diff options
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q7.c')
-rw-r--r-- | Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q7.c | 678 |
1 files changed, 678 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q7.c b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q7.c new file mode 100644 index 0000000..3ce0fe6 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_q7.c @@ -0,0 +1,678 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_mat_mult_q7.c + * Description: Q15 matrix multiplication + * + * $Date: 23 April 2021 + * + * $Revision: V1.9.0 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "dsp/matrix_functions.h" + +/** + @ingroup groupMatrix + */ + +/** + @addtogroup MatrixMult + @{ + */ + +/** + * @brief Q7 matrix multiplication + * @param[in] *pSrcA points to the first input matrix structure + * @param[in] *pSrcB points to the second input matrix structure + * @param[out] *pDst points to output matrix structure + * @param[in] *pState points to the array for storing intermediate results (Unused in some versions) + * @return The function returns either + * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. + * + * @details + * <b>Scaling and Overflow Behavior:</b> + * + * \par + * The function is implemented using a 32-bit internal accumulator saturated to 1.7 format. + * + * + */ +#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE) +__STATIC_FORCEINLINE arm_status arm_mat_mult_q7_2x2_mve( + const arm_matrix_instance_q7 * pSrcA, + const arm_matrix_instance_q7 * pSrcB, + arm_matrix_instance_q7 * pDst) +{ + const uint32_t MATRIX_DIM = 2; + q7_t const *pInB = (q7_t const *)pSrcB->pData; /* input data matrix pointer B */ + q7_t *pInA = pSrcA->pData; /* input data matrix pointer A */ + q7_t *pOut = pDst->pData; /* output data matrix pointer */ + uint8x16_t vecColBOffs; + q7_t *pInA0 = pInA; + q7_t *pInA1 = pInA0 + MATRIX_DIM; + q31_t acc0, acc1; + q7x16_t vecB, vecA0, vecA1; + mve_pred16_t p0 = vctp8q(MATRIX_DIM); + + vecColBOffs = vidupq_u8((uint32_t)0, 2); /* MATRIX_DIM */ + + pInB = pSrcB->pData; + + vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0); + + vecA0 = vldrbq_s8(pInA0); + vecA1 = vldrbq_s8(pInA1); + + acc0 = vmladavq_s8(vecA0, vecB); + acc1 = vmladavq_s8(vecA1, vecB); + + pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8); + pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8); + pOut++; + + /* move to next B column */ + pInB = pInB + 1; + + vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0); + + acc0 = vmladavq_s8(vecA0, vecB); + acc1 = vmladavq_s8(vecA1, vecB); + + pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8); + pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8); + /* + * Return to application + */ + return (ARM_MATH_SUCCESS); +} + + +__STATIC_FORCEINLINE arm_status arm_mat_mult_q7_3x3_mve( + const arm_matrix_instance_q7 * pSrcA, + const arm_matrix_instance_q7 * pSrcB, + arm_matrix_instance_q7 * pDst) +{ + const uint8_t MATRIX_DIM = 3; + q7_t const *pInB = (q7_t const *)pSrcB->pData; /* input data matrix pointer B */ + q7_t *pInA = pSrcA->pData; /* input data matrix pointer A */ + q7_t *pOut = pDst->pData; /* output data matrix pointer */ + uint8x16_t vecColBOffs; + q7_t *pInA0 = pInA; + q7_t *pInA1 = pInA0 + MATRIX_DIM; + q7_t *pInA2 = pInA1 + MATRIX_DIM; + q31_t acc0, acc1, acc2; + q7x16_t vecB, vecA0, vecA1, vecA2; + mve_pred16_t p0 = vctp8q(MATRIX_DIM); + + vecColBOffs = vidupq_u8((uint32_t)0, 1); + vecColBOffs = vecColBOffs * MATRIX_DIM; + + pInB = pSrcB->pData; + + vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0); + + vecA0 = vldrbq_s8(pInA0); + vecA1 = vldrbq_s8(pInA1); + vecA2 = vldrbq_s8(pInA2); + + acc0 = vmladavq_s8(vecA0, vecB); + acc1 = vmladavq_s8(vecA1, vecB); + acc2 = vmladavq_s8(vecA2, vecB); + + pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8); + pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8); + pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8); + pOut++; + + /* move to next B column */ + pInB = pInB + 1; + + vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0); + + acc0 = vmladavq_s8(vecA0, vecB); + acc1 = vmladavq_s8(vecA1, vecB); + acc2 = vmladavq_s8(vecA2, vecB); + + pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8); + pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8); + pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8); + pOut++; + + /* move to next B column */ + pInB = pInB + 1; + + vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0); + + acc0 = vmladavq_s8(vecA0, vecB); + acc1 = vmladavq_s8(vecA1, vecB); + acc2 = vmladavq_s8(vecA2, vecB); + + pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8); + pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8); + pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8); + /* + * Return to application + */ + return (ARM_MATH_SUCCESS); +} + + +__STATIC_FORCEINLINE arm_status arm_mat_mult_q7_4x4_mve( + const arm_matrix_instance_q7 * pSrcA, + const arm_matrix_instance_q7 * pSrcB, + arm_matrix_instance_q7 * pDst) +{ + const uint32_t MATRIX_DIM = 4; + q7_t const *pInB = (q7_t const *)pSrcB->pData; /* input data matrix pointer B */ + q7_t *pInA = pSrcA->pData; /* input data matrix pointer A */ + q7_t *pOut = pDst->pData; /* output data matrix pointer */ + uint8x16_t vecColBOffs; + q7_t *pInA0 = pInA; + q7_t *pInA1 = pInA0 + MATRIX_DIM; + q7_t *pInA2 = pInA1 + MATRIX_DIM; + q7_t *pInA3 = pInA2 + MATRIX_DIM; + q31_t acc0, acc1, acc2, acc3; + q7x16_t vecB, vecA0, vecA1, vecA2, vecA3; + mve_pred16_t p0 = vctp8q(MATRIX_DIM); + + vecColBOffs = vidupq_u8((uint32_t)0, 4); + + pInB = pSrcB->pData; + + vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0); + + vecA0 = vldrbq_s8(pInA0); + vecA1 = vldrbq_s8(pInA1); + vecA2 = vldrbq_s8(pInA2); + vecA3 = vldrbq_s8(pInA3); + + acc0 = vmladavq_s8(vecA0, vecB); + acc1 = vmladavq_s8(vecA1, vecB); + acc2 = vmladavq_s8(vecA2, vecB); + acc3 = vmladavq_s8(vecA3, vecB); + + pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8); + pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8); + pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8); + pOut[3 * MATRIX_DIM] = (q7_t) __SSAT(acc3 >> 7, 8); + pOut++; + + /* move to next B column */ + pInB = pInB + 1; + + vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0); + + acc0 = vmladavq_s8(vecA0, vecB); + acc1 = vmladavq_s8(vecA1, vecB); + acc2 = vmladavq_s8(vecA2, vecB); + acc3 = vmladavq_s8(vecA3, vecB); + + pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8); + pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8); + pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8); + pOut[3 * MATRIX_DIM] = (q7_t) __SSAT(acc3 >> 7, 8); + pOut++; + + /* move to next B column */ + pInB = pInB + 1; + + vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0); + + acc0 = vmladavq_s8(vecA0, vecB); + acc1 = vmladavq_s8(vecA1, vecB); + acc2 = vmladavq_s8(vecA2, vecB); + acc3 = vmladavq_s8(vecA3, vecB); + + pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8); + pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8); + pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8); + pOut[3 * MATRIX_DIM] = (q7_t) __SSAT(acc3 >> 7, 8); + pOut++; + + /* move to next B column */ + pInB = pInB + 1; + + vecB = vldrbq_gather_offset_z(pInB, vecColBOffs, p0); + + acc0 = vmladavq_s8(vecA0, vecB); + acc1 = vmladavq_s8(vecA1, vecB); + acc2 = vmladavq_s8(vecA2, vecB); + acc3 = vmladavq_s8(vecA3, vecB); + + pOut[0 * MATRIX_DIM] = (q7_t) __SSAT(acc0 >> 7, 8); + pOut[1 * MATRIX_DIM] = (q7_t) __SSAT(acc1 >> 7, 8); + pOut[2 * MATRIX_DIM] = (q7_t) __SSAT(acc2 >> 7, 8); + pOut[3 * MATRIX_DIM] = (q7_t) __SSAT(acc3 >> 7, 8); + /* + * Return to application + */ + return (ARM_MATH_SUCCESS); +} + +arm_status arm_mat_mult_q7( + const arm_matrix_instance_q7 * pSrcA, + const arm_matrix_instance_q7 * pSrcB, + arm_matrix_instance_q7 * pDst, + q7_t * pState) +{ + q7_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q7 type */ + q7_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q7 type */ + q7_t *pInA2; + q7_t *pInB2; + q7_t *px; /* Temporary output data matrix pointer */ + q7_t *px2; /* Temporary output data matrix pointer */ + uint32_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ + uint32_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ + uint32_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ + uint32_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */ + uint32_t col, i = 0u, j, row = numRowsB; /* loop counters */ + q7_t *pSrcBT = pState; /* input data matrix pointer for transpose */ + uint32_t blkCnt; /* loop counters */ + arm_status status; /* status of matrix multiplication */ + arm_matrix_instance_q7 BT; + + + #ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || + (pSrcB->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + { + /* small squared matrix specialized routines */ + if(numRowsA == numColsB && numColsB == numColsA) { + if(numRowsA == 2) + return arm_mat_mult_q7_2x2_mve(pSrcA, pSrcB, pDst); + else if(numRowsA == 3) + return arm_mat_mult_q7_3x3_mve(pSrcA, pSrcB, pDst); + else if (numRowsA == 4) + return arm_mat_mult_q7_4x4_mve(pSrcA, pSrcB, pDst); + } + /* + * Matrix transpose + */ + + BT.numRows = numColsB; + BT.numCols = numRowsB; + BT.pData = pSrcBT; + + arm_mat_trans_q7(pSrcB, &BT); + + /* + * Reset the variables for the usage in the following multiplication process + */ + i = 0; + row = numRowsA >> 1; + px = pDst->pData; + px2 = px + numColsB; + + /* + * The following loop performs the dot-product of each row in pSrcA with each column in pSrcB + */ + + /* + * row loop + */ + while (row > 0u) + { + /* + * For every row wise process, the column loop counter is to be initiated + */ + col = numColsB >> 1; + /* + * For every row wise process, the pIn2 pointer is set + * to the starting address of the transposed pSrcB data + */ + pInB = pSrcBT; + pInB2 = pInB + numRowsB; + j = 0; + + /* + * column loop + */ + while (col > 0u) + { + q7_t const *pSrcAVec, *pSrcBVec, *pSrcA2Vec, *pSrcB2Vec; + q7x16_t vecA, vecA2, vecB, vecB2; + q31_t acc0, acc1, acc2, acc3; + + /* + * Initiate the pointer pIn1 to point to the starting address of the column being processed + */ + pInA = pSrcA->pData + i; + pInA2 = pInA + numColsA; + pInB = pSrcBT + j; + pInB2 = pInB + numRowsB; + + pSrcAVec = (q7_t const *) pInA; + pSrcA2Vec = (q7_t const *)pInA2; + pSrcBVec = (q7_t const *) pInB; + pSrcB2Vec = (q7_t const *)pInB2; + + acc0 = 0L; + acc1 = 0L; + acc2 = 0L; + acc3 = 0L; + + vecA = vld1q(pSrcAVec); + pSrcAVec += 16; + + blkCnt = numColsA >> 4; + while (blkCnt > 0U) + { + vecB = vld1q(pSrcBVec); + pSrcBVec += 16; + acc0 = vmladavaq_s8(acc0, vecA, vecB); + vecA2 = vld1q(pSrcA2Vec); + pSrcA2Vec += 16; + acc1 = vmladavaq_s8(acc1, vecA2, vecB); + vecB2 = vld1q(pSrcB2Vec); + pSrcB2Vec += 16; + acc2 = vmladavaq_s8(acc2, vecA, vecB2); + vecA = vld1q(pSrcAVec); + pSrcAVec += 16; + acc3 = vmladavaq_s8(acc3, vecA2, vecB2); + + blkCnt--; + } + /* + * tail + * (will be merged thru tail predication) + */ + blkCnt = numColsA & 0xF; + if (blkCnt > 0U) + { + mve_pred16_t p0 = vctp8q(blkCnt); + vecB = vld1q(pSrcBVec); + acc0 = vmladavaq_p_s8(acc0, vecA, vecB, p0); + vecA2 = vld1q(pSrcA2Vec); + acc1 = vmladavaq_p_s8(acc1, vecA2, vecB, p0); + vecB2 = vld1q(pSrcB2Vec); + acc2 = vmladavaq_p_s8(acc2, vecA, vecB2, p0); + vecA = vld1q(pSrcAVec); + acc3 = vmladavaq_p_s8(acc3, vecA2, vecB2, p0); + } + + *px++ = (q7_t) __SSAT(acc0 >> 7, 8); + *px++ = (q7_t) __SSAT(acc2 >> 7, 8); + *px2++ = (q7_t) __SSAT(acc1 >> 7, 8); + *px2++ = (q7_t) __SSAT(acc3 >> 7, 8); + j += numRowsB * 2; + /* + * Decrement the column loop counter + */ + col--; + + } + + i = i + numColsA * 2; + px = px2 + (numColsB & 1u); + px2 = px + numColsB; + /* + * Decrement the row loop counter + */ + row--; + } + + /* + * Compute remaining row and/or column below + */ + + if (numColsB & 1u) + { + row = numRowsA & (~0x1); //avoid redundant computation + px = pDst->pData + numColsB - 1; + i = 0; + + /* + * row loop + */ + while (row > 0) + { + q7_t const *pSrcAVec, *pSrcBVec; + q7x16_t vecA, vecB; + q63_t acc0; + + /* + * point to last column in matrix B + */ + pInB = pSrcBT + numRowsB * (numColsB - 1); + pInA = pSrcA->pData + i; + + pSrcAVec = (q7_t const *) pInA; + pSrcBVec = (q7_t const *) pInB; + + acc0 = 0LL; + blkCnt = (numColsA) >> 4; + while (blkCnt > 0U) + { + vecA = vld1q(pSrcAVec); + pSrcAVec += 16; + vecB = vld1q(pSrcBVec); + pSrcBVec += 16; + acc0 = vmladavaq_s8(acc0, vecA, vecB); + + blkCnt--; + } + /* + * tail + * (will be merged thru tail predication) + */ + blkCnt = numColsA & 0xF; + if (blkCnt > 0U) + { + mve_pred16_t p0 = vctp8q(blkCnt); + vecA = vld1q(pSrcAVec); + vecB = vld1q(pSrcBVec); + acc0 = vmladavaq_p_s8(acc0, vecA, vecB, p0); + } + + *px = (q7_t) __SSAT(acc0 >> 7, 8); + + px += numColsB; + + i += numColsA; + /* + * Decrement the row loop counter + */ + row--; + } + } + + if (numRowsA & 1u) + { + col = numColsB; + i = 0u; + /* + * point to last row in output matrix + */ + px = pDst->pData + (numColsB) * (numRowsA - 1); + /* + * col loop + */ + while (col > 0) + { + q7_t const *pSrcAVec, *pSrcBVec; + q7x16_t vecA, vecB; + q63_t acc0; + + /* + * point to last row in matrix A + */ + pInA = pSrcA->pData + (numRowsA - 1) * numColsA; + pInB = pSrcBT + i; + + /* + * Set the variable sum, that acts as accumulator, to zero + */ + pSrcAVec = (q7_t const *) pInA; + pSrcBVec = (q7_t const *) pInB; + acc0 = 0LL; + + blkCnt = (numColsA) >> 4; + while (blkCnt > 0U) + { + vecA = vld1q(pSrcAVec); + pSrcAVec += 16; + vecB = vld1q(pSrcBVec); + pSrcBVec += 16; + acc0 = vmladavaq_s8(acc0, vecA, vecB); + + blkCnt--; + } + /* + * tail + * (will be merged thru tail predication) + */ + blkCnt = numColsA & 0xF; + if (blkCnt > 0U) + { + mve_pred16_t p0 = vctp8q(blkCnt); + vecA = vld1q(pSrcAVec); + vecB = vld1q(pSrcBVec); + acc0 = vmladavaq_p_s8(acc0, vecA, vecB, p0); + } + + *px++ = (q7_t) __SSAT(acc0 >> 7, 8); + + i += numColsA; + + /* + * Decrement the col loop counter + */ + col--; + } + } + /* + * Return to application + */ + status = ARM_MATH_SUCCESS; + } + return(status); +} +#else +arm_status arm_mat_mult_q7(const arm_matrix_instance_q7 *pSrcA, const arm_matrix_instance_q7 *pSrcB, arm_matrix_instance_q7 *pDst, q7_t *pState) +{ + q31_t sum; /* accumulator */ + q7_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ + q7_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ + q7_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q7 type */ + q7_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q7 type */ + q7_t *pOut = pDst->pData; /* output data matrix pointer */ + q7_t *px; /* Temporary output data matrix pointer */ + uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ + uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ + uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ + uint16_t col, i = 0U, row = numRowsA, colCnt; /* loop counters */ + arm_status status; /* status of matrix multiplication */ + + (void)pState; + +#ifdef ARM_MATH_MATRIX_CHECK + + /* Check for matrix mismatch condition */ + if ((pSrcA->numCols != pSrcB->numRows) || + (pSrcA->numRows != pDst->numRows) || + (pSrcB->numCols != pDst->numCols) ) + { + /* Set status as ARM_MATH_SIZE_MISMATCH */ + status = ARM_MATH_SIZE_MISMATCH; + } + else + +#endif /* #ifdef ARM_MATH_MATRIX_CHECK */ + + { + /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ + /* row loop */ + do { + /* Output pointer is set to starting address of the row being processed */ + px = pOut + i; + + /* For every row wise process, the column loop counter is to be initiated */ + col = numColsB; + + /* For every row wise process, the pIn2 pointer is set + ** to the starting address of the pSrcB data */ + pIn2 = pSrcB->pData; + + /* column loop */ + do { + /* Set the variable sum, that acts as accumulator, to zero */ + sum = 0; + + /* Initiate the pointer pIn1 to point to the starting address of pSrcA */ + pIn1 = pInA; + + /* Matrix A columns number of MAC operations are to be performed */ + colCnt = numColsA; + + /* matrix multiplication */ + while (colCnt > 0U) { + /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ + /* Perform the multiply-accumulates */ + sum += (q31_t)*pIn1++ * *pIn2; + pIn2 += numColsB; + + /* Decrement the loop counter */ + colCnt--; + } + + /* Convert the result from 34.30 to 1.15 format and store the saturated value in destination buffer */ + /* Saturate and store the result in the destination buffer */ + *px++ = (q7_t)__SSAT((sum >> 7), 8); + + /* Decrement the column loop counter */ + col--; + + /* Update the pointer pIn2 to point to the starting address of the next column */ + pIn2 = pInB + (numColsB - col); + + } while (col > 0U); + + /* Update the pointer pSrcA to point to the starting address of the next row */ + i = i + numColsB; + pInA = pInA + numColsA; + + /* Decrement the row loop counter */ + row--; + + } while (row > 0U); + + /* set status as ARM_MATH_SUCCESS */ + status = ARM_MATH_SUCCESS; + } + + /* Return to application */ + return (status); +} +#endif /* defined(ARM_MATH_MVEI) */ + +/** + @} end of MatrixMult group + */ |