summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/InterpolationFunctions/arm_spline_interp_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/InterpolationFunctions/arm_spline_interp_f32.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/InterpolationFunctions/arm_spline_interp_f32.c283
1 files changed, 283 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/InterpolationFunctions/arm_spline_interp_f32.c b/Drivers/CMSIS/DSP/Source/InterpolationFunctions/arm_spline_interp_f32.c
new file mode 100644
index 0000000..3e3d091
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/InterpolationFunctions/arm_spline_interp_f32.c
@@ -0,0 +1,283 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_spline_interp_f32.c
+ * Description: Floating-point cubic spline interpolation
+ *
+ * $Date: 23 April 2021
+ * $Revision: V1.9.0
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dsp/interpolation_functions.h"
+
+/**
+ @ingroup groupInterpolation
+ */
+
+/**
+ @defgroup SplineInterpolate Cubic Spline Interpolation
+
+ Spline interpolation is a method of interpolation where the interpolant
+ is a piecewise-defined polynomial called "spline".
+
+ @par Introduction
+
+ Given a function f defined on the interval [a,b], a set of n nodes x(i)
+ where a=x(1)<x(2)<...<x(n)=b and a set of n values y(i) = f(x(i)),
+ a cubic spline interpolant S(x) is defined as:
+
+ <pre>
+ S1(x) x(1) < x < x(2)
+ S(x) = ...
+ Sn-1(x) x(n-1) < x < x(n)
+ </pre>
+
+ where
+
+ <pre>
+ Si(x) = a_i+b_i(x-xi)+c_i(x-xi)^2+d_i(x-xi)^3 i=1, ..., n-1
+ </pre>
+
+ @par Algorithm
+
+ Having defined h(i) = x(i+1) - x(i)
+
+ <pre>
+ h(i-1)c(i-1)+2[h(i-1)+h(i)]c(i)+h(i)c(i+1) = 3/h(i)*[a(i+1)-a(i)]-3/h(i-1)*[a(i)-a(i-1)] i=2, ..., n-1
+ </pre>
+
+ It is possible to write the previous conditions in matrix form (Ax=B).
+ In order to solve the system two boundary conidtions are needed.
+ - Natural spline: S1''(x1)=2*c(1)=0 ; Sn''(xn)=2*c(n)=0
+ In matrix form:
+
+ <pre>
+ | 1 0 0 ... 0 0 0 || c(1) | | 0 |
+ | h(0) 2[h(0)+h(1)] h(1) ... 0 0 0 || c(2) | | 3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)] |
+ | ... ... ... ... ... ... ... || ... |=| ... |
+ | 0 0 0 ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
+ | 0 0 0 ... 0 0 1 || c(n) | | 0 |
+ </pre>
+
+ - Parabolic runout spline: S1''(x1)=2*c(1)=S2''(x2)=2*c(2) ; Sn-1''(xn-1)=2*c(n-1)=Sn''(xn)=2*c(n)
+ In matrix form:
+
+ <pre>
+ | 1 -1 0 ... 0 0 0 || c(1) | | 0 |
+ | h(0) 2[h(0)+h(1)] h(1) ... 0 0 0 || c(2) | | 3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)] |
+ | ... ... ... ... ... ... ... || ... |=| ... |
+ | 0 0 0 ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
+ | 0 0 0 ... 0 -1 1 || c(n) | | 0 |
+ </pre>
+
+ A is a tridiagonal matrix (a band matrix of bandwidth 3) of size N=n+1. The factorization
+ algorithms (A=LU) can be simplified considerably because a large number of zeros appear
+ in regular patterns. The Crout method has been used:
+ 1) Solve LZ=B
+
+ <pre>
+ u(1,2) = A(1,2)/A(1,1)
+ z(1) = B(1)/l(11)
+
+ FOR i=2, ..., N-1
+ l(i,i) = A(i,i)-A(i,i-1)u(i-1,i)
+ u(i,i+1) = a(i,i+1)/l(i,i)
+ z(i) = [B(i)-A(i,i-1)z(i-1)]/l(i,i)
+
+ l(N,N) = A(N,N)-A(N,N-1)u(N-1,N)
+ z(N) = [B(N)-A(N,N-1)z(N-1)]/l(N,N)
+ </pre>
+
+ 2) Solve UX=Z
+
+ <pre>
+ c(N)=z(N)
+
+ FOR i=N-1, ..., 1
+ c(i)=z(i)-u(i,i+1)c(i+1)
+ </pre>
+
+ c(i) for i=1, ..., n-1 are needed to compute the n-1 polynomials.
+ b(i) and d(i) are computed as:
+ - b(i) = [y(i+1)-y(i)]/h(i)-h(i)*[c(i+1)+2*c(i)]/3
+ - d(i) = [c(i+1)-c(i)]/[3*h(i)]
+ Moreover, a(i)=y(i).
+
+ @par Behaviour outside the given intervals
+
+ It is possible to compute the interpolated vector for x values outside the
+ input range (xq<x(1); xq>x(n)). The coefficients used to compute the y values for
+ xq<x(1) are going to be the ones used for the first interval, while for xq>x(n) the
+ coefficients used for the last interval.
+
+ */
+
+/**
+ @addtogroup SplineInterpolate
+ @{
+ */
+
+/**
+ * @brief Processing function for the floating-point cubic spline interpolation.
+ * @param[in] S points to an instance of the floating-point spline structure.
+ * @param[in] xq points to the x values of the interpolated data points.
+ * @param[out] pDst points to the block of output data.
+ * @param[in] blockSize number of samples of output data.
+ */
+
+void arm_spline_f32(
+ arm_spline_instance_f32 * S,
+ const float32_t * xq,
+ float32_t * pDst,
+ uint32_t blockSize)
+{
+ const float32_t * x = S->x;
+ const float32_t * y = S->y;
+ int32_t n = S->n_x;
+
+ /* Coefficients (a==y for i<=n-1) */
+ float32_t * b = (S->coeffs);
+ float32_t * c = (S->coeffs)+(n-1);
+ float32_t * d = (S->coeffs)+(2*(n-1));
+
+ const float32_t * pXq = xq;
+ int32_t blkCnt = (int32_t)blockSize;
+ int32_t blkCnt2;
+ int32_t i;
+ float32_t x_sc;
+
+#ifdef ARM_MATH_NEON
+ float32x4_t xiv;
+ float32x4_t aiv;
+ float32x4_t biv;
+ float32x4_t civ;
+ float32x4_t div;
+
+ float32x4_t xqv;
+
+ float32x4_t temp;
+ float32x4_t diff;
+ float32x4_t yv;
+#endif
+
+ /* Create output for x(i)<x<x(i+1) */
+ for (i=0; i<n-1; i++)
+ {
+#ifdef ARM_MATH_NEON
+ xiv = vdupq_n_f32(x[i]);
+
+ aiv = vdupq_n_f32(y[i]);
+ biv = vdupq_n_f32(b[i]);
+ civ = vdupq_n_f32(c[i]);
+ div = vdupq_n_f32(d[i]);
+
+ while( *(pXq+4) <= x[i+1] && blkCnt > 4 )
+ {
+ /* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */
+ xqv = vld1q_f32(pXq);
+ pXq+=4;
+
+ /* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */
+ diff = vsubq_f32(xqv, xiv);
+ temp = diff;
+
+ /* y(i) = a(i) + ... */
+ yv = aiv;
+ /* ... + b(i)*(x-x(i)) + ... */
+ yv = vmlaq_f32(yv, biv, temp);
+ /* ... + c(i)*(x-x(i))^2 + ... */
+ temp = vmulq_f32(temp, diff);
+ yv = vmlaq_f32(yv, civ, temp);
+ /* ... + d(i)*(x-x(i))^3 */
+ temp = vmulq_f32(temp, diff);
+ yv = vmlaq_f32(yv, div, temp);
+
+ /* Store [y(k) y(k+1) y(k+2) y(k+3)] */
+ vst1q_f32(pDst, yv);
+ pDst+=4;
+
+ blkCnt-=4;
+ }
+#endif
+ while( *pXq <= x[i+1] && blkCnt > 0 )
+ {
+ x_sc = *pXq++;
+
+ *pDst = y[i]+b[i]*(x_sc-x[i])+c[i]*(x_sc-x[i])*(x_sc-x[i])+d[i]*(x_sc-x[i])*(x_sc-x[i])*(x_sc-x[i]);
+
+ pDst++;
+ blkCnt--;
+ }
+ }
+
+ /* Create output for remaining samples (x>=x(n)) */
+#ifdef ARM_MATH_NEON
+ /* Compute 4 outputs at a time */
+ blkCnt2 = blkCnt >> 2;
+
+ while(blkCnt2 > 0)
+ {
+ /* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */
+ xqv = vld1q_f32(pXq);
+ pXq+=4;
+
+ /* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */
+ diff = vsubq_f32(xqv, xiv);
+ temp = diff;
+
+ /* y(i) = a(i) + ... */
+ yv = aiv;
+ /* ... + b(i)*(x-x(i)) + ... */
+ yv = vmlaq_f32(yv, biv, temp);
+ /* ... + c(i)*(x-x(i))^2 + ... */
+ temp = vmulq_f32(temp, diff);
+ yv = vmlaq_f32(yv, civ, temp);
+ /* ... + d(i)*(x-x(i))^3 */
+ temp = vmulq_f32(temp, diff);
+ yv = vmlaq_f32(yv, div, temp);
+
+ /* Store [y(k) y(k+1) y(k+2) y(k+3)] */
+ vst1q_f32(pDst, yv);
+ pDst+=4;
+
+ blkCnt2--;
+ }
+
+ /* Tail */
+ blkCnt2 = blkCnt & 3;
+#else
+ blkCnt2 = blkCnt;
+#endif
+
+ while(blkCnt2 > 0)
+ {
+ x_sc = *pXq++;
+
+ *pDst = y[i-1]+b[i-1]*(x_sc-x[i-1])+c[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])+d[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])*(x_sc-x[i-1]);
+
+ pDst++;
+ blkCnt2--;
+ }
+}
+
+/**
+ @} end of SplineInterpolate group
+ */