summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c761
1 files changed, 761 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c
new file mode 100644
index 0000000..1873827
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q31.c
@@ -0,0 +1,761 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_mat_mult_q31.c
+ * Description: Q31 matrix multiplication
+ *
+ * $Date: 23 April 2021
+ * $Revision: V1.9.0
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dsp/matrix_functions.h"
+
+/**
+ @ingroup groupMatrix
+ */
+
+/**
+ @addtogroup MatrixMult
+ @{
+ */
+
+/**
+ @brief Q31 matrix multiplication.
+ @param[in] pSrcA points to the first input matrix structure
+ @param[in] pSrcB points to the second input matrix structure
+ @param[out] pDst points to output matrix structure
+ @return execution status
+ - \ref ARM_MATH_SUCCESS : Operation successful
+ - \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
+
+ @par Scaling and Overflow Behavior
+ The function is implemented using an internal 64-bit accumulator.
+ The accumulator has a 2.62 format and maintains full precision of the intermediate
+ multiplication results but provides only a single guard bit. There is no saturation
+ on intermediate additions. Thus, if the accumulator overflows it wraps around and
+ distorts the result. The input signals should be scaled down to avoid intermediate
+ overflows. The input is thus scaled down by log2(numColsA) bits
+ to avoid overflows, as a total of numColsA additions are performed internally.
+ The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
+ @remark
+ Refer to \ref arm_mat_mult_fast_q31() for a faster but less precise implementation of this function.
+ */
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#define MATRIX_DIM2 2
+#define MATRIX_DIM3 3
+#define MATRIX_DIM4 4
+
+__STATIC_INLINE arm_status arm_mat_mult_q31_2x2_mve(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst)
+{
+ q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ q31_t *pOut = pDst->pData; /* output data matrix pointer */
+ uint32x4_t vecColBOffs;
+ q31_t *pInA0 = pInA;
+ q31_t *pInA1 = pInA0 + MATRIX_DIM2;
+ q63_t acc0, acc1;
+ q31x4_t vecB, vecA0, vecA1;
+ /* enable predication to disable half of vector elements */
+ mve_pred16_t p0 = vctp32q(MATRIX_DIM2);
+
+ vecColBOffs = vidupq_u32((uint32_t)0, 1);
+ vecColBOffs = vecColBOffs * MATRIX_DIM2;
+
+ pInB = pSrcB->pData;
+
+ /* load 1st B column (partial load) */
+ vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
+
+ /* load A rows */
+ vecA0 = vldrwq_s32(pInA0);
+ vecA1 = vldrwq_s32(pInA1);
+
+ acc0 = vrmlaldavhq(vecA0, vecB);
+ acc1 = vrmlaldavhq(vecA1, vecB);
+
+ acc0 = asrl(acc0, 23);
+ acc1 = asrl(acc1, 23);
+
+ pOut[0 * MATRIX_DIM2] = (q31_t) acc0;
+ pOut[1 * MATRIX_DIM2] = (q31_t) acc1;
+ pOut++;
+
+ /* move to next B column */
+ pInB = pInB + 1;
+
+ vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
+
+ acc0 = vrmlaldavhq(vecA0, vecB);
+ acc1 = vrmlaldavhq(vecA1, vecB);
+
+ acc0 = asrl(acc0, 23);
+ acc1 = asrl(acc1, 23);
+
+ pOut[0 * MATRIX_DIM2] = (q31_t) acc0;
+ pOut[1 * MATRIX_DIM2] = (q31_t) acc1;
+ /*
+ * Return to application
+ */
+ return (ARM_MATH_SUCCESS);
+}
+
+
+
+__STATIC_INLINE arm_status arm_mat_mult_q31_3x3_mve(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst)
+{
+ q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ q31_t *pOut = pDst->pData; /* output data matrix pointer */
+ uint32x4_t vecColBOffs;
+ q31_t *pInA0 = pInA;
+ q31_t *pInA1 = pInA0 + MATRIX_DIM3;
+ q31_t *pInA2 = pInA1 + MATRIX_DIM3;
+ q63_t acc0, acc1, acc2;
+ q31x4_t vecB, vecA;
+ /* enable predication to disable last (4th) vector element */
+ mve_pred16_t p0 = vctp32q(MATRIX_DIM3);
+
+ vecColBOffs = vidupq_u32((uint32_t)0, 1);
+ vecColBOffs = vecColBOffs * MATRIX_DIM3;
+
+ pInB = pSrcB->pData;
+
+ vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
+
+ vecA = vldrwq_s32(pInA0);
+ acc0 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA1);
+ acc1 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA2);
+ acc2 = vrmlaldavhq(vecA, vecB);
+
+ acc0 = asrl(acc0, 23);
+ acc1 = asrl(acc1, 23);
+ acc2 = asrl(acc2, 23);
+
+ pOut[0 * MATRIX_DIM3] = (q31_t) acc0;
+ pOut[1 * MATRIX_DIM3] = (q31_t) acc1;
+ pOut[2 * MATRIX_DIM3] = (q31_t) acc2;
+ pOut++;
+
+ /* move to next B column */
+ pInB = pInB + 1;
+
+ vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
+
+ vecA = vldrwq_s32(pInA0);
+ acc0 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA1);
+ acc1 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA2);
+ acc2 = vrmlaldavhq(vecA, vecB);
+
+ acc0 = asrl(acc0, 23);
+ acc1 = asrl(acc1, 23);
+ acc2 = asrl(acc2, 23);
+
+ pOut[0 * MATRIX_DIM3] = (q31_t) acc0;
+ pOut[1 * MATRIX_DIM3] = (q31_t) acc1;
+ pOut[2 * MATRIX_DIM3] = (q31_t) acc2;
+ pOut++;
+
+ /* move to next B column */
+ pInB = pInB + 1;
+
+ vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
+
+ vecA = vldrwq_s32(pInA0);
+ acc0 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA1);
+ acc1 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA2);
+ acc2 = vrmlaldavhq(vecA, vecB);
+
+ acc0 = asrl(acc0, 23);
+ acc1 = asrl(acc1, 23);
+ acc2 = asrl(acc2, 23);
+
+ pOut[0 * MATRIX_DIM3] = (q31_t) acc0;
+ pOut[1 * MATRIX_DIM3] = (q31_t) acc1;
+ pOut[2 * MATRIX_DIM3] = (q31_t) acc2;
+ /*
+ * Return to application
+ */
+ return (ARM_MATH_SUCCESS);
+}
+
+__STATIC_INLINE arm_status arm_mat_mult_q31_4x4_mve(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst)
+{
+ q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
+ q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
+ q31_t *pOut = pDst->pData; /* output data matrix pointer */
+ uint32x4_t vecColBOffs;
+ q31_t *pInA0 = pInA;
+ q31_t *pInA1 = pInA0 + MATRIX_DIM4;
+ q31_t *pInA2 = pInA1 + MATRIX_DIM4;
+ q31_t *pInA3 = pInA2 + MATRIX_DIM4;
+ q63_t acc0, acc1, acc2, acc3;
+ q31x4_t vecB, vecA;
+
+ vecColBOffs = vidupq_u32((uint32_t)0, 4);
+
+ pInB = pSrcB->pData;
+
+ vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
+
+ vecA = vldrwq_s32(pInA0);
+ acc0 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA1);
+ acc1 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA2);
+ acc2 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA3);
+ acc3 = vrmlaldavhq(vecA, vecB);
+
+ acc0 = asrl(acc0, 23);
+ acc1 = asrl(acc1, 23);
+ acc2 = asrl(acc2, 23);
+ acc3 = asrl(acc3, 23);
+
+ pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
+ pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
+ pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
+ pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
+ pOut++;
+
+ /* move to next B column */
+ pInB = pInB + 1;
+
+ vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
+
+ vecA = vldrwq_s32(pInA0);
+ acc0 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA1);
+ acc1 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA2);
+ acc2 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA3);
+ acc3 = vrmlaldavhq(vecA, vecB);
+
+ acc0 = asrl(acc0, 23);
+ acc1 = asrl(acc1, 23);
+ acc2 = asrl(acc2, 23);
+ acc3 = asrl(acc3, 23);
+
+ pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
+ pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
+ pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
+ pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
+
+ pOut++;
+
+ /* move to next B column */
+ pInB = pInB + 1;
+
+ vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
+
+ vecA = vldrwq_s32(pInA0);
+ acc0 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA1);
+ acc1 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA2);
+ acc2 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA3);
+ acc3 = vrmlaldavhq(vecA, vecB);
+
+ acc0 = asrl(acc0, 23);
+ acc1 = asrl(acc1, 23);
+ acc2 = asrl(acc2, 23);
+ acc3 = asrl(acc3, 23);
+
+ pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
+ pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
+ pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
+ pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
+
+ pOut++;
+
+ /* move to next B column */
+ pInB = pInB + 1;
+
+ vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
+
+ vecA = vldrwq_s32(pInA0);
+ acc0 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA1);
+ acc1 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA2);
+ acc2 = vrmlaldavhq(vecA, vecB);
+ vecA = vldrwq_s32(pInA3);
+ acc3 = vrmlaldavhq(vecA, vecB);
+
+ acc0 = asrl(acc0, 23);
+ acc1 = asrl(acc1, 23);
+ acc2 = asrl(acc2, 23);
+ acc3 = asrl(acc3, 23);
+
+ pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
+ pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
+ pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
+ pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
+ /*
+ * Return to application
+ */
+ return (ARM_MATH_SUCCESS);
+}
+
+arm_status arm_mat_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst)
+{
+ q31_t const *pInB = (q31_t const *)pSrcB->pData; /* input data matrix pointer B */
+ q31_t const *pInA = (q31_t const *)pSrcA->pData; /* input data matrix pointer A */
+ q31_t *pOut = pDst->pData; /* output data matrix pointer */
+ q31_t *px; /* Temporary output data matrix pointer */
+ uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
+ uint16_t col, i = 0U, row = numRowsA; /* loop counters */
+ arm_status status; /* status of matrix multiplication */
+ uint32x4_t vecOffs, vecColBOffs;
+ uint32_t blkCnt, rowCnt; /* loop counters */
+
+ #ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* small squared matrix specialized routines */
+ if(numRowsA == numColsB && numColsB == numColsA) {
+ if (numRowsA == 1)
+ {
+ q63_t sum = (q63_t) *pInA * *pInB;
+ pOut[0] = (q31_t)(sum >> 31);
+ return (ARM_MATH_SUCCESS);
+ }
+ else if(numRowsA == 2)
+ return arm_mat_mult_q31_2x2_mve(pSrcA, pSrcB, pDst);
+ else if(numRowsA == 3)
+ return arm_mat_mult_q31_3x3_mve(pSrcA, pSrcB, pDst);
+ else if (numRowsA == 4)
+ return arm_mat_mult_q31_4x4_mve(pSrcA, pSrcB, pDst);
+ }
+
+ vecColBOffs = vidupq_u32((uint32_t)0, 1);
+ vecColBOffs = vecColBOffs * (uint32_t) (numColsB);
+
+ /*
+ * The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
+ */
+
+ /*
+ * row loop
+ */
+ rowCnt = row >> 2;
+ while (rowCnt > 0U)
+ {
+ /*
+ * Output pointer is set to starting address of the row being processed
+ */
+ px = pOut + i;
+ i = i + 4 * numColsB;
+ /*
+ * For every row wise process, the column loop counter is to be initiated
+ */
+ col = numColsB;
+ /*
+ * For every row wise process, the pInB pointer is set
+ * to the starting address of the pSrcB data
+ */
+ pInB = (q31_t const *)pSrcB->pData;
+ /*
+ * column loop
+ */
+ while (col > 0U)
+ {
+ /*
+ * generate 4 columns elements
+ */
+ /*
+ * Matrix A columns number of MAC operations are to be performed
+ */
+
+ q31_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec;
+ q31_t const *pInA0 = pInA;
+ q31_t const *pInA1 = pInA0 + numColsA;
+ q31_t const *pInA2 = pInA1 + numColsA;
+ q31_t const *pInA3 = pInA2 + numColsA;
+ q63_t acc0, acc1, acc2, acc3;
+
+ acc0 = 0LL;
+ acc1 = 0LL;
+ acc2 = 0LL;
+ acc3 = 0LL;
+
+ pSrcA0Vec = (q31_t const *) pInA0;
+ pSrcA1Vec = (q31_t const *) pInA1;
+ pSrcA2Vec = (q31_t const *) pInA2;
+ pSrcA3Vec = (q31_t const *) pInA3;
+
+ vecOffs = vecColBOffs;
+
+ /* process 1 x 4 block output */
+ blkCnt = numColsA >> 2;
+ while (blkCnt > 0U)
+ {
+ q31x4_t vecB, vecA;
+
+ vecB = vldrwq_gather_shifted_offset(pInB, vecOffs);
+ /* move Matrix B read offsets, 4 rows down */
+ vecOffs = vecOffs + (uint32_t) (numColsB * 4);
+
+ vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4;
+ acc0 = vrmlaldavhaq(acc0, vecA, vecB);
+ vecA = vld1q(pSrcA1Vec); pSrcA1Vec += 4;
+ acc1 = vrmlaldavhaq(acc1, vecA, vecB);
+ vecA = vld1q(pSrcA2Vec); pSrcA2Vec += 4;
+ acc2 = vrmlaldavhaq(acc2, vecA, vecB);
+ vecA = vld1q(pSrcA3Vec); pSrcA3Vec += 4;
+ acc3 = vrmlaldavhaq(acc3, vecA, vecB);
+ blkCnt--;
+ }
+
+ /*
+ * tail
+ * (will be merged thru tail predication)
+ */
+ blkCnt = numColsA & 3;
+ if (blkCnt > 0U)
+ {
+ mve_pred16_t p0 = vctp32q(blkCnt);
+ q31x4_t vecB, vecA;
+
+ vecB = vldrwq_gather_shifted_offset_z(pInB, vecOffs, p0);
+ //vecOffs = vecOffs + (uint32_t) (numColsB * 4);
+
+ vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4;
+ acc0 = vrmlaldavhaq(acc0, vecA, vecB);
+ vecA = vld1q(pSrcA1Vec); pSrcA1Vec += 4;
+ acc1 = vrmlaldavhaq(acc1, vecA, vecB);
+ vecA = vld1q(pSrcA2Vec); pSrcA2Vec += 4;
+ acc2 = vrmlaldavhaq(acc2, vecA, vecB);
+ vecA = vld1q(pSrcA3Vec); pSrcA3Vec += 4;
+ acc3 = vrmlaldavhaq(acc3, vecA, vecB);
+ }
+
+ acc0 = asrl(acc0, 23);
+ acc1 = asrl(acc1, 23);
+ acc2 = asrl(acc2, 23);
+ acc3 = asrl(acc3, 23);
+
+ px[0] = (q31_t) acc0;
+ px[1 * numColsB] = (q31_t) acc1;
+ px[2 * numColsB] = (q31_t) acc2;
+ px[3 * numColsB] = (q31_t) acc3;
+ px++;
+ /*
+ * Decrement the column loop counter
+ */
+ col--;
+ /*
+ * Update the pointer pInB to point to the starting address of the next column
+ */
+ pInB = (q31_t const *)pSrcB->pData + (numColsB - col);
+ }
+
+ /*
+ * Update the pointer pInA to point to the starting address of the next row
+ */
+ pInA += (numColsA * 4);
+ /*
+ * Decrement the row loop counter
+ */
+ rowCnt --;
+
+ }
+ rowCnt = row & 3;
+ while (rowCnt > 0U)
+ {
+ /*
+ * Output pointer is set to starting address of the row being processed
+ */
+ px = pOut + i;
+ i = i + numColsB;
+ /*
+ * For every row wise process, the column loop counter is to be initiated
+ */
+ col = numColsB;
+ /*
+ * For every row wise process, the pInB pointer is set
+ * to the starting address of the pSrcB data
+ */
+ pInB = (q31_t const *)pSrcB->pData;
+ /*
+ * column loop
+ */
+ while (col > 0U)
+ {
+ /*
+ * generate 4 columns elements
+ */
+ /*
+ * Matrix A columns number of MAC operations are to be performed
+ */
+
+ q31_t const *pSrcA0Vec;
+ q31_t const *pInA0 = pInA;
+ q63_t acc0;
+
+ acc0 = 0LL;
+
+
+ pSrcA0Vec = (q31_t const *) pInA0;
+
+ vecOffs = vecColBOffs;
+
+ /* process 1 x 4 block output */
+ blkCnt = numColsA >> 2;
+ while (blkCnt > 0U)
+ {
+ q31x4_t vecB, vecA;
+
+ vecB = vldrwq_gather_shifted_offset(pInB, vecOffs);
+ /* move Matrix B read offsets, 4 rows down */
+ vecOffs = vecOffs + (uint32_t) (numColsB * 4);
+
+ vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 4;
+ acc0 = vrmlaldavhaq(acc0, vecA, vecB);
+
+ blkCnt--;
+ }
+
+ /*
+ * tail
+ * (will be merged thru tail predication)
+ */
+ blkCnt = numColsA & 3;
+ if (blkCnt > 0U)
+ {
+ mve_pred16_t p0 = vctp32q(blkCnt);
+ q31x4_t vecB, vecA;
+
+ vecB = vldrwq_gather_shifted_offset_z(pInB, vecOffs, p0);
+ //vecOffs = vecOffs + (uint32_t) (numColsB * 4);
+
+ vecA = vld1q(pSrcA0Vec);
+ pSrcA0Vec += 4;
+ acc0 = vrmlaldavhaq(acc0, vecA, vecB);
+
+ }
+
+ acc0 = asrl(acc0, 23);
+
+
+ px[0] = (q31_t) acc0;
+ px++;
+ /*
+ * Decrement the column loop counter
+ */
+ col--;
+ /*
+ * Update the pointer pInB to point to the starting address of the next column
+ */
+ pInB = (q31_t const *)pSrcB->pData + (numColsB - col);
+ }
+
+ /*
+ * Update the pointer pInA to point to the starting address of the next row
+ */
+ pInA += numColsA;
+ /*
+ * Decrement the row loop counter
+ */
+ rowCnt--;
+ }
+
+ /*
+ * set status as ARM_MATH_SUCCESS
+ */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+
+#else
+arm_status arm_mat_mult_q31(
+ const arm_matrix_instance_q31 * pSrcA,
+ const arm_matrix_instance_q31 * pSrcB,
+ arm_matrix_instance_q31 * pDst)
+{
+ q31_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
+ q31_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
+ q31_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
+ q31_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
+ q31_t *pOut = pDst->pData; /* Output data matrix pointer */
+ q31_t *px; /* Temporary output data matrix pointer */
+ q63_t sum; /* Accumulator */
+ uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
+ uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
+ uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
+ uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
+ arm_status status; /* Status of matrix multiplication */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+ /* Check for matrix mismatch condition */
+ if ((pSrcA->numCols != pSrcB->numRows) ||
+ (pSrcA->numRows != pDst->numRows) ||
+ (pSrcB->numCols != pDst->numCols) )
+ {
+ /* Set status as ARM_MATH_SIZE_MISMATCH */
+ status = ARM_MATH_SIZE_MISMATCH;
+ }
+ else
+
+#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
+
+ {
+ /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+ /* row loop */
+ do
+ {
+ /* Output pointer is set to starting address of row being processed */
+ px = pOut + i;
+
+ /* For every row wise process, column loop counter is to be initiated */
+ col = numColsB;
+
+ /* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
+ pIn2 = pSrcB->pData;
+
+ /* column loop */
+ do
+ {
+ /* Set the variable sum, that acts as accumulator, to zero */
+ sum = 0;
+
+ /* Initialize pointer pIn1 to point to starting address of column being processed */
+ pIn1 = pInA;
+
+#if defined (ARM_MATH_LOOPUNROLL)
+
+ /* Loop unrolling: Compute 4 MACs at a time. */
+ colCnt = numColsA >> 2U;
+
+ /* matrix multiplication */
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += (q63_t) *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += (q63_t) *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ sum += (q63_t) *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Loop unrolling: Compute remaining MACs */
+ colCnt = numColsA % 0x4U;
+
+#else
+
+ /* Initialize cntCnt with number of columns */
+ colCnt = numColsA;
+
+#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
+
+ while (colCnt > 0U)
+ {
+ /* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
+
+ /* Perform the multiply-accumulates */
+ sum += (q63_t) *pIn1++ * *pIn2;
+ pIn2 += numColsB;
+
+ /* Decrement loop counter */
+ colCnt--;
+ }
+
+ /* Convert result from 2.62 to 1.31 format and store in destination buffer */
+ *px++ = (q31_t) (sum >> 31);
+
+ /* Decrement column loop counter */
+ col--;
+
+ /* Update pointer pIn2 to point to starting address of next column */
+ pIn2 = pInB + (numColsB - col);
+
+ } while (col > 0U);
+
+ /* Update pointer pInA to point to starting address of next row */
+ i = i + numColsB;
+ pInA = pInA + numColsA;
+
+ /* Decrement row loop counter */
+ row--;
+
+ } while (row > 0U);
+
+ /* Set status as ARM_MATH_SUCCESS */
+ status = ARM_MATH_SUCCESS;
+ }
+
+ /* Return to application */
+ return (status);
+}
+#endif /* defined(ARM_MATH_MVEI) */
+
+/**
+ @} end of MatrixMult group
+ */