diff options
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/InterpolationFunctions/arm_spline_interp_f32.c')
-rw-r--r-- | Drivers/CMSIS/DSP/Source/InterpolationFunctions/arm_spline_interp_f32.c | 283 |
1 files changed, 283 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/InterpolationFunctions/arm_spline_interp_f32.c b/Drivers/CMSIS/DSP/Source/InterpolationFunctions/arm_spline_interp_f32.c new file mode 100644 index 0000000..3e3d091 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/InterpolationFunctions/arm_spline_interp_f32.c @@ -0,0 +1,283 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_spline_interp_f32.c + * Description: Floating-point cubic spline interpolation + * + * $Date: 23 April 2021 + * $Revision: V1.9.0 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "dsp/interpolation_functions.h" + +/** + @ingroup groupInterpolation + */ + +/** + @defgroup SplineInterpolate Cubic Spline Interpolation + + Spline interpolation is a method of interpolation where the interpolant + is a piecewise-defined polynomial called "spline". + + @par Introduction + + Given a function f defined on the interval [a,b], a set of n nodes x(i) + where a=x(1)<x(2)<...<x(n)=b and a set of n values y(i) = f(x(i)), + a cubic spline interpolant S(x) is defined as: + + <pre> + S1(x) x(1) < x < x(2) + S(x) = ... + Sn-1(x) x(n-1) < x < x(n) + </pre> + + where + + <pre> + Si(x) = a_i+b_i(x-xi)+c_i(x-xi)^2+d_i(x-xi)^3 i=1, ..., n-1 + </pre> + + @par Algorithm + + Having defined h(i) = x(i+1) - x(i) + + <pre> + h(i-1)c(i-1)+2[h(i-1)+h(i)]c(i)+h(i)c(i+1) = 3/h(i)*[a(i+1)-a(i)]-3/h(i-1)*[a(i)-a(i-1)] i=2, ..., n-1 + </pre> + + It is possible to write the previous conditions in matrix form (Ax=B). + In order to solve the system two boundary conidtions are needed. + - Natural spline: S1''(x1)=2*c(1)=0 ; Sn''(xn)=2*c(n)=0 + In matrix form: + + <pre> + | 1 0 0 ... 0 0 0 || c(1) | | 0 | + | h(0) 2[h(0)+h(1)] h(1) ... 0 0 0 || c(2) | | 3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)] | + | ... ... ... ... ... ... ... || ... |=| ... | + | 0 0 0 ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] | + | 0 0 0 ... 0 0 1 || c(n) | | 0 | + </pre> + + - Parabolic runout spline: S1''(x1)=2*c(1)=S2''(x2)=2*c(2) ; Sn-1''(xn-1)=2*c(n-1)=Sn''(xn)=2*c(n) + In matrix form: + + <pre> + | 1 -1 0 ... 0 0 0 || c(1) | | 0 | + | h(0) 2[h(0)+h(1)] h(1) ... 0 0 0 || c(2) | | 3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)] | + | ... ... ... ... ... ... ... || ... |=| ... | + | 0 0 0 ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] | + | 0 0 0 ... 0 -1 1 || c(n) | | 0 | + </pre> + + A is a tridiagonal matrix (a band matrix of bandwidth 3) of size N=n+1. The factorization + algorithms (A=LU) can be simplified considerably because a large number of zeros appear + in regular patterns. The Crout method has been used: + 1) Solve LZ=B + + <pre> + u(1,2) = A(1,2)/A(1,1) + z(1) = B(1)/l(11) + + FOR i=2, ..., N-1 + l(i,i) = A(i,i)-A(i,i-1)u(i-1,i) + u(i,i+1) = a(i,i+1)/l(i,i) + z(i) = [B(i)-A(i,i-1)z(i-1)]/l(i,i) + + l(N,N) = A(N,N)-A(N,N-1)u(N-1,N) + z(N) = [B(N)-A(N,N-1)z(N-1)]/l(N,N) + </pre> + + 2) Solve UX=Z + + <pre> + c(N)=z(N) + + FOR i=N-1, ..., 1 + c(i)=z(i)-u(i,i+1)c(i+1) + </pre> + + c(i) for i=1, ..., n-1 are needed to compute the n-1 polynomials. + b(i) and d(i) are computed as: + - b(i) = [y(i+1)-y(i)]/h(i)-h(i)*[c(i+1)+2*c(i)]/3 + - d(i) = [c(i+1)-c(i)]/[3*h(i)] + Moreover, a(i)=y(i). + + @par Behaviour outside the given intervals + + It is possible to compute the interpolated vector for x values outside the + input range (xq<x(1); xq>x(n)). The coefficients used to compute the y values for + xq<x(1) are going to be the ones used for the first interval, while for xq>x(n) the + coefficients used for the last interval. + + */ + +/** + @addtogroup SplineInterpolate + @{ + */ + +/** + * @brief Processing function for the floating-point cubic spline interpolation. + * @param[in] S points to an instance of the floating-point spline structure. + * @param[in] xq points to the x values of the interpolated data points. + * @param[out] pDst points to the block of output data. + * @param[in] blockSize number of samples of output data. + */ + +void arm_spline_f32( + arm_spline_instance_f32 * S, + const float32_t * xq, + float32_t * pDst, + uint32_t blockSize) +{ + const float32_t * x = S->x; + const float32_t * y = S->y; + int32_t n = S->n_x; + + /* Coefficients (a==y for i<=n-1) */ + float32_t * b = (S->coeffs); + float32_t * c = (S->coeffs)+(n-1); + float32_t * d = (S->coeffs)+(2*(n-1)); + + const float32_t * pXq = xq; + int32_t blkCnt = (int32_t)blockSize; + int32_t blkCnt2; + int32_t i; + float32_t x_sc; + +#ifdef ARM_MATH_NEON + float32x4_t xiv; + float32x4_t aiv; + float32x4_t biv; + float32x4_t civ; + float32x4_t div; + + float32x4_t xqv; + + float32x4_t temp; + float32x4_t diff; + float32x4_t yv; +#endif + + /* Create output for x(i)<x<x(i+1) */ + for (i=0; i<n-1; i++) + { +#ifdef ARM_MATH_NEON + xiv = vdupq_n_f32(x[i]); + + aiv = vdupq_n_f32(y[i]); + biv = vdupq_n_f32(b[i]); + civ = vdupq_n_f32(c[i]); + div = vdupq_n_f32(d[i]); + + while( *(pXq+4) <= x[i+1] && blkCnt > 4 ) + { + /* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */ + xqv = vld1q_f32(pXq); + pXq+=4; + + /* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */ + diff = vsubq_f32(xqv, xiv); + temp = diff; + + /* y(i) = a(i) + ... */ + yv = aiv; + /* ... + b(i)*(x-x(i)) + ... */ + yv = vmlaq_f32(yv, biv, temp); + /* ... + c(i)*(x-x(i))^2 + ... */ + temp = vmulq_f32(temp, diff); + yv = vmlaq_f32(yv, civ, temp); + /* ... + d(i)*(x-x(i))^3 */ + temp = vmulq_f32(temp, diff); + yv = vmlaq_f32(yv, div, temp); + + /* Store [y(k) y(k+1) y(k+2) y(k+3)] */ + vst1q_f32(pDst, yv); + pDst+=4; + + blkCnt-=4; + } +#endif + while( *pXq <= x[i+1] && blkCnt > 0 ) + { + x_sc = *pXq++; + + *pDst = y[i]+b[i]*(x_sc-x[i])+c[i]*(x_sc-x[i])*(x_sc-x[i])+d[i]*(x_sc-x[i])*(x_sc-x[i])*(x_sc-x[i]); + + pDst++; + blkCnt--; + } + } + + /* Create output for remaining samples (x>=x(n)) */ +#ifdef ARM_MATH_NEON + /* Compute 4 outputs at a time */ + blkCnt2 = blkCnt >> 2; + + while(blkCnt2 > 0) + { + /* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */ + xqv = vld1q_f32(pXq); + pXq+=4; + + /* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */ + diff = vsubq_f32(xqv, xiv); + temp = diff; + + /* y(i) = a(i) + ... */ + yv = aiv; + /* ... + b(i)*(x-x(i)) + ... */ + yv = vmlaq_f32(yv, biv, temp); + /* ... + c(i)*(x-x(i))^2 + ... */ + temp = vmulq_f32(temp, diff); + yv = vmlaq_f32(yv, civ, temp); + /* ... + d(i)*(x-x(i))^3 */ + temp = vmulq_f32(temp, diff); + yv = vmlaq_f32(yv, div, temp); + + /* Store [y(k) y(k+1) y(k+2) y(k+3)] */ + vst1q_f32(pDst, yv); + pDst+=4; + + blkCnt2--; + } + + /* Tail */ + blkCnt2 = blkCnt & 3; +#else + blkCnt2 = blkCnt; +#endif + + while(blkCnt2 > 0) + { + x_sc = *pXq++; + + *pDst = y[i-1]+b[i-1]*(x_sc-x[i-1])+c[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])+d[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])*(x_sc-x[i-1]); + + pDst++; + blkCnt2--; + } +} + +/** + @} end of SplineInterpolate group + */ |