summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/DistanceFunctions/arm_jensenshannon_distance_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/DistanceFunctions/arm_jensenshannon_distance_f32.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/DistanceFunctions/arm_jensenshannon_distance_f32.c247
1 files changed, 247 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/DistanceFunctions/arm_jensenshannon_distance_f32.c b/Drivers/CMSIS/DSP/Source/DistanceFunctions/arm_jensenshannon_distance_f32.c
new file mode 100644
index 0000000..5f1a44c
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/DistanceFunctions/arm_jensenshannon_distance_f32.c
@@ -0,0 +1,247 @@
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_jensenshannon_distance_f32.c
+ * Description: Jensen-Shannon distance between two vectors
+ *
+ * $Date: 23 April 2021
+ * $Revision: V1.9.0
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dsp/distance_functions.h"
+#include <limits.h>
+#include <math.h>
+
+
+/**
+ @addtogroup JensenShannon
+ @{
+ */
+
+#if !defined(ARM_MATH_MVEF) || defined(ARM_MATH_AUTOVECTORIZE)
+/// @private
+__STATIC_INLINE float32_t rel_entr(float32_t x, float32_t y)
+{
+ return (x * logf(x / y));
+}
+#endif
+
+
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#include "arm_helium_utils.h"
+#include "arm_vec_math.h"
+
+float32_t arm_jensenshannon_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize)
+{
+ uint32_t blkCnt;
+ float32_t tmp;
+ f32x4_t a, b, t, tmpV, accumV;
+
+ accumV = vdupq_n_f32(0.0f);
+
+ blkCnt = blockSize >> 2;
+ while (blkCnt > 0U) {
+ a = vld1q(pA);
+ b = vld1q(pB);
+
+ t = vaddq(a, b);
+ t = vmulq(t, 0.5f);
+
+ tmpV = vmulq(a, vrecip_medprec_f32(t));
+ tmpV = vlogq_f32(tmpV);
+ accumV = vfmaq(accumV, a, tmpV);
+
+ tmpV = vmulq_f32(b, vrecip_medprec_f32(t));
+ tmpV = vlogq_f32(tmpV);
+ accumV = vfmaq(accumV, b, tmpV);
+
+ pA += 4;
+ pB += 4;
+ blkCnt--;
+ }
+
+ /*
+ * tail
+ * (will be merged thru tail predication)
+ */
+ blkCnt = blockSize & 3;
+ if (blkCnt > 0U) {
+ mve_pred16_t p0 = vctp32q(blkCnt);
+
+ a = vldrwq_z_f32(pA, p0);
+ b = vldrwq_z_f32(pB, p0);
+
+ t = vaddq(a, b);
+ t = vmulq(t, 0.5f);
+
+ tmpV = vmulq_f32(a, vrecip_medprec_f32(t));
+ tmpV = vlogq_f32(tmpV);
+ accumV = vfmaq_m_f32(accumV, a, tmpV, p0);
+
+ tmpV = vmulq_f32(b, vrecip_medprec_f32(t));
+ tmpV = vlogq_f32(tmpV);
+ accumV = vfmaq_m_f32(accumV, b, tmpV, p0);
+
+ }
+
+ arm_sqrt_f32(vecAddAcrossF32Mve(accumV) / 2.0f, &tmp);
+ return (tmp);
+}
+
+#else
+
+#if defined(ARM_MATH_NEON)
+
+#include "NEMath.h"
+
+
+/**
+ * @brief Jensen-Shannon distance between two vectors
+ *
+ * This function is assuming that elements of second vector are > 0
+ * and 0 only when the corresponding element of first vector is 0.
+ * Otherwise the result of the computation does not make sense
+ * and for speed reasons, the cases returning NaN or Infinity are not
+ * managed.
+ *
+ * When the function is computing x log (x / y) with x == 0 and y == 0,
+ * it will compute the right result (0) but a division by zero will occur
+ * and should be ignored in client code.
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+
+float32_t arm_jensenshannon_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize)
+{
+ float32_t accum, result, tmp,a,b;
+ uint32_t blkCnt;
+ float32x4_t aV,bV,t, tmpV, accumV;
+ float32x2_t accumV2;
+
+ accum = 0.0f;
+ accumV = vdupq_n_f32(0.0f);
+
+ blkCnt = blockSize >> 2;
+ while(blkCnt > 0)
+ {
+ aV = vld1q_f32(pA);
+ bV = vld1q_f32(pB);
+ t = vaddq_f32(aV,bV);
+ t = vmulq_n_f32(t, 0.5f);
+
+ tmpV = vmulq_f32(aV, vinvq_f32(t));
+ tmpV = vlogq_f32(tmpV);
+ accumV = vmlaq_f32(accumV, aV, tmpV);
+
+
+ tmpV = vmulq_f32(bV, vinvq_f32(t));
+ tmpV = vlogq_f32(tmpV);
+ accumV = vmlaq_f32(accumV, bV, tmpV);
+
+ pA += 4;
+ pB += 4;
+
+
+ blkCnt --;
+ }
+
+ accumV2 = vpadd_f32(vget_low_f32(accumV),vget_high_f32(accumV));
+ accum = vget_lane_f32(accumV2, 0) + vget_lane_f32(accumV2, 1);
+
+ blkCnt = blockSize & 3;
+ while(blkCnt > 0)
+ {
+ a = *pA;
+ b = *pB;
+ tmp = (a + b) / 2.0f;
+ accum += rel_entr(a, tmp);
+ accum += rel_entr(b, tmp);
+
+ pA++;
+ pB++;
+
+ blkCnt --;
+ }
+
+
+ arm_sqrt_f32(accum/2.0f, &result);
+ return(result);
+
+}
+
+#else
+
+
+/**
+ * @brief Jensen-Shannon distance between two vectors
+ *
+ * This function is assuming that elements of second vector are > 0
+ * and 0 only when the corresponding element of first vector is 0.
+ * Otherwise the result of the computation does not make sense
+ * and for speed reasons, the cases returning NaN or Infinity are not
+ * managed.
+ *
+ * When the function is computing x log (x / y) with x == 0 and y == 0,
+ * it will compute the right result (0) but a division by zero will occur
+ * and should be ignored in client code.
+ *
+ * @param[in] pA First vector
+ * @param[in] pB Second vector
+ * @param[in] blockSize vector length
+ * @return distance
+ *
+ */
+
+
+float32_t arm_jensenshannon_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize)
+{
+ float32_t left, right,sum, result, tmp;
+ uint32_t i;
+
+ left = 0.0f;
+ right = 0.0f;
+ for(i=0; i < blockSize; i++)
+ {
+ tmp = (pA[i] + pB[i]) / 2.0f;
+ left += rel_entr(pA[i], tmp);
+ right += rel_entr(pB[i], tmp);
+ }
+
+
+ sum = left + right;
+ arm_sqrt_f32(sum/2.0f, &result);
+ return(result);
+
+}
+
+#endif
+#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
+
+/**
+ * @} end of JensenShannon group
+ */