID :
+ hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
+ break;
+
+ case HAL_CRYP_MSPINIT_CB_ID :
+ hcryp->MspInitCallback = HAL_CRYP_MspInit;
+ break;
+
+ case HAL_CRYP_MSPDEINIT_CB_ID :
+ hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
+ break;
+
+ default :
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (hcryp->State == HAL_CRYP_STATE_RESET)
+ {
+ switch (CallbackID)
+ {
+ case HAL_CRYP_MSPINIT_CB_ID :
+ hcryp->MspInitCallback = HAL_CRYP_MspInit;
+ break;
+
+ case HAL_CRYP_MSPDEINIT_CB_ID :
+ hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
+ break;
+
+ default :
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Update the error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;;
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(hcryp);
+
+ return status;
+}
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+
+#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
+/**
+ * @brief Request CRYP processing suspension when in interruption mode.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @note Set the handle field SuspendRequest to the appropriate value so that
+ * the on-going CRYP processing is suspended as soon as the required
+ * conditions are met.
+ * @note HAL_CRYP_ProcessSuspend() can only be invoked when the processing is done
+ * in non-blocking interrupt mode.
+ * @note It is advised not to suspend the CRYP processing when the DMA controller
+ * is managing the data transfer.
+ * @retval None
+ */
+void HAL_CRYP_ProcessSuspend(CRYP_HandleTypeDef *hcryp)
+{
+ /* Set Handle SuspendRequest field */
+ hcryp->SuspendRequest = HAL_CRYP_SUSPEND;
+}
+
+/**
+ * @brief CRYP processing suspension and peripheral internal parameters storage.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @note peripheral internal parameters are stored to be readily available when
+ * suspended processing is resumed later on.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Suspend(CRYP_HandleTypeDef *hcryp)
+{
+ HAL_CRYP_STATETypeDef state;
+
+ /* Request suspension */
+ HAL_CRYP_ProcessSuspend(hcryp);
+
+ do
+ {
+ state = HAL_CRYP_GetState(hcryp);
+ } while ((state != HAL_CRYP_STATE_SUSPENDED) && (state != HAL_CRYP_STATE_READY));
+
+ if (HAL_CRYP_GetState(hcryp) == HAL_CRYP_STATE_READY)
+ {
+ /* Processing was already over or was about to end. No suspension done */
+ return HAL_ERROR;
+ }
+ else
+ {
+ /* Suspend Processing */
+
+ /* If authentication algorithms on-going, carry out first saving steps
+ before disable the peripheral */
+ if ((hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC) || \
+ (hcryp->Init.Algorithm == CRYP_AES_CCM))
+ {
+ /* Save Suspension registers */
+ CRYP_Read_SuspendRegisters(hcryp, hcryp->SUSPxR_saved);
+ /* Save Key */
+ CRYP_Read_KeyRegisters(hcryp, hcryp->Key_saved, hcryp->Init.KeySize);
+ /* Save IV */
+ CRYP_Read_IVRegisters(hcryp, hcryp->IV_saved);
+ }
+ /* Disable AES */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Save low-priority block CRYP handle parameters */
+ hcryp->Init_saved = hcryp->Init;
+ hcryp->pCrypInBuffPtr_saved = hcryp->pCrypInBuffPtr;
+ hcryp->pCrypOutBuffPtr_saved = hcryp->pCrypOutBuffPtr;
+ hcryp->CrypInCount_saved = hcryp->CrypInCount;
+ hcryp->CrypOutCount_saved = hcryp->CrypOutCount;
+ hcryp->Phase_saved = hcryp->Phase;
+ hcryp->State_saved = hcryp->State;
+ hcryp->Size_saved = ((hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) ? \
+ (hcryp->Size / 4U) : hcryp->Size);
+ hcryp->SizesSum_saved = hcryp->SizesSum;
+ hcryp->AutoKeyDerivation_saved = hcryp->AutoKeyDerivation;
+ hcryp->CrypHeaderCount_saved = hcryp->CrypHeaderCount;
+ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+
+ if ((hcryp->Init.Algorithm == CRYP_AES_CBC) || \
+ (hcryp->Init.Algorithm == CRYP_AES_CTR))
+ {
+ /* Save Initialisation Vector registers */
+ CRYP_Read_IVRegisters(hcryp, hcryp->IV_saved);
+ }
+
+ /* Save Control register */
+ hcryp->CR_saved = hcryp->Instance->CR;
+
+ }
+ return HAL_OK;
+}
+
+
+/**
+ * @brief CRYP processing resumption.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @note Processing restarts at the exact point where it was suspended, based
+ * on the parameters saved at suspension time.
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Resume(CRYP_HandleTypeDef *hcryp)
+{
+ /* Check the CRYP handle allocation */
+ if (hcryp == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ if (hcryp->State_saved != HAL_CRYP_STATE_SUSPENDED)
+ {
+ /* CRYP was not suspended */
+ return HAL_ERROR;
+ }
+ else
+ {
+
+ /* Restore low-priority block CRYP handle parameters */
+ hcryp->Init = hcryp->Init_saved;
+ hcryp->State = hcryp->State_saved;
+
+ /* Chaining algorithms case */
+ if ((hcryp->Init_saved.Algorithm == CRYP_AES_ECB) || \
+ (hcryp->Init_saved.Algorithm == CRYP_AES_CBC) || \
+ (hcryp->Init_saved.Algorithm == CRYP_AES_CTR))
+ {
+ /* Restore low-priority block CRYP handle parameters */
+ hcryp->AutoKeyDerivation = hcryp->AutoKeyDerivation_saved;
+
+ if ((hcryp->Init.Algorithm == CRYP_AES_CBC) || \
+ (hcryp->Init.Algorithm == CRYP_AES_CTR))
+ {
+ hcryp->Init.pInitVect = hcryp->IV_saved;
+ }
+ __HAL_CRYP_DISABLE(hcryp);
+ (void) HAL_CRYP_Init(hcryp);
+ }
+ else /* Authentication algorithms case */
+ {
+ /* Restore low-priority block CRYP handle parameters */
+ hcryp->Phase = hcryp->Phase_saved;
+ hcryp->CrypHeaderCount = hcryp->CrypHeaderCount_saved;
+ hcryp->SizesSum = hcryp->SizesSum_saved;
+
+ /* Disable AES and write-back SUSPxR registers */;
+ __HAL_CRYP_DISABLE(hcryp);
+ /* Restore AES Suspend Registers */
+ CRYP_Write_SuspendRegisters(hcryp, hcryp->SUSPxR_saved);
+ /* Restore Control, Key and IV Registers, then enable AES */
+ hcryp->Instance->CR = hcryp->CR_saved;
+ CRYP_Write_KeyRegisters(hcryp, hcryp->Key_saved, hcryp->Init.KeySize);
+ CRYP_Write_IVRegisters(hcryp, hcryp->IV_saved);
+
+ /* At the same time, set handle state back to READY to be able to resume the AES calculations
+ without the processing APIs returning HAL_BUSY when called. */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ }
+
+
+ /* Resume low-priority block processing under IT */
+ hcryp->ResumingFlag = 1U;
+ if (READ_BIT(hcryp->CR_saved, AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
+ {
+ if (HAL_CRYP_Encrypt_IT(hcryp, hcryp->pCrypInBuffPtr_saved, hcryp->Size_saved, \
+ hcryp->pCrypOutBuffPtr_saved) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+ }
+ else
+ {
+ if (HAL_CRYP_Decrypt_IT(hcryp, hcryp->pCrypInBuffPtr_saved, hcryp->Size_saved, \
+ hcryp->pCrypOutBuffPtr_saved) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+ }
+ }
+ return HAL_OK;
+}
+#endif /* defined (USE_HAL_CRYP_SUSPEND_RESUME) */
+
+/**
+ * @}
+ */
+
+/** @defgroup CRYP_Exported_Functions_Group2 Encryption Decryption functions
+ * @brief Encryption Decryption functions.
+ *
+@verbatim
+ ==============================================================================
+ ##### Encrypt Decrypt functions #####
+ ==============================================================================
+ [..] This section provides API allowing to Encrypt/Decrypt Data following
+ Standard DES/TDES or AES, and Algorithm configured by the user:
+ (+) Standard DES/TDES only supported by CRYP1 peripheral, below list of Algorithm supported :
+ - Electronic Code Book(ECB)
+ - Cipher Block Chaining (CBC)
+ (+) Standard AES supported by CRYP1 peripheral & TinyAES, list of Algorithm supported:
+ - Electronic Code Book(ECB)
+ - Cipher Block Chaining (CBC)
+ - Counter mode (CTR)
+ - Cipher Block Chaining (CBC)
+ - Counter mode (CTR)
+ - Galois/counter mode (GCM)
+ - Counter with Cipher Block Chaining-Message(CCM)
+ [..] Three processing functions are available:
+ (+) Polling mode : HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
+ (+) Interrupt mode : HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
+ (+) DMA mode : HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
+
+@endverbatim
+ * @{
+ */
+
+/* GCM message structure additional details
+
+ ICB
+ +-------------------------------------------------------+
+ | Initialization vector (IV) | Counter |
+ |----------------|----------------|-----------|---------|
+ 127 95 63 31 0
+
+
+ Bit Number Register Contents
+ ---------- --------------- -----------
+ 127 ...96 CRYP_IV1R[31:0] ICB[127:96]
+ 95 ...64 CRYP_IV1L[31:0] B0[95:64]
+ 63 ... 32 CRYP_IV0R[31:0] ICB[63:32]
+ 31 ... 0 CRYP_IV0L[31:0] ICB[31:0], where 32-bit counter= 0x2
+
+
+
+ GCM last block definition
+ +-------------------------------------------------------------------+
+ | Bit[0] | Bit[32] | Bit[64] | Bit[96] |
+ |-----------|--------------------|-----------|----------------------|
+ | 0x0 | Header length[31:0]| 0x0 | Payload length[31:0] |
+ |-----------|--------------------|-----------|----------------------|
+
+*/
+
+/* CCM message blocks description
+
+ (##) B0 block : According to NIST Special Publication 800-38C,
+ The first block B0 is formatted as follows, where l(m) is encoded in
+ most-significant-byte first order:
+
+ Octet Number Contents
+ ------------ ---------
+ 0 Flags
+ 1 ... 15-q Nonce N
+ 16-q ... 15 Q
+
+ the Flags field is formatted as follows:
+
+ Bit Number Contents
+ ---------- ----------------------
+ 7 Reserved (always zero)
+ 6 Adata
+ 5 ... 3 (t-2)/2
+ 2 ... 0 [q-1]3
+
+ - Q: a bit string representation of the octet length of P (plaintext)
+ - q The octet length of the binary representation of the octet length of the payload
+ - A nonce (N), n The octet length of the where n+q=15.
+ - Flags: most significant octet containing four flags for control information,
+ - t The octet length of the MAC.
+ (##) B1 block (header) : associated data length(a) concatenated with Associated Data (A)
+ the associated data length expressed in bytes (a) defined as below:
+ - If 0 < a < 216-28, then it is encoded as [a]16, i.e. two octets
+ - If 216-28 < a < 232, then it is encoded as 0xff || 0xfe || [a]32, i.e. six octets
+ - If 232 < a < 264, then it is encoded as 0xff || 0xff || [a]64, i.e. ten octets
+ (##) CTRx block : control blocks
+ - Generation of CTR1 from first block B0 information :
+ equal to B0 with first 5 bits zeroed and most significant bits storing octet
+ length of P also zeroed, then incremented by one
+
+ Bit Number Register Contents
+ ---------- --------------- -----------
+ 127 ...96 CRYP_IV1R[31:0] B0[127:96], where Q length bits are set to 0, except for
+ bit 0 that is set to 1
+ 95 ...64 CRYP_IV1L[31:0] B0[95:64]
+ 63 ... 32 CRYP_IV0R[31:0] B0[63:32]
+ 31 ... 0 CRYP_IV0L[31:0] B0[31:0], where flag bits set to 0
+
+ - Generation of CTR0: same as CTR1 with bit[0] set to zero.
+
+*/
+
+/**
+ * @brief Encryption mode.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Input Pointer to the input buffer (plaintext)
+ * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field)
+ * @param Output Pointer to the output buffer(ciphertext)
+ * @param Timeout Specify Timeout value
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output,
+ uint32_t Timeout)
+{
+ uint32_t algo;
+ HAL_StatusTypeDef status;
+#ifdef USE_FULL_ASSERT
+ uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD;
+
+ /* Check input buffer size */
+ assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size));
+#endif /* USE_FULL_ASSERT */
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change state Busy */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ hcryp->pCrypInBuffPtr = Input;
+ hcryp->pCrypOutBuffPtr = Output;
+
+ /* Calculate Size parameter in Byte*/
+ if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
+ {
+ hcryp->Size = Size * 4U;
+ }
+ else
+ {
+ hcryp->Size = Size;
+ }
+
+ /* Set the operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & AES_CR_CHMOD;
+
+ switch (algo)
+ {
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES encryption */
+ status = CRYP_AES_Encrypt(hcryp, Timeout);
+ break;
+
+ case CRYP_AES_GCM_GMAC:
+
+ /* AES GCM encryption */
+ status = CRYP_AESGCM_Process(hcryp, Timeout) ;
+ break;
+
+ case CRYP_AES_CCM:
+
+ /* AES CCM encryption */
+ status = CRYP_AESCCM_Process(hcryp, Timeout);
+ break;
+
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Change the CRYP peripheral state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ status = HAL_ERROR;
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Decryption mode.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Input Pointer to the input buffer (ciphertext )
+ * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field)
+ * @param Output Pointer to the output buffer(plaintext)
+ * @param Timeout Specify Timeout value
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output,
+ uint32_t Timeout)
+{
+ HAL_StatusTypeDef status;
+ uint32_t algo;
+#ifdef USE_FULL_ASSERT
+ uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD;
+
+ /* Check input buffer size */
+ assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size));
+#endif /* USE_FULL_ASSERT */
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change state Busy */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ hcryp->pCrypInBuffPtr = Input;
+ hcryp->pCrypOutBuffPtr = Output;
+
+ /* Calculate Size parameter in Byte*/
+ if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
+ {
+ hcryp->Size = Size * 4U;
+ }
+ else
+ {
+ hcryp->Size = Size;
+ }
+
+ /* Set Decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & AES_CR_CHMOD;
+
+ switch (algo)
+ {
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES decryption */
+ status = CRYP_AES_Decrypt(hcryp, Timeout);
+ break;
+
+ case CRYP_AES_GCM_GMAC:
+
+ /* AES GCM decryption */
+ status = CRYP_AESGCM_Process(hcryp, Timeout) ;
+ break;
+
+ case CRYP_AES_CCM:
+
+ /* AES CCM decryption */
+ status = CRYP_AESCCM_Process(hcryp, Timeout);
+ break;
+
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+
+ if (status == HAL_OK)
+ {
+ /* Change the CRYP peripheral state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ status = HAL_ERROR;
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Encryption in interrupt mode.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Input Pointer to the input buffer (plaintext)
+ * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field)
+ * @param Output Pointer to the output buffer(ciphertext)
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
+{
+ HAL_StatusTypeDef status;
+ uint32_t algo;
+#ifdef USE_FULL_ASSERT
+ uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD;
+
+ /* Check input buffer size */
+ assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size));
+#endif /* USE_FULL_ASSERT */
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change state Busy */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
+#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
+ if (hcryp->ResumingFlag == 1U)
+ {
+ hcryp->ResumingFlag = 0U;
+ if (hcryp->Phase != CRYP_PHASE_HEADER_SUSPENDED)
+ {
+ hcryp->CrypInCount = (uint16_t) hcryp->CrypInCount_saved;
+ hcryp->CrypOutCount = (uint16_t) hcryp->CrypOutCount_saved;
+ }
+ else
+ {
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ }
+ }
+ else
+#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
+ {
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ }
+
+ hcryp->pCrypInBuffPtr = Input;
+ hcryp->pCrypOutBuffPtr = Output;
+
+ /* Calculate Size parameter in Byte*/
+ if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
+ {
+ hcryp->Size = Size * 4U;
+ }
+ else
+ {
+ hcryp->Size = Size;
+ }
+
+ /* Set encryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & AES_CR_CHMOD;
+
+ switch (algo)
+ {
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES encryption */
+ status = CRYP_AES_Encrypt_IT(hcryp);
+ break;
+
+ case CRYP_AES_GCM_GMAC:
+
+ /* AES GCM encryption */
+ status = CRYP_AESGCM_Process_IT(hcryp) ;
+ break;
+
+ case CRYP_AES_CCM:
+
+ /* AES CCM encryption */
+ status = CRYP_AESCCM_Process_IT(hcryp);
+ break;
+
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ status = HAL_ERROR;
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Decryption in interrupt mode.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Input Pointer to the input buffer (ciphertext )
+ * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field)
+ * @param Output Pointer to the output buffer(plaintext)
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
+{
+ HAL_StatusTypeDef status;
+ uint32_t algo;
+#ifdef USE_FULL_ASSERT
+ uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD;
+
+ /* Check input buffer size */
+ assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size));
+#endif /* USE_FULL_ASSERT */
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change state Busy */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
+#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
+ if (hcryp->ResumingFlag == 1U)
+ {
+ hcryp->ResumingFlag = 0U;
+ if (hcryp->Phase != CRYP_PHASE_HEADER_SUSPENDED)
+ {
+ hcryp->CrypInCount = (uint16_t) hcryp->CrypInCount_saved;
+ hcryp->CrypOutCount = (uint16_t) hcryp->CrypOutCount_saved;
+ }
+ else
+ {
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ }
+ }
+ else
+#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
+ {
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ }
+ hcryp->pCrypInBuffPtr = Input;
+ hcryp->pCrypOutBuffPtr = Output;
+
+ /* Calculate Size parameter in Byte*/
+ if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
+ {
+ hcryp->Size = Size * 4U;
+ }
+ else
+ {
+ hcryp->Size = Size;
+ }
+
+ /* Set decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & AES_CR_CHMOD;
+
+ switch (algo)
+ {
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES decryption */
+ status = CRYP_AES_Decrypt_IT(hcryp);
+ break;
+
+ case CRYP_AES_GCM_GMAC:
+
+ /* AES GCM decryption */
+ status = CRYP_AESGCM_Process_IT(hcryp) ;
+ break;
+
+ case CRYP_AES_CCM:
+
+ /* AES CCM decryption */
+ status = CRYP_AESCCM_Process_IT(hcryp);
+ break;
+
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ status = HAL_ERROR;
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Encryption in DMA mode.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Input Pointer to the input buffer (plaintext)
+ * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field)
+ * @param Output Pointer to the output buffer(ciphertext)
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
+{
+ HAL_StatusTypeDef status;
+ uint32_t algo;
+ uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
+#ifdef USE_FULL_ASSERT
+ uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD;
+
+ /* Check input buffer size */
+ assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size));
+#endif /* USE_FULL_ASSERT */
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+ /* Change state Busy */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ hcryp->pCrypInBuffPtr = Input;
+ hcryp->pCrypOutBuffPtr = Output;
+
+ /* Calculate Size parameter in Byte*/
+ if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
+ {
+ hcryp->Size = Size * 4U;
+ }
+ else
+ {
+ hcryp->Size = Size;
+ }
+
+ /* Set encryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & AES_CR_CHMOD;
+
+ switch (algo)
+ {
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
+ {
+ if (hcryp->KeyIVConfig == 1U)
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has already been done, skip it */
+ DoKeyIVConfig = 0U;
+ }
+ else
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has not been done already, do it and set KeyIVConfig
+ to keep track it won't have to be done again next time */
+ hcryp->KeyIVConfig = 1U;
+ }
+ }
+
+ if (DoKeyIVConfig == 1U)
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the Initialization Vector*/
+ if (hcryp->Init.Algorithm != CRYP_AES_ECB)
+ {
+ hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
+ hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
+ hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
+ }
+ } /* if (DoKeyIVConfig == 1U) */
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Start DMA process transfer for AES */
+ CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), \
+ (uint32_t)(hcryp->pCrypOutBuffPtr));
+ status = HAL_OK;
+ break;
+
+ case CRYP_AES_GCM_GMAC:
+
+ /* AES GCM encryption */
+ status = CRYP_AESGCM_Process_DMA(hcryp) ;
+ break;
+
+ case CRYP_AES_CCM:
+
+ /* AES CCM encryption */
+ status = CRYP_AESCCM_Process_DMA(hcryp);
+ break;
+
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ status = HAL_ERROR;
+ }
+
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @brief Decryption in DMA mode.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Input Pointer to the input buffer (ciphertext )
+ * @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field)
+ * @param Output Pointer to the output buffer(plaintext)
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_CRYP_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
+{
+ HAL_StatusTypeDef status;
+ uint32_t algo;
+#ifdef USE_FULL_ASSERT
+ uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD;
+
+ /* Check input buffer size */
+ assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size));
+#endif /* USE_FULL_ASSERT */
+
+ if (hcryp->State == HAL_CRYP_STATE_READY)
+ {
+
+ /* Change state Busy */
+ hcryp->State = HAL_CRYP_STATE_BUSY;
+
+ /* Process locked */
+ __HAL_LOCK(hcryp);
+
+ /* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/
+ hcryp->CrypInCount = 0U;
+ hcryp->CrypOutCount = 0U;
+ hcryp->pCrypInBuffPtr = Input;
+ hcryp->pCrypOutBuffPtr = Output;
+
+ /* Calculate Size parameter in Byte*/
+ if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
+ {
+ hcryp->Size = Size * 4U;
+ }
+ else
+ {
+ hcryp->Size = Size;
+ }
+
+ /* Set decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
+
+ /* algo get algorithm selected */
+ algo = hcryp->Instance->CR & AES_CR_CHMOD;
+
+ switch (algo)
+ {
+
+ case CRYP_AES_ECB:
+ case CRYP_AES_CBC:
+ case CRYP_AES_CTR:
+
+ /* AES decryption */
+ status = CRYP_AES_Decrypt_DMA(hcryp);
+ break;
+
+ case CRYP_AES_GCM_GMAC:
+
+ /* AES GCM decryption */
+ status = CRYP_AESGCM_Process_DMA(hcryp) ;
+ break;
+
+ case CRYP_AES_CCM:
+
+ /* AES CCM decryption */
+ status = CRYP_AESCCM_Process_DMA(hcryp);
+ break;
+
+ default:
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+ status = HAL_ERROR;
+ }
+ /* Return function status */
+ return status;
+}
+
+/**
+ * @}
+ */
+
+/** @defgroup CRYP_Exported_Functions_Group3 CRYP IRQ handler management
+ * @brief CRYP IRQ handler.
+ *
+@verbatim
+ ==============================================================================
+ ##### CRYP IRQ handler management #####
+ ==============================================================================
+[..] This section provides CRYP IRQ handler and callback functions.
+ (+) HAL_CRYP_IRQHandler CRYP interrupt request
+ (+) HAL_CRYP_InCpltCallback input data transfer complete callback
+ (+) HAL_CRYP_OutCpltCallback output data transfer complete callback
+ (+) HAL_CRYP_ErrorCallback CRYP error callback
+ (+) HAL_CRYP_GetState return the CRYP state
+ (+) HAL_CRYP_GetError return the CRYP error code
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief This function handles cryptographic interrupt request.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval None
+ */
+void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t itsource = hcryp->Instance->CR;
+ uint32_t itflag = hcryp->Instance->SR;
+
+ /* Check if error occurred */
+ if ((itsource & CRYP_IT_ERRIE) == CRYP_IT_ERRIE)
+ {
+ /* If write Error occurred */
+ if ((itflag & CRYP_IT_WRERR) == CRYP_IT_WRERR)
+ {
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_WRITE;
+ }
+ /* If read Error occurred */
+ if ((itflag & CRYP_IT_RDERR) == CRYP_IT_RDERR)
+ {
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_READ;
+ }
+ }
+
+ if ((itflag & CRYP_IT_CCF) == CRYP_IT_CCF)
+ {
+ if ((itsource & CRYP_IT_CCFIE) == CRYP_IT_CCFIE)
+ {
+ /* Clear computation complete flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ if ((hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC) || (hcryp->Init.Algorithm == CRYP_AES_CCM))
+ {
+
+ /* if header phase */
+ if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER)
+ {
+ CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
+ }
+ else /* if payload phase */
+ {
+ CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
+ }
+ }
+ else /* AES Algorithm ECB,CBC or CTR*/
+ {
+ CRYP_AES_IT(hcryp);
+ }
+ }
+ }
+}
+
+/**
+ * @brief Return the CRYP error code.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for the CRYP peripheral
+ * @retval CRYP error code
+ */
+uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp)
+{
+ return hcryp->ErrorCode;
+}
+
+/**
+ * @brief Returns the CRYP state.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @retval HAL state
+ */
+HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp)
+{
+ return hcryp->State;
+}
+
+/**
+ * @brief Input FIFO transfer completed callback.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @retval None
+ */
+__weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hcryp);
+
+ /* NOTE : This function should not be modified; when the callback is needed,
+ the HAL_CRYP_InCpltCallback can be implemented in the user file
+ */
+}
+
+/**
+ * @brief Output FIFO transfer completed callback.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @retval None
+ */
+__weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hcryp);
+
+ /* NOTE : This function should not be modified; when the callback is needed,
+ the HAL_CRYP_OutCpltCallback can be implemented in the user file
+ */
+}
+
+/**
+ * @brief CRYP error callback.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @retval None
+ */
+__weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hcryp);
+
+ /* NOTE : This function should not be modified; when the callback is needed,
+ the HAL_CRYP_ErrorCallback can be implemented in the user file
+ */
+}
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */
+
+/* Private functions ---------------------------------------------------------*/
+/** @addtogroup CRYP_Private_Functions
+ * @{
+ */
+
+/**
+ * @brief Encryption in ECB/CBC & CTR Algorithm with AES Standard
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure
+ * @param Timeout specify Timeout value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint16_t incount; /* Temporary CrypInCount Value */
+ uint16_t outcount; /* Temporary CrypOutCount Value */
+ uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
+
+ if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
+ {
+ if (hcryp->KeyIVConfig == 1U)
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has already been done, skip it */
+ DoKeyIVConfig = 0U;
+ }
+ else
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has not been done already, do it and set KeyIVConfig
+ to keep track it won't have to be done again next time */
+ hcryp->KeyIVConfig = 1U;
+ }
+ }
+
+ if (DoKeyIVConfig == 1U)
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ if (hcryp->Init.Algorithm != CRYP_AES_ECB)
+ {
+ /* Set the Initialization Vector*/
+ hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
+ hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
+ hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
+ }
+ } /* if (DoKeyIVConfig == 1U) */
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ incount = hcryp->CrypInCount;
+ outcount = hcryp->CrypOutCount;
+ while ((incount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U)))
+ {
+ /* Write plain Ddta and get cipher data */
+ CRYP_AES_ProcessData(hcryp, Timeout);
+ incount = hcryp->CrypInCount;
+ outcount = hcryp->CrypOutCount;
+ }
+
+ /* Disable CRYP */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Encryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
+
+ if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
+ {
+ if (hcryp->KeyIVConfig == 1U)
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has already been done, skip it */
+ DoKeyIVConfig = 0U;
+ }
+ else
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has not been done already, do it and set KeyIVConfig
+ to keep track it won't have to be done again next time */
+ hcryp->KeyIVConfig = 1U;
+ }
+ }
+
+ if (DoKeyIVConfig == 1U)
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ if (hcryp->Init.Algorithm != CRYP_AES_ECB)
+ {
+ /* Set the Initialization Vector*/
+ hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
+ hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
+ hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
+ }
+ } /* if (DoKeyIVConfig == 1U) */
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ if (hcryp->Size != 0U)
+ {
+
+ /* Enable computation complete flag and error interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Increment the pointer before writing the input block in the IN FIFO to make sure that
+ when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value
+ and it is ready for the next operation. */
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ }
+ else
+ {
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Decryption in ECB/CBC & CTR mode with AES Standard
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure
+ * @param Timeout Specify Timeout value
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint16_t incount; /* Temporary CrypInCount Value */
+ uint16_t outcount; /* Temporary CrypOutCount Value */
+ uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
+
+ if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
+ {
+ if (hcryp->KeyIVConfig == 1U)
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has already been done, skip it */
+ DoKeyIVConfig = 0U;
+ }
+ else
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has not been done already, do it and set KeyIVConfig
+ to keep track it won't have to be done again next time */
+ hcryp->KeyIVConfig = 1U;
+ }
+ }
+
+ if (DoKeyIVConfig == 1U)
+ {
+ /* Key preparation for ECB/CBC */
+ if (hcryp->Init.Algorithm != CRYP_AES_CTR) /*ECB or CBC*/
+ {
+ if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
+ {
+ /* Set key preparation for decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
+
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Wait for CCF flag to be raised */
+ if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state & error code*/
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* Return to decryption operating mode(Mode 3)*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
+ }
+ else /*Mode 4 : decryption & Key preparation*/
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set decryption & Key preparation operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
+ }
+ }
+ else /*Algorithm CTR */
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+ }
+
+ /* Set IV */
+ if (hcryp->Init.Algorithm != CRYP_AES_ECB)
+ {
+ /* Set the Initialization Vector*/
+ hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
+ hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
+ hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
+ }
+ } /* if (DoKeyIVConfig == 1U) */
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ incount = hcryp->CrypInCount;
+ outcount = hcryp->CrypOutCount;
+ while ((incount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U)))
+ {
+ /* Write plain data and get cipher data */
+ CRYP_AES_ProcessData(hcryp, Timeout);
+ incount = hcryp->CrypInCount;
+ outcount = hcryp->CrypOutCount;
+ }
+
+ /* Disable CRYP */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Return function status */
+ return HAL_OK;
+}
+/**
+ * @brief Decryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp)
+{
+ __IO uint32_t count = 0U;
+ uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
+
+ if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
+ {
+ if (hcryp->KeyIVConfig == 1U)
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has already been done, skip it */
+ DoKeyIVConfig = 0U;
+ }
+ else
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has not been done already, do it and set KeyIVConfig
+ to keep track it won't have to be done again next time */
+ hcryp->KeyIVConfig = 1U;
+ }
+ }
+
+ if (DoKeyIVConfig == 1U)
+ {
+ /* Key preparation for ECB/CBC */
+ if (hcryp->Init.Algorithm != CRYP_AES_CTR)
+ {
+ if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
+ {
+ /* Set key preparation for decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
+
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Wait for CCF flag to be raised */
+ count = CRYP_TIMEOUT_KEYPREPARATION;
+ do
+ {
+ count-- ;
+ if (count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* Return to decryption operating mode(Mode 3)*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
+ }
+ else /*Mode 4 : decryption & key preparation*/
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set decryption & key preparation operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
+ }
+ }
+ else /*Algorithm CTR */
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+ }
+
+ /* Set IV */
+ if (hcryp->Init.Algorithm != CRYP_AES_ECB)
+ {
+ /* Set the Initialization Vector*/
+ hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
+ hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
+ hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
+ }
+ } /* if (DoKeyIVConfig == 1U) */
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+ if (hcryp->Size != 0U)
+ {
+ /* Enable computation complete flag and error interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Increment the pointer before writing the input block in the IN FIFO to make sure that
+ when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value
+ and it is ready for the next operation. */
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ }
+ else
+ {
+ /* Process locked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+/**
+ * @brief Decryption in ECB/CBC & CTR mode with AES Standard using DMA mode
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp)
+{
+ __IO uint32_t count = 0U;
+ uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
+
+ if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
+ {
+ if (hcryp->KeyIVConfig == 1U)
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has already been done, skip it */
+ DoKeyIVConfig = 0U;
+ }
+ else
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has not been done already, do it and set KeyIVConfig
+ to keep track it won't have to be done again next time */
+ hcryp->KeyIVConfig = 1U;
+ }
+ }
+
+ if (DoKeyIVConfig == 1U)
+ {
+ /* Key preparation for ECB/CBC */
+ if (hcryp->Init.Algorithm != CRYP_AES_CTR)
+ {
+ if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 key preparation*/
+ {
+ /* Set key preparation for decryption operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
+
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Enable CRYP */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Wait for CCF flag to be raised */
+ count = CRYP_TIMEOUT_KEYPREPARATION;
+ do
+ {
+ count-- ;
+ if (count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* Return to decryption operating mode(Mode 3)*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
+ }
+ else /*Mode 4 : decryption & key preparation*/
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set decryption & Key preparation operating mode*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
+ }
+ }
+ else /*Algorithm CTR */
+ {
+ /* Set the Key*/
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+ }
+
+ if (hcryp->Init.Algorithm != CRYP_AES_ECB)
+ {
+ /* Set the Initialization Vector*/
+ hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
+ hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
+ hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
+ }
+ } /* if (DoKeyIVConfig == 1U) */
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ if (hcryp->Size != 0U)
+ {
+ /* Set the input and output addresses and start DMA transfer */
+ CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
+ }
+ else
+ {
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+
+/**
+ * @brief DMA CRYP input data process complete callback.
+ * @param hdma DMA handle
+ * @retval None
+ */
+static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)
+{
+ CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+ uint32_t loopcounter;
+ uint32_t headersize_in_bytes;
+ uint32_t tmp;
+ static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
+ 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
+ 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU
+ }; /* 8-bit data type */
+
+ /* Stop the DMA transfers to the IN FIFO by clearing to "0" the DMAINEN */
+ CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
+
+ if (hcryp->Phase == CRYP_PHASE_HEADER_DMA_FEED)
+ {
+ /* DMA is disabled, CCF is meaningful. Wait for computation completion before moving forward */
+ CRYP_ClearCCFlagWhenHigh(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE);
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
+ {
+ headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
+ }
+ else
+ {
+ headersize_in_bytes = hcryp->Init.HeaderSize;
+ }
+
+ if ((headersize_in_bytes % 16U) != 0U)
+ {
+ /* Write last words that couldn't be fed by DMA */
+ hcryp->CrypHeaderCount = (uint16_t)((headersize_in_bytes / 16U) * 4U);
+ for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 4U) % 4U)); loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ /* If the header size is a multiple of words */
+ if ((headersize_in_bytes % 4U) == 0U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ while (loopcounter < 4U)
+ {
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+ else
+ {
+ /* Enter last bytes, padded with zeros */
+ tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
+ hcryp->Instance->DINR = tmp;
+ loopcounter++;
+ /* Pad the data with zeros to have a complete block */
+ while (loopcounter < 4U)
+ {
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+
+ /* Wait for computation completion before moving forward */
+ CRYP_ClearCCFlagWhenHigh(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE);
+ } /* if ((headersize_in_bytes % 16U) != 0U) */
+
+ /* Set to 0 the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
+
+ /* Select payload phase once the header phase is performed */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+
+ /* Initiate payload DMA IN and processed data DMA OUT transfers */
+ (void)CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp);
+ }
+ else
+ {
+ uint32_t algo;
+ /* ECB, CBC or CTR end of input data feeding
+ or
+ end of GCM/CCM payload data feeding through DMA */
+ algo = hcryp->Instance->CR & AES_CR_CHMOD;
+
+ /* Don't call input data transfer complete callback only if
+ it remains some input data to write to the peripheral.
+ This case can only occur for GCM and CCM with a payload length
+ not a multiple of 16 bytes */
+ if (!(((algo == CRYP_AES_GCM_GMAC) || (algo == CRYP_AES_CCM)) && \
+ (((hcryp->Size) % 16U) != 0U)))
+ {
+ /* Call input data transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ } /* if (hcryp->Phase == CRYP_PHASE_HEADER_DMA_FEED) */
+}
+
+/**
+ * @brief DMA CRYP output data process complete callback.
+ * @param hdma DMA handle
+ * @retval None
+ */
+static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
+{
+ uint32_t count;
+ uint32_t npblb;
+ uint32_t lastwordsize;
+ uint32_t temp[4]; /* Temporary CrypOutBuff */
+ uint32_t mode;
+
+ CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Stop the DMA transfers to the OUT FIFO by clearing to "0" the DMAOUTEN */
+ CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* Last block transfer in case of GCM or CCM with Size not %16*/
+ if (((hcryp->Size) % 16U) != 0U)
+ {
+ /* set CrypInCount and CrypOutCount to exact number of word already computed via DMA */
+ hcryp->CrypInCount = (hcryp->Size / 16U) * 4U;
+ hcryp->CrypOutCount = hcryp->CrypInCount;
+
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size);
+
+ mode = hcryp->Instance->CR & AES_CR_MODE;
+ if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
+ ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
+ {
+ /* Specify the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
+ }
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb % 4U) == 0U)
+ {
+ lastwordsize = (16U - npblb) / 4U;
+ }
+ else
+ {
+ lastwordsize = ((16U - npblb) / 4U) + 1U;
+ }
+
+ /* Last block optionally pad the data with zeros*/
+ for (count = 0U; count < lastwordsize; count++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ }
+ while (count < 4U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ count++;
+ }
+ /* Call input data transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+
+ /*Wait on CCF flag*/
+ CRYP_ClearCCFlagWhenHigh(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE);
+
+ /*Read the output block from the output FIFO */
+ for (count = 0U; count < 4U; count++)
+ {
+ /* Read the output block from the output FIFO and put them in temporary buffer
+ then get CrypOutBuff from temporary buffer */
+ temp[count] = hcryp->Instance->DOUTR;
+ }
+
+ count = 0U;
+ while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (count < 4U))
+ {
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[count];
+ hcryp->CrypOutCount++;
+ count++;
+ }
+ }
+
+ if (((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC)
+ && ((hcryp->Init.Algorithm & CRYP_AES_CCM) != CRYP_AES_CCM))
+ {
+ /* Disable CRYP (not allowed in GCM)*/
+ __HAL_CRYP_DISABLE(hcryp);
+ }
+
+ /* Change the CRYP state to ready */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Call output data transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Output complete callback*/
+ hcryp->OutCpltCallback(hcryp);
+#else
+ /*Call legacy weak Output complete callback*/
+ HAL_CRYP_OutCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief DMA CRYP communication error callback.
+ * @param hdma DMA handle
+ * @retval None
+ */
+static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
+{
+ CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
+
+ /* Change the CRYP peripheral state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* DMA error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* Call error callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+}
+
+/**
+ * @brief Set the DMA configuration and start the DMA transfer
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param inputaddr address of the input buffer
+ * @param Size size of the input and output buffers in words, must be a multiple of 4
+ * @param outputaddr address of the output buffer
+ * @retval None
+ */
+static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
+{
+ /* Set the CRYP DMA transfer complete callback */
+ hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
+
+ /* Set the DMA input error callback */
+ hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
+
+ /* Set the CRYP DMA transfer complete callback */
+ hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
+
+ /* Set the DMA output error callback */
+ hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;
+
+ if ((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC)
+ {
+ /* Enable CRYP (not allowed in GCM & CCM)*/
+ __HAL_CRYP_ENABLE(hcryp);
+ }
+
+ /* Enable the DMA input stream */
+ if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size) != HAL_OK)
+ {
+ /* DMA error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
+
+ /* Call error callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ /* Enable the DMA output stream */
+ if (HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size) != HAL_OK)
+ {
+ /* DMA error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
+
+ /* Call error callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ /* Enable In and Out DMA requests */
+ SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN));
+}
+
+/**
+ * @brief Set the DMA configuration and start the header DMA transfer
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param inputaddr address of the input buffer
+ * @param Size size of the input buffer in words, must be a multiple of 4
+ * @retval None
+ */
+static HAL_StatusTypeDef CRYP_SetHeaderDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size)
+{
+ /* Set the CRYP DMA transfer complete callback */
+ hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
+
+ /* Set the DMA input error callback */
+ hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
+
+ /* Mark that header is fed to the peripheral in DMA mode */
+ hcryp->Phase = CRYP_PHASE_HEADER_DMA_FEED;
+ /* Enable the DMA input stream */
+ if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size) != HAL_OK)
+ {
+ /* DMA error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ /* Call error callback */
+ }
+
+ /* Enable IN DMA requests */
+ SET_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Process Data: Write Input data in polling mode and used in AES functions.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Timeout Specify Timeout value
+ * @retval None
+ */
+static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+
+ uint32_t temp[4]; /* Temporary CrypOutBuff */
+ uint32_t i;
+
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+
+ /* Wait for CCF flag to be raised */
+ if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ /*Call registered error callback*/
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* Read the output block from the output FIFO and put them in temporary buffer
+ then get CrypOutBuff from temporary buffer*/
+ for (i = 0U; i < 4U; i++)
+ {
+ temp[i] = hcryp->Instance->DOUTR;
+ }
+ i = 0U;
+ while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U))
+ {
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
+ hcryp->CrypOutCount++;
+ i++;
+ }
+}
+
+/**
+ * @brief Handle CRYP block input/output data handling under interruption.
+ * @note The function is called under interruption only, once
+ * interruptions have been enabled by HAL_CRYP_Encrypt_IT or HAL_CRYP_Decrypt_IT.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @retval HAL status
+ */
+static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t temp[4]; /* Temporary CrypOutBuff */
+ uint32_t i;
+
+ if (hcryp->State == HAL_CRYP_STATE_BUSY)
+ {
+ /* Read the output block from the output FIFO and put them in temporary buffer
+ then get CrypOutBuff from temporary buffer*/
+ for (i = 0U; i < 4U; i++)
+ {
+ temp[i] = hcryp->Instance->DOUTR;
+ }
+ i = 0U;
+ while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U))
+ {
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
+ hcryp->CrypOutCount++;
+ i++;
+ }
+ if (hcryp->CrypOutCount == (hcryp->Size / 4U))
+ {
+ /* Disable Computation Complete flag and errors interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Disable CRYP */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Call Output transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Output complete callback*/
+ hcryp->OutCpltCallback(hcryp);
+#else
+ /*Call legacy weak Output complete callback*/
+ HAL_CRYP_OutCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ else
+ {
+#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
+ /* If suspension flag has been raised, suspend processing
+ only if not already at the end of the payload */
+ if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
+ {
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* reset SuspendRequest */
+ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+ /* Disable Computation Complete Flag and Errors Interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+ /* Mark that the payload phase is suspended */
+ hcryp->Phase = CRYP_PHASE_PAYLOAD_SUSPENDED;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ else
+#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
+ {
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+
+ if (hcryp->CrypInCount == (hcryp->Size / 4U))
+ {
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ }
+ }
+ else
+ {
+ /* Busy error code field */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+}
+
+/**
+ * @brief Writes Key in Key registers.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param KeySize Size of Key
+ * @note If pKey is NULL, the Key registers are not written. This configuration
+ * occurs when the key is written out of HAL scope.
+ * @retval None
+ */
+static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize)
+{
+ if (hcryp->Init.pKey != NULL)
+ {
+ switch (KeySize)
+ {
+ case CRYP_KEYSIZE_256B:
+ hcryp->Instance->KEYR7 = *(uint32_t *)(hcryp->Init.pKey);
+ hcryp->Instance->KEYR6 = *(uint32_t *)(hcryp->Init.pKey + 1U);
+ hcryp->Instance->KEYR5 = *(uint32_t *)(hcryp->Init.pKey + 2U);
+ hcryp->Instance->KEYR4 = *(uint32_t *)(hcryp->Init.pKey + 3U);
+ hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey + 4U);
+ hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 5U);
+ hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 6U);
+ hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 7U);
+ break;
+ case CRYP_KEYSIZE_128B:
+ hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey);
+ hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 1U);
+ hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 2U);
+ hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 3U);
+
+ break;
+ default:
+ break;
+ }
+ }
+}
+
+/**
+ * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t tickstart;
+ uint32_t wordsize = ((uint32_t)hcryp->Size / 4U) ;
+ uint32_t npblb;
+ uint32_t temp[4]; /* Temporary CrypOutBuff */
+ uint32_t index;
+ uint32_t lastwordsize;
+ uint32_t incount; /* Temporary CrypInCount Value */
+ uint32_t outcount; /* Temporary CrypOutCount Value */
+ uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
+
+ if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
+ {
+ if (hcryp->KeyIVConfig == 1U)
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has already been done, skip it */
+ DoKeyIVConfig = 0U;
+ hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
+ }
+ else
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has not been done already, do it and set KeyIVConfig
+ to keep track it won't have to be done again next time */
+ hcryp->KeyIVConfig = 1U;
+ hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
+ }
+ }
+ else
+ {
+ hcryp->SizesSum = hcryp->Size;
+ }
+
+ if (DoKeyIVConfig == 1U)
+ {
+
+ /* Reset CrypHeaderCount */
+ hcryp->CrypHeaderCount = 0U;
+
+ /****************************** Init phase **********************************/
+
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
+ hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
+ hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
+ hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* just wait for hash computation */
+ if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked & return error */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /************************ Header phase *************************************/
+
+ if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+
+ /*************************Payload phase ************************************/
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Select payload phase once the header phase is performed */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+
+ /* Set to 0 the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
+
+ } /* if (DoKeyIVConfig == 1U) */
+
+ if ((hcryp->Size % 16U) != 0U)
+ {
+ /* recalculate wordsize */
+ wordsize = ((wordsize / 4U) * 4U) ;
+ }
+
+ /* Get tick */
+ tickstart = HAL_GetTick();
+
+ /* Write input data and get output Data */
+ incount = hcryp->CrypInCount;
+ outcount = hcryp->CrypOutCount;
+ while ((incount < wordsize) && (outcount < wordsize))
+ {
+ /* Write plain data and get cipher data */
+ CRYP_AES_ProcessData(hcryp, Timeout);
+
+ /* Check for the Timeout */
+ if (Timeout != HAL_MAX_DELAY)
+ {
+ if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state & error code */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ incount = hcryp->CrypInCount;
+ outcount = hcryp->CrypOutCount;
+ }
+
+ if ((hcryp->Size % 16U) != 0U)
+ {
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size);
+
+ /* Set Npblb in case of AES GCM payload encryption to get right tag*/
+ if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
+ {
+ /* Set to 0 the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
+ }
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb % 4U) == 0U)
+ {
+ lastwordsize = (16U - npblb) / 4U;
+ }
+ else
+ {
+ lastwordsize = ((16U - npblb) / 4U) + 1U;
+ }
+ /* last block optionally pad the data with zeros*/
+ for (index = 0U; index < lastwordsize; index ++)
+ {
+ /* Write the last Input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ }
+ while (index < 4U)
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0U;
+ index++;
+ }
+ /* Wait for CCF flag to be raised */
+ if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ hcryp->State = HAL_CRYP_STATE_READY;
+ __HAL_UNLOCK(hcryp);
+
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /*Read the output block from the output FIFO */
+ for (index = 0U; index < 4U; index++)
+ {
+ /* Read the output block from the output FIFO and put them in temporary buffer
+ then get CrypOutBuff from temporary buffer */
+ temp[index] = hcryp->Instance->DOUTR;
+ }
+ for (index = 0U; index < lastwordsize; index++)
+ {
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp[index];
+ hcryp->CrypOutCount++;
+ }
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG in interrupt mode
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp)
+{
+ __IO uint32_t count = 0U;
+ uint32_t loopcounter;
+ uint32_t lastwordsize;
+ uint32_t npblb;
+ uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
+ uint32_t headersize_in_bytes;
+ uint32_t tmp;
+ static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
+ 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
+ 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU
+ }; /* 8-bit data type */
+
+
+#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
+ if ((hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) || (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED))
+ {
+ CRYP_PhaseProcessingResume(hcryp);
+ return HAL_OK;
+ }
+#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
+
+ /* Manage header size given in bytes to handle cases where
+ header size is not a multiple of 4 bytes */
+ if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
+ {
+ headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
+ }
+ else
+ {
+ headersize_in_bytes = hcryp->Init.HeaderSize;
+ }
+
+ if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
+ {
+ if (hcryp->KeyIVConfig == 1U)
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has already been done, skip it */
+ DoKeyIVConfig = 0U;
+ hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
+ }
+ else
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has not been done already, do it and set KeyIVConfig
+ to keep track it won't have to be done again next time */
+ hcryp->KeyIVConfig = 1U;
+ hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
+ }
+ }
+ else
+ {
+ hcryp->SizesSum = hcryp->Size;
+ }
+
+ /* Configure Key, IV and process message (header and payload) */
+ if (DoKeyIVConfig == 1U)
+ {
+ /* Reset CrypHeaderCount */
+ hcryp->CrypHeaderCount = 0U;
+
+ /******************************* Init phase *********************************/
+
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
+ hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
+ hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
+ hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* just wait for hash computation */
+ count = CRYP_TIMEOUT_GCMCCMINITPHASE;
+ do
+ {
+ count-- ;
+ if (count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /***************************** Header phase *********************************/
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable computation complete flag and error interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ if (hcryp->Init.HeaderSize == 0U) /*header phase is skipped*/
+ {
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Select payload phase once the header phase is performed */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
+
+ /* Set to 0 the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
+
+ /* Write the payload Input block in the IN FIFO */
+ if (hcryp->Size == 0U)
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ else if (hcryp->Size >= 16U)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
+ {
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ else /* Size < 16Bytes : first block is the last block*/
+ {
+ /* Workaround not implemented for TinyAES2*/
+ /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption:
+ Workaround is implemented in polling mode, so if last block of
+ payload <128bit do not use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */
+
+
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = 16U - ((uint32_t)hcryp->Size);
+
+ if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
+ {
+ /* Set to 0 the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
+ }
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb % 4U) == 0U)
+ {
+ lastwordsize = (16U - npblb) / 4U;
+ }
+ else
+ {
+ lastwordsize = ((16U - npblb) / 4U) + 1U;
+ }
+
+ /* last block optionally pad the data with zeros*/
+ for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ }
+ while (loopcounter < 4U)
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ /* Enter header data */
+ /* Cher first whether header length is small enough to enter the full header in one shot */
+ else if (headersize_in_bytes <= 16U)
+ {
+ /* Write header data, padded with zeros if need be */
+ for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ /* If the header size is a multiple of words */
+ if ((headersize_in_bytes % 4U) == 0U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ while (loopcounter < 4U)
+ {
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ hcryp->CrypHeaderCount++;
+ }
+ }
+ else
+ {
+ /* Enter last bytes, padded with zeros */
+ tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
+ hcryp->Instance->DINR = tmp;
+ loopcounter++;
+ hcryp->CrypHeaderCount++ ;
+ /* Pad the data with zeros to have a complete block */
+ while (loopcounter < 4U)
+ {
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ hcryp->CrypHeaderCount++;
+ }
+ }
+ }
+ else
+ {
+ /* Write the first input header block in the Input FIFO,
+ the following header data will be fed after interrupt occurrence */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++;
+ }
+
+ } /* end of if (DoKeyIVConfig == 1U) */
+ else /* Key and IV have already been configured,
+ header has already been processed;
+ only process here message payload */
+ {
+ /* Set to 0 the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
+
+ /* Write the payload Input block in the IN FIFO */
+ if (hcryp->Size == 0U)
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ else if (hcryp->Size >= 16U)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
+ {
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+
+ /* Enable computation complete flag and error interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+ }
+ else /* Size < 16Bytes : first block is the last block*/
+ {
+ /* Workaround not implemented for TinyAES2*/
+ /* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption:
+ Workaround is implemented in polling mode, so if last block of
+ payload <128bit do not use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */
+
+
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = 16U - ((uint32_t)hcryp->Size);
+
+ if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
+ {
+ /* Set to 0 the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
+ }
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb % 4U) == 0U)
+ {
+ lastwordsize = (16U - npblb) / 4U;
+ }
+ else
+ {
+ lastwordsize = ((16U - npblb) / 4U) + 1U;
+ }
+
+ /* last block optionally pad the data with zeros*/
+ for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ }
+ while (loopcounter < 4U)
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+
+ /* Enable computation complete flag and error interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+ }
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+
+/**
+ * @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG using DMA
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t count;
+ uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
+
+ if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
+ {
+ if (hcryp->KeyIVConfig == 1U)
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has already been done, skip it */
+ DoKeyIVConfig = 0U;
+ hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
+ }
+ else
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has not been done already, do it and set KeyIVConfig
+ to keep track it won't have to be done again next time */
+ hcryp->KeyIVConfig = 1U;
+ hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
+ }
+ }
+ else
+ {
+ hcryp->SizesSum = hcryp->Size;
+ }
+
+ if (DoKeyIVConfig == 1U)
+ {
+
+ /* Reset CrypHeaderCount */
+ hcryp->CrypHeaderCount = 0U;
+
+ /*************************** Init phase ************************************/
+
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
+ hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
+ hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
+ hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
+ hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* just wait for hash computation */
+ count = CRYP_TIMEOUT_GCMCCMINITPHASE;
+ do
+ {
+ count-- ;
+ if (count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /************************ Header phase *************************************/
+
+ if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+
+ }
+ else
+ {
+ /* Initialization and header phases already done, only do payload phase */
+ if (CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+ } /* if (DoKeyIVConfig == 1U) */
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+
+/**
+ * @brief AES CCM encryption/decryption processing in polling mode
+ * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t tickstart;
+ uint32_t wordsize = ((uint32_t)hcryp->Size / 4U) ;
+ uint32_t loopcounter;
+ uint32_t npblb;
+ uint32_t lastwordsize;
+ uint32_t temp[4] ; /* Temporary CrypOutBuff */
+ uint32_t incount; /* Temporary CrypInCount Value */
+ uint32_t outcount; /* Temporary CrypOutCount Value */
+ uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
+
+ if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
+ {
+ if (hcryp->KeyIVConfig == 1U)
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has already been done, skip it */
+ DoKeyIVConfig = 0U;
+ hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
+ }
+ else
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has not been done already, do it and set KeyIVConfig
+ to keep track it won't have to be done again next time */
+ hcryp->KeyIVConfig = 1U;
+ hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
+ }
+ }
+ else
+ {
+ hcryp->SizesSum = hcryp->Size;
+ }
+
+ if (DoKeyIVConfig == 1U)
+ {
+ /* Reset CrypHeaderCount */
+ hcryp->CrypHeaderCount = 0U;
+
+ /********************** Init phase ******************************************/
+
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the initialization vector (IV) with B0 */
+ hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0);
+ hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U);
+ hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U);
+ hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* just wait for hash computation */
+ if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked & return error */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /************************ Header phase *************************************/
+ /* Header block(B1) : associated data length expressed in bytes concatenated
+ with Associated Data (A)*/
+ if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+
+ /*************************Payload phase ************************************/
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Select payload phase once the header phase is performed */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
+
+ /* Set to 0 the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
+
+ } /* if (DoKeyIVConfig == 1U) */
+
+ if ((hcryp->Size % 16U) != 0U)
+ {
+ /* recalculate wordsize */
+ wordsize = ((wordsize / 4U) * 4U) ;
+ }
+ /* Get tick */
+ tickstart = HAL_GetTick();
+
+ /* Write input data and get output data */
+ incount = hcryp->CrypInCount;
+ outcount = hcryp->CrypOutCount;
+ while ((incount < wordsize) && (outcount < wordsize))
+ {
+ /* Write plain data and get cipher data */
+ CRYP_AES_ProcessData(hcryp, Timeout);
+
+ /* Check for the Timeout */
+ if (Timeout != HAL_MAX_DELAY)
+ {
+ if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ }
+ incount = hcryp->CrypInCount;
+ outcount = hcryp->CrypOutCount;
+ }
+
+ if ((hcryp->Size % 16U) != 0U)
+ {
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size);
+
+ if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT)
+ {
+ /* Set Npblb in case of AES CCM payload decryption to get right tag */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20);
+
+ }
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb % 4U) == 0U)
+ {
+ lastwordsize = (16U - npblb) / 4U;
+ }
+ else
+ {
+ lastwordsize = ((16U - npblb) / 4U) + 1U;
+ }
+
+ /* Write the last input block in the IN FIFO */
+ for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter ++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ }
+
+ /* Pad the data with zeros to have a complete block */
+ while (loopcounter < 4U)
+ {
+ hcryp->Instance->DINR = 0U;
+ loopcounter++;
+ }
+ /* just wait for hash computation */
+ if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked & return error */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ for (loopcounter = 0U; loopcounter < 4U; loopcounter++)
+ {
+ /* Read the output block from the output FIFO and put them in temporary buffer
+ then get CrypOutBuff from temporary buffer */
+ temp[loopcounter] = hcryp->Instance->DOUTR;
+ }
+ for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
+ {
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[loopcounter];
+ hcryp->CrypOutCount++;
+ }
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief AES CCM encryption/decryption process in interrupt mode
+ * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp)
+{
+ __IO uint32_t count = 0U;
+ uint32_t loopcounter;
+ uint32_t lastwordsize;
+ uint32_t npblb;
+ uint32_t mode;
+ uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
+ uint32_t headersize_in_bytes;
+ uint32_t tmp;
+ static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
+ 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
+ 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU
+ }; /* 8-bit data type */
+
+#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
+ if ((hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) || (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED))
+ {
+ CRYP_PhaseProcessingResume(hcryp);
+ return HAL_OK;
+ }
+#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
+
+ if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
+ {
+ if (hcryp->KeyIVConfig == 1U)
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has already been done, skip it */
+ DoKeyIVConfig = 0U;
+ hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
+ }
+ else
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has not been done already, do it and set KeyIVConfig
+ to keep track it won't have to be done again next time */
+ hcryp->KeyIVConfig = 1U;
+ hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
+ }
+ }
+ else
+ {
+ hcryp->SizesSum = hcryp->Size;
+ }
+
+ /* Configure Key, IV and process message (header and payload) */
+ if (DoKeyIVConfig == 1U)
+ {
+ /* Reset CrypHeaderCount */
+ hcryp->CrypHeaderCount = 0U;
+
+ /********************** Init phase ******************************************/
+
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the initialization vector (IV) with B0 */
+ hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0);
+ hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U);
+ hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U);
+ hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* just wait for hash computation */
+ count = CRYP_TIMEOUT_GCMCCMINITPHASE;
+ do
+ {
+ count-- ;
+ if (count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /***************************** Header phase *********************************/
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable computation complete flag and error interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
+ {
+ headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
+ }
+ else
+ {
+ headersize_in_bytes = hcryp->Init.HeaderSize;
+ }
+
+ if (headersize_in_bytes == 0U) /* Header phase is skipped */
+ {
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+ /* Select payload phase once the header phase is performed */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+ /* Set to 0 the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
+
+ if (hcryp->Init.Algorithm == CRYP_AES_CCM)
+ {
+ /* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */
+ hcryp->CrypHeaderCount++;
+ }
+ /* Write the payload Input block in the IN FIFO */
+ if (hcryp->Size == 0U)
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ else if (hcryp->Size >= 16U)
+ {
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+
+ if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
+ {
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ else /* Size < 4 words : first block is the last block*/
+ {
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = 16U - (uint32_t)hcryp->Size;
+
+ mode = hcryp->Instance->CR & AES_CR_MODE;
+ if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
+ ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
+ {
+ /* Specify the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
+ }
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb % 4U) == 0U)
+ {
+ lastwordsize = (16U - npblb) / 4U;
+ }
+ else
+ {
+ lastwordsize = ((16U - npblb) / 4U) + 1U;
+ }
+
+ /* Last block optionally pad the data with zeros*/
+ for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ }
+ while (loopcounter < 4U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ /* Enter header data */
+ /* Check first whether header length is small enough to enter the full header in one shot */
+ else if (headersize_in_bytes <= 16U)
+ {
+ for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ /* If the header size is a multiple of words */
+ if ((headersize_in_bytes % 4U) == 0U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ while (loopcounter < 4U)
+ {
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+ else
+ {
+ /* Enter last bytes, padded with zeros */
+ tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
+ hcryp->Instance->DINR = tmp;
+ hcryp->CrypHeaderCount++;
+ loopcounter++;
+ /* Pad the data with zeros to have a complete block */
+ while (loopcounter < 4U)
+ {
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ else
+ {
+ /* Write the first input header block in the Input FIFO,
+ the following header data will be fed after interrupt occurrence */
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U);
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U);
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U);
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U);
+ }/* if (hcryp->Init.HeaderSize == 0U) */ /* Header phase is skipped*/
+ } /* end of if (dokeyivconfig == 1U) */
+ else /* Key and IV have already been configured,
+ header has already been processed;
+ only process here message payload */
+ {
+ /* Write the payload Input block in the IN FIFO */
+ if (hcryp->Size == 0U)
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ else if (hcryp->Size >= 16U)
+ {
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
+
+ if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
+ {
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ else /* Size < 4 words : first block is the last block*/
+ {
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = 16U - (uint32_t)hcryp->Size;
+
+ mode = hcryp->Instance->CR & AES_CR_MODE;
+ if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
+ ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
+ {
+ /* Specify the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
+ }
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb % 4U) == 0U)
+ {
+ lastwordsize = (16U - npblb) / 4U;
+ }
+ else
+ {
+ lastwordsize = ((16U - npblb) / 4U) + 1U;
+ }
+
+ /* Last block optionally pad the data with zeros*/
+ for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ }
+ while (loopcounter < 4U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ /* Call Input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief AES CCM encryption/decryption process in DMA mode
+ * for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t count;
+ uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
+
+ if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
+ {
+ if (hcryp->KeyIVConfig == 1U)
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has already been done, skip it */
+ DoKeyIVConfig = 0U;
+ hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
+ }
+ else
+ {
+ /* If the Key and IV configuration has to be done only once
+ and if it has not been done already, do it and set KeyIVConfig
+ to keep track it won't have to be done again next time */
+ hcryp->KeyIVConfig = 1U;
+ hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
+ }
+ }
+ else
+ {
+ hcryp->SizesSum = hcryp->Size;
+ }
+
+ if (DoKeyIVConfig == 1U)
+ {
+
+ /* Reset CrypHeaderCount */
+ hcryp->CrypHeaderCount = 0U;
+
+
+ /********************** Init phase ******************************************/
+
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
+
+ /* Set the key */
+ CRYP_SetKey(hcryp, hcryp->Init.KeySize);
+
+ /* Set the initialization vector (IV) with B0 */
+ hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0);
+ hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U);
+ hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U);
+ hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* just wait for hash computation */
+ count = CRYP_TIMEOUT_GCMCCMINITPHASE;
+ do
+ {
+ count-- ;
+ if (count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+
+ /********************* Header phase *****************************************/
+
+ if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+
+ }
+ else
+ {
+ /* Initialization and header phases already done, only do payload phase */
+ if (CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+ } /* if (DoKeyIVConfig == 1U) */
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Sets the payload phase in interrupt mode
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval state
+ */
+static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t loopcounter;
+ uint32_t temp[4]; /* Temporary CrypOutBuff */
+ uint32_t lastwordsize;
+ uint32_t npblb;
+ uint32_t mode;
+ uint16_t incount; /* Temporary CrypInCount Value */
+ uint16_t outcount; /* Temporary CrypOutCount Value */
+ uint32_t i;
+
+ /***************************** Payload phase *******************************/
+
+ /* Read the output block from the output FIFO and put them in temporary buffer
+ then get CrypOutBuff from temporary buffer*/
+ for (i = 0U; i < 4U; i++)
+ {
+ temp[i] = hcryp->Instance->DOUTR;
+ }
+ i = 0U;
+ while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U))
+ {
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
+ hcryp->CrypOutCount++;
+ i++;
+ }
+ incount = hcryp->CrypInCount;
+ outcount = hcryp->CrypOutCount;
+ if ((outcount >= (hcryp->Size / 4U)) && ((incount * 4U) >= hcryp->Size))
+ {
+
+ /* When in CCM with Key and IV configuration skipped, don't disable interruptions */
+ if (!((hcryp->Init.Algorithm == CRYP_AES_CCM) && (hcryp->KeyIVConfig == 1U)))
+ {
+ /* Disable computation complete flag and errors interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+ }
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Call output transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Output complete callback*/
+ hcryp->OutCpltCallback(hcryp);
+#else
+ /*Call legacy weak Output complete callback*/
+ HAL_CRYP_OutCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+
+ else if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U)
+ {
+
+#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
+ /* If suspension flag has been raised, suspend processing
+ only if not already at the end of the payload */
+ if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
+ {
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* reset SuspendRequest */
+ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+ /* Disable Computation Complete Flag and Errors Interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+ /* Mark that the payload phase is suspended */
+ hcryp->Phase = CRYP_PHASE_PAYLOAD_SUSPENDED;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ else
+#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
+ {
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
+ {
+ /* Call input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ }
+ else /* Last block of payload < 128bit*/
+ {
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size);
+
+ mode = hcryp->Instance->CR & AES_CR_MODE;
+ if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
+ ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
+ {
+ /* Specify the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
+ }
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb % 4U) == 0U)
+ {
+ lastwordsize = (16U - npblb) / 4U;
+ }
+ else
+ {
+ lastwordsize = ((16U - npblb) / 4U) + 1U;
+ }
+
+ /* Last block optionally pad the data with zeros*/
+ for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ }
+ while (loopcounter < 4U)
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ /* Call input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+}
+
+
+/**
+ * @brief Sets the payload phase in DMA mode
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module
+ * @retval state
+ */
+static HAL_StatusTypeDef CRYP_GCMCCM_SetPayloadPhase_DMA(CRYP_HandleTypeDef *hcryp)
+{
+ uint16_t wordsize = hcryp->Size / 4U ;
+ uint32_t index;
+ uint32_t npblb;
+ uint32_t lastwordsize;
+ uint32_t temp[4]; /* Temporary CrypOutBuff */
+ uint32_t count;
+ uint32_t reg;
+
+ /************************ Payload phase ************************************/
+ if (hcryp->Size == 0U)
+ {
+ /* Process unLocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Change the CRYP state and phase */
+ hcryp->State = HAL_CRYP_STATE_READY;
+ }
+ else if (hcryp->Size >= 16U)
+ {
+ /*DMA transfer must not include the last block in case of Size is not %16 */
+ wordsize = wordsize - (wordsize % 4U);
+
+ /*DMA transfer */
+ CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), wordsize, (uint32_t)(hcryp->pCrypOutBuffPtr));
+ }
+ else /* length of input data is < 16 */
+ {
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = 16U - (uint32_t)hcryp->Size;
+
+ /* Set Npblb in case of AES GCM payload encryption or AES CCM payload decryption to get right tag*/
+ reg = hcryp->Instance->CR & (AES_CR_CHMOD | AES_CR_MODE);
+ if ((reg == (CRYP_AES_GCM_GMAC | CRYP_OPERATINGMODE_ENCRYPT)) || \
+ (reg == (CRYP_AES_CCM | CRYP_OPERATINGMODE_DECRYPT)))
+ {
+ /* Specify the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
+ }
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb % 4U) == 0U)
+ {
+ lastwordsize = (16U - npblb) / 4U;
+ }
+ else
+ {
+ lastwordsize = ((16U - npblb) / 4U) + 1U;
+ }
+
+ /* last block optionally pad the data with zeros*/
+ for (index = 0U; index < lastwordsize; index ++)
+ {
+ /* Write the last Input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ }
+ while (index < 4U)
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0U;
+ index++;
+ }
+ /* Call the input data transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ /* Wait for CCF flag to be raised */
+ count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
+ do
+ {
+ count-- ;
+ if (count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /*Read the output block from the output FIFO */
+ for (index = 0U; index < 4U; index++)
+ {
+ /* Read the output block from the output FIFO and put them in temporary buffer
+ then get CrypOutBuff from temporary buffer */
+ temp[index] = hcryp->Instance->DOUTR;
+ }
+ for (index = 0U; index < lastwordsize; index++)
+ {
+ *(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[index];
+ hcryp->CrypOutCount++;
+ }
+
+ /* Change the CRYP state to ready */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+
+ /* Call Output transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Output complete callback*/
+ hcryp->OutCpltCallback(hcryp);
+#else
+ /*Call legacy weak Output complete callback*/
+ HAL_CRYP_OutCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Sets the header phase in polling mode
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module(Header & HeaderSize)
+ * @param Timeout Timeout value
+ * @retval state
+ */
+static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t loopcounter;
+ uint32_t size_in_bytes;
+ uint32_t tmp;
+ static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
+ 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
+ 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU
+ }; /* 8-bit data type */
+
+ /***************************** Header phase for GCM/GMAC or CCM *********************************/
+ if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
+ {
+ size_in_bytes = hcryp->Init.HeaderSize * 4U;
+ }
+ else
+ {
+ size_in_bytes = hcryp->Init.HeaderSize;
+ }
+
+ if ((size_in_bytes != 0U))
+ {
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* If size_in_bytes is a multiple of blocks (a multiple of four 32-bits words ) */
+ if ((size_in_bytes % 16U) == 0U)
+ {
+ /* No padding */
+ for (loopcounter = 0U; (loopcounter < (size_in_bytes / 4U)); loopcounter += 4U)
+ {
+ /* Write the input block in the data input register */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+
+ if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+ }
+ }
+ else
+ {
+ /* Write header block in the IN FIFO without last block */
+ for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 16U) * 4U)); loopcounter += 4U)
+ {
+ /* Write the input block in the data input register */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+
+ if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+ }
+ /* Write last complete words */
+ for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 4U) % 4U)); loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ /* If the header size is a multiple of words */
+ if ((size_in_bytes % 4U) == 0U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ while (loopcounter < 4U)
+ {
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+ else
+ {
+ /* Enter last bytes, padded with zeros */
+ tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ tmp &= mask[(hcryp->Init.DataType * 2U) + (size_in_bytes % 4U)];
+ hcryp->Instance->DINR = tmp;
+ loopcounter++;
+ /* Pad the data with zeros to have a complete block */
+ while (loopcounter < 4U)
+ {
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+
+ if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+ }
+ }
+ else
+ {
+ /*Workaround 1: only AES, before re-enabling the peripheral, datatype can be configured.*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+ }
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Sets the header phase when using DMA in process
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module(Header & HeaderSize)
+ * @retval None
+ */
+static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t loopcounter;
+ uint32_t headersize_in_bytes;
+ uint32_t tmp;
+ static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
+ 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
+ 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU
+ }; /* 8-bit data type */
+
+ /***************************** Header phase for GCM/GMAC or CCM *********************************/
+ if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
+ {
+ headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
+ }
+ else
+ {
+ headersize_in_bytes = hcryp->Init.HeaderSize;
+ }
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* If header size is at least equal to 16 bytes, feed the header through DMA.
+ If size_in_bytes is not a multiple of blocks (is not a multiple of four 32-bit words ),
+ last bytes feeding and padding will be done in CRYP_DMAInCplt() */
+ if (headersize_in_bytes >= 16U)
+ {
+ /* Initiate header DMA transfer */
+ if (CRYP_SetHeaderDMAConfig(hcryp, (uint32_t)(hcryp->Init.Header),
+ (uint16_t)((headersize_in_bytes / 16U) * 4U)) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+ }
+ else
+ {
+ if (headersize_in_bytes != 0U)
+ {
+ /* Header length is larger than 0 and strictly less than 16 bytes */
+ /* Write last complete words */
+ for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ /* If the header size is a multiple of words */
+ if ((headersize_in_bytes % 4U) == 0U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ while (loopcounter < 4U)
+ {
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+ else
+ {
+ /* Enter last bytes, padded with zeros */
+ tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
+ hcryp->Instance->DINR = tmp;
+ loopcounter++;
+ /* Pad the data with zeros to have a complete block */
+ while (loopcounter < 4U)
+ {
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+
+ if (CRYP_WaitOnCCFlag(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE) != HAL_OK)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ return HAL_ERROR;
+ }
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+ } /* if (headersize_in_bytes != 0U) */
+
+ /* Move to payload phase if header length is null or
+ if the header length was less than 16 and header written by software instead of DMA */
+
+ /* Set to 0 the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
+
+ /* Select payload phase once the header phase is performed */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
+
+ /* Initiate payload DMA IN and processed data DMA OUT transfers */
+ if (CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp) != HAL_OK)
+ {
+ return HAL_ERROR;
+ }
+ } /* if (headersize_in_bytes >= 16U) */
+
+ /* Return function status */
+ return HAL_OK;
+}
+
+/**
+ * @brief Sets the header phase in interrupt mode
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module(Header & HeaderSize)
+ * @retval None
+ */
+static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t loopcounter;
+ uint32_t lastwordsize;
+ uint32_t npblb;
+ uint32_t mode;
+ uint32_t headersize_in_bytes;
+ uint32_t tmp;
+ static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
+ 0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
+ 0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU
+ }; /* 8-bit data type */
+
+ if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
+ {
+ headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
+ }
+ else
+ {
+ headersize_in_bytes = hcryp->Init.HeaderSize;
+ }
+
+ /***************************** Header phase *********************************/
+ /* Test whether or not the header phase is over.
+ If the test below is true, move to payload phase */
+ if (headersize_in_bytes <= ((uint32_t)(hcryp->CrypHeaderCount) * 4U))
+ {
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+ /* Select payload phase */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
+ /* Set to 0 the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
+
+ if (hcryp->Init.Algorithm == CRYP_AES_CCM)
+ {
+ /* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */
+ hcryp->CrypHeaderCount++;
+ }
+ /* Write the payload Input block in the IN FIFO */
+ if (hcryp->Size == 0U)
+ {
+ /* Disable interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ else if (hcryp->Size >= 16U)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+
+ if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
+ {
+ /* Call the input data transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ else /* Size < 4 words : first block is the last block*/
+ {
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = 16U - ((uint32_t)hcryp->Size);
+ mode = hcryp->Instance->CR & AES_CR_MODE;
+ if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
+ ((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
+ {
+ /* Specify the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
+ }
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb % 4U) == 0U)
+ {
+ lastwordsize = (16U - npblb) / 4U;
+ }
+ else
+ {
+ lastwordsize = ((16U - npblb) / 4U) + 1U;
+ }
+
+ /* Last block optionally pad the data with zeros*/
+ for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ }
+ while (loopcounter < 4U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ /* Call the input data transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ else if ((((headersize_in_bytes / 4U) - (hcryp->CrypHeaderCount)) >= 4U))
+ {
+ /* Can enter full 4 header words */
+#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
+ /* If suspension flag has been raised, suspend processing
+ only if not already at the end of the header */
+ if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
+ {
+ /* Clear CCF Flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+
+ /* reset SuspendRequest */
+ hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
+ /* Disable Computation Complete Flag and Errors Interrupts */
+ __HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+ /* Change the CRYP state */
+ hcryp->State = HAL_CRYP_STATE_SUSPENDED;
+ /* Mark that the payload phase is suspended */
+ hcryp->Phase = CRYP_PHASE_HEADER_SUSPENDED;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hcryp);
+ }
+ else
+#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
+ {
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++;
+ }
+ }
+ else /* Write last header block (4 words), padded with zeros if needed */
+ {
+
+ for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 4U) % 4U)); loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ /* If the header size is a multiple of words */
+ if ((headersize_in_bytes % 4U) == 0U)
+ {
+ /* Pad the data with zeros to have a complete block */
+ while (loopcounter < 4U)
+ {
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ hcryp->CrypHeaderCount++;
+ }
+ }
+ else
+ {
+ /* Enter last bytes, padded with zeros */
+ tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
+ hcryp->Instance->DINR = tmp;
+ loopcounter++;
+ hcryp->CrypHeaderCount++;
+ /* Pad the data with zeros to have a complete block */
+ while (loopcounter < 4U)
+ {
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ hcryp->CrypHeaderCount++;
+ }
+ }
+ }
+}
+
+/**
+ * @brief Handle CRYP hardware block Timeout when waiting for CCF flag to be raised.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Timeout Timeout duration.
+ * @note This function can only be used in thread mode.
+ * @retval HAL status
+ */
+static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t tickstart;
+
+ /* Get timeout */
+ tickstart = HAL_GetTick();
+
+ while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF))
+ {
+ /* Check for the Timeout */
+ if (Timeout != HAL_MAX_DELAY)
+ {
+ if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
+ {
+ return HAL_ERROR;
+ }
+ }
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief Wait for Computation Complete Flag (CCF) to raise then clear it.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Timeout Timeout duration.
+ * @note This function can be used in thread or handler mode.
+ * @retval HAL status
+ */
+static void CRYP_ClearCCFlagWhenHigh(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
+{
+ uint32_t count = Timeout;
+
+ do
+ {
+ count-- ;
+ if (count == 0U)
+ {
+ /* Disable the CRYP peripheral clock */
+ __HAL_CRYP_DISABLE(hcryp);
+
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
+ /*Call registered error callback*/
+ hcryp->ErrorCallback(hcryp);
+#else
+ /*Call legacy weak error callback*/
+ HAL_CRYP_ErrorCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ } while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
+
+ /* Clear CCF flag */
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
+}
+
+#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
+/**
+ * @brief In case of message processing suspension, read the Initialization Vector.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Output Pointer to the buffer containing the saved Initialization Vector.
+ * @note This value has to be stored for reuse by writing the AES_IVRx registers
+ * as soon as the suspended processing has to be resumed.
+ * @retval None
+ */
+static void CRYP_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output)
+{
+ uint32_t outputaddr = (uint32_t)Output;
+
+ *(uint32_t *)(outputaddr) = hcryp->Instance->IVR3;
+ outputaddr += 4U;
+ *(uint32_t *)(outputaddr) = hcryp->Instance->IVR2;
+ outputaddr += 4U;
+ *(uint32_t *)(outputaddr) = hcryp->Instance->IVR1;
+ outputaddr += 4U;
+ *(uint32_t *)(outputaddr) = hcryp->Instance->IVR0;
+}
+
+/**
+ * @brief In case of message processing resumption, rewrite the Initialization
+ * Vector in the AES_IVRx registers.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Input Pointer to the buffer containing the saved Initialization Vector to
+ * write back in the CRYP hardware block.
+ * @note AES must be disabled when reconfiguring the IV values.
+ * @retval None
+ */
+static void CRYP_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input)
+{
+ uint32_t ivaddr = (uint32_t)Input;
+
+ hcryp->Instance->IVR3 = *(uint32_t *)(ivaddr);
+ ivaddr += 4U;
+ hcryp->Instance->IVR2 = *(uint32_t *)(ivaddr);
+ ivaddr += 4U;
+ hcryp->Instance->IVR1 = *(uint32_t *)(ivaddr);
+ ivaddr += 4U;
+ hcryp->Instance->IVR0 = *(uint32_t *)(ivaddr);
+}
+
+/**
+ * @brief In case of message GCM/GMAC/CCM processing suspension,
+ * read the Suspend Registers.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Output Pointer to the buffer containing the saved Suspend Registers.
+ * @note These values have to be stored for reuse by writing back the AES_SUSPxR registers
+ * as soon as the suspended processing has to be resumed.
+ * @retval None
+ */
+static void CRYP_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output)
+{
+ uint32_t outputaddr = (uint32_t)Output;
+ __IO uint32_t count = 0U;
+
+ /* In case of GCM payload phase encryption, check that suspension can be carried out */
+ if (READ_BIT(hcryp->Instance->CR,
+ (AES_CR_CHMOD | AES_CR_GCMPH | AES_CR_MODE)) == (CRYP_AES_GCM_GMAC | AES_CR_GCMPH_1 | 0x0U))
+ {
+
+ /* Wait for BUSY flag to be cleared */
+ count = 0xFFF;
+ do
+ {
+ count-- ;
+ if (count == 0U)
+ {
+ /* Change state */
+ hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
+ hcryp->State = HAL_CRYP_STATE_READY;
+
+ /* Process unlocked */
+ __HAL_UNLOCK(hcryp);
+ HAL_CRYP_ErrorCallback(hcryp);
+ return;
+ }
+ } while (HAL_IS_BIT_SET(hcryp->Instance->SR, AES_SR_BUSY));
+
+ }
+
+
+ *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP7R;
+ outputaddr += 4U;
+ *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP6R;
+ outputaddr += 4U;
+ *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP5R;
+ outputaddr += 4U;
+ *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP4R;
+ outputaddr += 4U;
+ *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP3R;
+ outputaddr += 4U;
+ *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP2R;
+ outputaddr += 4U;
+ *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP1R;
+ outputaddr += 4U;
+ *(uint32_t *)(outputaddr) = hcryp->Instance->SUSP0R;
+}
+
+/**
+ * @brief In case of message GCM/GMAC/CCM processing resumption, rewrite the Suspend
+ * Registers in the AES_SUSPxR registers.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Input Pointer to the buffer containing the saved suspend registers to
+ * write back in the CRYP hardware block.
+ * @note AES must be disabled when reconfiguring the suspend registers.
+ * @retval None
+ */
+static void CRYP_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input)
+{
+ uint32_t ivaddr = (uint32_t)Input;
+
+ hcryp->Instance->SUSP7R = *(uint32_t *)(ivaddr);
+ ivaddr += 4U;
+ hcryp->Instance->SUSP6R = *(uint32_t *)(ivaddr);
+ ivaddr += 4U;
+ hcryp->Instance->SUSP5R = *(uint32_t *)(ivaddr);
+ ivaddr += 4U;
+ hcryp->Instance->SUSP4R = *(uint32_t *)(ivaddr);
+ ivaddr += 4U;
+ hcryp->Instance->SUSP3R = *(uint32_t *)(ivaddr);
+ ivaddr += 4U;
+ hcryp->Instance->SUSP2R = *(uint32_t *)(ivaddr);
+ ivaddr += 4U;
+ hcryp->Instance->SUSP1R = *(uint32_t *)(ivaddr);
+ ivaddr += 4U;
+ hcryp->Instance->SUSP0R = *(uint32_t *)(ivaddr);
+}
+
+/**
+ * @brief In case of message GCM/GMAC/CCM processing suspension, read the Key Registers.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Output Pointer to the buffer containing the saved Key Registers.
+ * @param KeySize Indicates the key size (128 or 256 bits).
+ * @note These values have to be stored for reuse by writing back the AES_KEYRx registers
+ * as soon as the suspended processing has to be resumed.
+ * @retval None
+ */
+static void CRYP_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output, uint32_t KeySize)
+{
+ uint32_t keyaddr = (uint32_t)Output;
+
+ switch (KeySize)
+ {
+ case CRYP_KEYSIZE_256B:
+ *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey);
+ keyaddr += 4U;
+ *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 1U);
+ keyaddr += 4U;
+ *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 2U);
+ keyaddr += 4U;
+ *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 3U);
+ keyaddr += 4U;
+ *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 4U);
+ keyaddr += 4U;
+ *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 5U);
+ keyaddr += 4U;
+ *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 6U);
+ keyaddr += 4U;
+ *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 7U);
+ break;
+ case CRYP_KEYSIZE_128B:
+ *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey);
+ keyaddr += 4U;
+ *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 1U);
+ keyaddr += 4U;
+ *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 2U);
+ keyaddr += 4U;
+ *(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 3U);
+ break;
+ default:
+ break;
+ }
+}
+
+/**
+ * @brief In case of message GCM/GMAC (CCM/CMAC when applicable) processing resumption, rewrite the Key
+ * Registers in the AES_KEYRx registers.
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module.
+ * @param Input Pointer to the buffer containing the saved key registers to
+ * write back in the CRYP hardware block.
+ * @param KeySize Indicates the key size (128 or 256 bits)
+ * @note AES must be disabled when reconfiguring the Key registers.
+ * @retval None
+ */
+static void CRYP_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint32_t KeySize)
+{
+ uint32_t keyaddr = (uint32_t)Input;
+
+ if (KeySize == CRYP_KEYSIZE_256B)
+ {
+ hcryp->Instance->KEYR7 = *(uint32_t *)(keyaddr);
+ keyaddr += 4U;
+ hcryp->Instance->KEYR6 = *(uint32_t *)(keyaddr);
+ keyaddr += 4U;
+ hcryp->Instance->KEYR5 = *(uint32_t *)(keyaddr);
+ keyaddr += 4U;
+ hcryp->Instance->KEYR4 = *(uint32_t *)(keyaddr);
+ keyaddr += 4U;
+ }
+
+ hcryp->Instance->KEYR3 = *(uint32_t *)(keyaddr);
+ keyaddr += 4U;
+ hcryp->Instance->KEYR2 = *(uint32_t *)(keyaddr);
+ keyaddr += 4U;
+ hcryp->Instance->KEYR1 = *(uint32_t *)(keyaddr);
+ keyaddr += 4U;
+ hcryp->Instance->KEYR0 = *(uint32_t *)(keyaddr);
+}
+
+/**
+ * @brief Authentication phase resumption in case of GCM/GMAC/CCM process in interrupt mode
+ * @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
+ * the configuration information for CRYP module(Header & HeaderSize)
+ * @retval None
+ */
+static void CRYP_PhaseProcessingResume(CRYP_HandleTypeDef *hcryp)
+{
+ uint32_t loopcounter;
+ uint16_t lastwordsize;
+ uint16_t npblb;
+ uint32_t cr_temp;
+
+
+ __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_ERR_CLEAR | CRYP_CCF_CLEAR);
+
+ /* Enable computation complete flag and error interrupts */
+ __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
+
+ /* Enable the CRYP peripheral */
+ __HAL_CRYP_ENABLE(hcryp);
+
+ /* Case of header phase resumption =================================================*/
+ if (hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED)
+ {
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Select header phase */
+ CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
+
+ if ((((hcryp->Init.HeaderSize) - (hcryp->CrypHeaderCount)) >= 4U))
+ {
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++;
+ }
+ else /*HeaderSize < 4 or HeaderSize >4 & HeaderSize %4 != 0*/
+ {
+ /* Last block optionally pad the data with zeros*/
+ for (loopcounter = 0U; loopcounter < (hcryp->Init.HeaderSize % 4U); loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
+ hcryp->CrypHeaderCount++ ;
+ }
+ while (loopcounter < 4U)
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+ }
+ /* Case of payload phase resumption =================================================*/
+ else
+ {
+ if (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED)
+ {
+
+ /* Set the phase */
+ hcryp->Phase = CRYP_PHASE_PROCESS;
+
+ /* Select payload phase once the header phase is performed */
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
+
+ /* Set to 0 the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
+
+ if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U)
+ {
+ /* Write the input block in the IN FIFO */
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
+ {
+ /* Call input transfer complete callback */
+#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
+ /*Call registered Input complete callback*/
+ hcryp->InCpltCallback(hcryp);
+#else
+ /*Call legacy weak Input complete callback*/
+ HAL_CRYP_InCpltCallback(hcryp);
+#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
+ }
+ }
+ else /* Last block of payload < 128bit*/
+ {
+ /* Compute the number of padding bytes in last block of payload */
+ npblb = (((hcryp->Size / 16U) + 1U) * 16U) - (hcryp->Size);
+ cr_temp = hcryp->Instance->CR;
+ if ((((cr_temp & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
+ (((cr_temp & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
+ {
+ /* Specify the number of non-valid bytes using NPBLB register*/
+ MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, ((uint32_t)npblb) << 20U);
+ }
+
+ /* Number of valid words (lastwordsize) in last block */
+ if ((npblb % 4U) == 0U)
+ {
+ lastwordsize = (16U - npblb) / 4U;
+ }
+ else
+ {
+ lastwordsize = ((16U - npblb) / 4U) + 1U;
+ }
+
+ /* Last block optionally pad the data with zeros*/
+ for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
+ {
+ hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
+ hcryp->CrypInCount++;
+ }
+ while (loopcounter < 4U)
+ {
+ /* pad the data with zeros to have a complete block */
+ hcryp->Instance->DINR = 0x0U;
+ loopcounter++;
+ }
+ }
+ }
+ }
+}
+#endif /* defined (USE_HAL_CRYP_SUSPEND_RESUME) */
+/**
+ * @}
+ */
+
+
+#endif /* HAL_CRYP_MODULE_ENABLED */
+
+#endif /* AES */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */