summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_ldlt_f32.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_ldlt_f32.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_ldlt_f32.c509
1 files changed, 509 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_ldlt_f32.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_ldlt_f32.c
new file mode 100644
index 0000000..1d3586c
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_ldlt_f32.c
@@ -0,0 +1,509 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_ldl_f32.c
+ * Description: Floating-point LDL decomposition
+ *
+ * $Date: 23 April 2021
+ * $Revision: V1.9.0
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dsp/matrix_functions.h"
+
+
+
+
+
+#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+
+/// @private
+#define SWAP_ROWS_F32(A,i,j) \
+ { \
+ int cnt = n; \
+ \
+ for(int w=0;w < n; w+=4) \
+ { \
+ f32x4_t tmpa,tmpb; \
+ mve_pred16_t p0 = vctp32q(cnt); \
+ \
+ tmpa=vldrwq_z_f32(&A[i*n + w],p0);\
+ tmpb=vldrwq_z_f32(&A[j*n + w],p0);\
+ \
+ vstrwq_p(&A[i*n + w], tmpb, p0); \
+ vstrwq_p(&A[j*n + w], tmpa, p0); \
+ \
+ cnt -= 4; \
+ } \
+ }
+
+/// @private
+#define SWAP_COLS_F32(A,i,j) \
+ for(int w=0;w < n; w++) \
+ { \
+ float32_t tmp; \
+ tmp = A[w*n + i]; \
+ A[w*n + i] = A[w*n + j];\
+ A[w*n + j] = tmp; \
+ }
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixChol
+ @{
+ */
+
+/**
+ * @brief Floating-point LDL^t decomposition of positive semi-definite matrix.
+ * @param[in] pSrc points to the instance of the input floating-point matrix structure.
+ * @param[out] pl points to the instance of the output floating-point triangular matrix structure.
+ * @param[out] pd points to the instance of the output floating-point diagonal matrix structure.
+ * @param[out] pp points to the instance of the output floating-point permutation vector.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+ - \ref ARM_MATH_DECOMPOSITION_FAILURE : Input matrix cannot be decomposed
+ * @par
+ * Computes the LDL^t decomposition of a matrix A such that P A P^t = L D L^t.
+ */
+arm_status arm_mat_ldlt_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pl,
+ arm_matrix_instance_f32 * pd,
+ uint16_t * pp)
+{
+
+ arm_status status; /* status of matrix inverse */
+
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pSrc->numCols) ||
+ (pl->numRows != pl->numCols) ||
+ (pd->numRows != pd->numCols) ||
+ (pl->numRows != pd->numRows) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+
+ const int n=pSrc->numRows;
+ int fullRank = 1, diag,k;
+ float32_t *pA;
+
+ memset(pd->pData,0,sizeof(float32_t)*n*n);
+ memcpy(pl->pData,pSrc->pData,n*n*sizeof(float32_t));
+ pA = pl->pData;
+
+ int cnt = n;
+ uint16x8_t vecP;
+
+ for(int k=0;k < n; k+=8)
+ {
+ mve_pred16_t p0;
+ p0 = vctp16q(cnt);
+
+ vecP = vidupq_u16((uint16_t)k, 1);
+
+ vstrhq_p(&pp[k], vecP, p0);
+
+ cnt -= 8;
+ }
+
+
+ for(k=0;k < n; k++)
+ {
+ /* Find pivot */
+ float32_t m=F32_MIN,a;
+ int j=k;
+
+
+ for(int r=k;r<n;r++)
+ {
+ if (pA[r*n+r] > m)
+ {
+ m = pA[r*n+r];
+ j = r;
+ }
+ }
+
+ if(j != k)
+ {
+ SWAP_ROWS_F32(pA,k,j);
+ SWAP_COLS_F32(pA,k,j);
+ }
+
+
+ pp[k] = j;
+
+ a = pA[k*n+k];
+
+ if (fabsf(a) < 1.0e-8f)
+ {
+
+ fullRank = 0;
+ break;
+ }
+
+ float32_t invA;
+
+ invA = 1.0f / a;
+
+ int32x4_t vecOffs;
+ int w;
+ vecOffs = vidupq_u32((uint32_t)0, 1);
+ vecOffs = vmulq_n_s32(vecOffs,n);
+
+ for(w=k+1; w<n; w+=4)
+ {
+ int cnt = n - k - 1;
+
+ f32x4_t vecX;
+
+ f32x4_t vecA;
+ f32x4_t vecW0,vecW1, vecW2, vecW3;
+
+ mve_pred16_t p0;
+
+ vecW0 = vdupq_n_f32(pA[(w + 0)*n+k]);
+ vecW1 = vdupq_n_f32(pA[(w + 1)*n+k]);
+ vecW2 = vdupq_n_f32(pA[(w + 2)*n+k]);
+ vecW3 = vdupq_n_f32(pA[(w + 3)*n+k]);
+
+ for(int x=k+1;x<n;x += 4)
+ {
+ p0 = vctp32q(cnt);
+
+ //pA[w*n+x] = pA[w*n+x] - pA[w*n+k] * (pA[x*n+k] * invA);
+
+
+ vecX = vldrwq_gather_shifted_offset_z_f32(&pA[x*n+k], (uint32x4_t)vecOffs, p0);
+ vecX = vmulq_m_n_f32(vuninitializedq_f32(),vecX,invA,p0);
+
+
+ vecA = vldrwq_z_f32(&pA[(w + 0)*n+x],p0);
+ vecA = vfmsq_m(vecA, vecW0, vecX, p0);
+ vstrwq_p(&pA[(w + 0)*n+x], vecA, p0);
+
+ vecA = vldrwq_z_f32(&pA[(w + 1)*n+x],p0);
+ vecA = vfmsq_m(vecA, vecW1, vecX, p0);
+ vstrwq_p(&pA[(w + 1)*n+x], vecA, p0);
+
+ vecA = vldrwq_z_f32(&pA[(w + 2)*n+x],p0);
+ vecA = vfmsq_m(vecA, vecW2, vecX, p0);
+ vstrwq_p(&pA[(w + 2)*n+x], vecA, p0);
+
+ vecA = vldrwq_z_f32(&pA[(w + 3)*n+x],p0);
+ vecA = vfmsq_m(vecA, vecW3, vecX, p0);
+ vstrwq_p(&pA[(w + 3)*n+x], vecA, p0);
+
+ cnt -= 4;
+ }
+ }
+
+ for(; w<n; w++)
+ {
+ int cnt = n - k - 1;
+
+ f32x4_t vecA,vecX,vecW;
+
+
+ mve_pred16_t p0;
+
+ vecW = vdupq_n_f32(pA[w*n+k]);
+
+ for(int x=k+1;x<n;x += 4)
+ {
+ p0 = vctp32q(cnt);
+
+ //pA[w*n+x] = pA[w*n+x] - pA[w*n+k] * (pA[x*n+k] * invA);
+
+ vecA = vldrwq_z_f32(&pA[w*n+x],p0);
+
+ vecX = vldrwq_gather_shifted_offset_z_f32(&pA[x*n+k], (uint32x4_t)vecOffs, p0);
+ vecX = vmulq_m_n_f32(vuninitializedq_f32(),vecX,invA,p0);
+
+ vecA = vfmsq_m(vecA, vecW, vecX, p0);
+
+ vstrwq_p(&pA[w*n+x], vecA, p0);
+
+ cnt -= 4;
+ }
+ }
+
+ for(int w=k+1;w<n;w++)
+ {
+ pA[w*n+k] = pA[w*n+k] * invA;
+ }
+
+
+
+ }
+
+
+
+ diag=k;
+ if (!fullRank)
+ {
+ diag--;
+ for(int row=0; row < n;row++)
+ {
+ mve_pred16_t p0;
+ int cnt= n-k;
+ f32x4_t zero=vdupq_n_f32(0.0f);
+
+ for(int col=k; col < n;col += 4)
+ {
+ p0 = vctp32q(cnt);
+
+ vstrwq_p(&pl->pData[row*n+col], zero, p0);
+
+ cnt -= 4;
+ }
+ }
+ }
+
+ for(int row=0; row < n;row++)
+ {
+ mve_pred16_t p0;
+ int cnt= n-row-1;
+ f32x4_t zero=vdupq_n_f32(0.0f);
+
+ for(int col=row+1; col < n;col+=4)
+ {
+ p0 = vctp32q(cnt);
+
+ vstrwq_p(&pl->pData[row*n+col], zero, p0);
+
+ cnt -= 4;
+ }
+ }
+
+ for(int d=0; d < diag;d++)
+ {
+ pd->pData[d*n+d] = pl->pData[d*n+d];
+ pl->pData[d*n+d] = 1.0;
+ }
+
+ status = ARM_MATH_SUCCESS;
+
+ }
+
+
+ /* Return to application */
+ return (status);
+}
+#else
+
+/// @private
+#define SWAP_ROWS_F32(A,i,j) \
+ for(w=0;w < n; w++) \
+ { \
+ float32_t tmp; \
+ tmp = A[i*n + w]; \
+ A[i*n + w] = A[j*n + w];\
+ A[j*n + w] = tmp; \
+ }
+
+/// @private
+#define SWAP_COLS_F32(A,i,j) \
+ for(w=0;w < n; w++) \
+ { \
+ float32_t tmp; \
+ tmp = A[w*n + i]; \
+ A[w*n + i] = A[w*n + j];\
+ A[w*n + j] = tmp; \
+ }
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixChol
+ @{
+ */
+
+/**
+ * @brief Floating-point LDL^t decomposition of positive semi-definite matrix.
+ * @param[in] pSrc points to the instance of the input floating-point matrix structure.
+ * @param[out] pl points to the instance of the output floating-point triangular matrix structure.
+ * @param[out] pd points to the instance of the output floating-point diagonal matrix structure.
+ * @param[out] pp points to the instance of the output floating-point permutation vector.
+ * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
+ * @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+ - \ref ARM_MATH_DECOMPOSITION_FAILURE : Input matrix cannot be decomposed
+ * @par
+ * Computes the LDL^t decomposition of a matrix A such that P A P^t = L D L^t.
+ */
+arm_status arm_mat_ldlt_f32(
+ const arm_matrix_instance_f32 * pSrc,
+ arm_matrix_instance_f32 * pl,
+ arm_matrix_instance_f32 * pd,
+ uint16_t * pp)
+{
+
+ arm_status status; /* status of matrix inverse */
+
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrc->numRows != pSrc->numCols) ||
+ (pl->numRows != pl->numCols) ||
+ (pd->numRows != pd->numCols) ||
+ (pl->numRows != pd->numRows) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+
+ const int n=pSrc->numRows;
+ int fullRank = 1, diag,k;
+ float32_t *pA;
+ int row,d;
+
+ memset(pd->pData,0,sizeof(float32_t)*n*n);
+ memcpy(pl->pData,pSrc->pData,n*n*sizeof(float32_t));
+ pA = pl->pData;
+
+ for(k=0;k < n; k++)
+ {
+ pp[k] = k;
+ }
+
+
+ for(k=0;k < n; k++)
+ {
+ /* Find pivot */
+ float32_t m=F32_MIN,a;
+ int j=k;
+
+
+ int r;
+ int w;
+
+ for(r=k;r<n;r++)
+ {
+ if (pA[r*n+r] > m)
+ {
+ m = pA[r*n+r];
+ j = r;
+ }
+ }
+
+ if(j != k)
+ {
+ SWAP_ROWS_F32(pA,k,j);
+ SWAP_COLS_F32(pA,k,j);
+ }
+
+
+ pp[k] = j;
+
+ a = pA[k*n+k];
+
+ if (fabsf(a) < 1.0e-8f)
+ {
+
+ fullRank = 0;
+ break;
+ }
+
+ for(w=k+1;w<n;w++)
+ {
+ int x;
+ for(x=k+1;x<n;x++)
+ {
+ pA[w*n+x] = pA[w*n+x] - pA[w*n+k] * pA[x*n+k] / a;
+ }
+ }
+
+ for(w=k+1;w<n;w++)
+ {
+ pA[w*n+k] = pA[w*n+k] / a;
+ }
+
+
+
+ }
+
+
+
+ diag=k;
+ if (!fullRank)
+ {
+ diag--;
+ for(row=0; row < n;row++)
+ {
+ int col;
+ for(col=k; col < n;col++)
+ {
+ pl->pData[row*n+col]=0.0;
+ }
+ }
+ }
+
+ for(row=0; row < n;row++)
+ {
+ int col;
+ for(col=row+1; col < n;col++)
+ {
+ pl->pData[row*n+col] = 0.0;
+ }
+ }
+
+ for(d=0; d < diag;d++)
+ {
+ pd->pData[d*n+d] = pl->pData[d*n+d];
+ pl->pData[d*n+d] = 1.0;
+ }
+
+ status = ARM_MATH_SUCCESS;
+
+ }
+
+
+ /* Return to application */
+ return (status);
+}
+#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
+
+/**
+ @} end of MatrixChol group
+ */