summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f16.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f16.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f16.c842
1 files changed, 842 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f16.c b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f16.c
new file mode 100644
index 0000000..edfc0b4
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f16.c
@@ -0,0 +1,842 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_cfft_f32.c
+ * Description: Combined Radix Decimation in Frequency CFFT Floating point processing function
+ *
+ * $Date: 23 April 2021
+ * $Revision: V1.9.0
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dsp/transform_functions_f16.h"
+#include "arm_common_tables_f16.h"
+
+
+#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#include "arm_helium_utils.h"
+#include "arm_vec_fft.h"
+#include "arm_mve_tables_f16.h"
+
+
+static float16_t arm_inverse_fft_length_f16(uint16_t fftLen)
+{
+ float16_t retValue=1.0;
+
+ switch (fftLen)
+ {
+
+ case 4096U:
+ retValue = (float16_t)0.000244140625f;
+ break;
+
+ case 2048U:
+ retValue = (float16_t)0.00048828125f;
+ break;
+
+ case 1024U:
+ retValue = (float16_t)0.0009765625f;
+ break;
+
+ case 512U:
+ retValue = (float16_t)0.001953125f;
+ break;
+
+ case 256U:
+ retValue = (float16_t)0.00390625f;
+ break;
+
+ case 128U:
+ retValue = (float16_t)0.0078125f;
+ break;
+
+ case 64U:
+ retValue = (float16_t)0.015625f;
+ break;
+
+ case 32U:
+ retValue = (float16_t)0.03125f;
+ break;
+
+ case 16U:
+ retValue = (float16_t)0.0625f;
+ break;
+
+
+ default:
+ break;
+ }
+ return(retValue);
+}
+
+
+static void _arm_radix4_butterfly_f16_mve(const arm_cfft_instance_f16 * S,float16_t * pSrc, uint32_t fftLen)
+{
+ f16x8_t vecTmp0, vecTmp1;
+ f16x8_t vecSum0, vecDiff0, vecSum1, vecDiff1;
+ f16x8_t vecA, vecB, vecC, vecD;
+ uint32_t blkCnt;
+ uint32_t n1, n2;
+ uint32_t stage = 0;
+ int32_t iter = 1;
+ static const int32_t strides[4] =
+ { ( 0 - 16) * (int32_t)sizeof(float16_t *)
+ , ( 4 - 16) * (int32_t)sizeof(float16_t *)
+ , ( 8 - 16) * (int32_t)sizeof(float16_t *)
+ , (12 - 16) * (int32_t)sizeof(float16_t *)};
+
+ n2 = fftLen;
+ n1 = n2;
+ n2 >>= 2u;
+ for (int k = fftLen / 4u; k > 1; k >>= 2)
+ {
+ float16_t const *p_rearranged_twiddle_tab_stride1 =
+ &S->rearranged_twiddle_stride1[
+ S->rearranged_twiddle_tab_stride1_arr[stage]];
+ float16_t const *p_rearranged_twiddle_tab_stride2 =
+ &S->rearranged_twiddle_stride2[
+ S->rearranged_twiddle_tab_stride2_arr[stage]];
+ float16_t const *p_rearranged_twiddle_tab_stride3 =
+ &S->rearranged_twiddle_stride3[
+ S->rearranged_twiddle_tab_stride3_arr[stage]];
+ float16_t * pBase = pSrc;
+ for (int i = 0; i < iter; i++)
+ {
+ float16_t *inA = pBase;
+ float16_t *inB = inA + n2 * CMPLX_DIM;
+ float16_t *inC = inB + n2 * CMPLX_DIM;
+ float16_t *inD = inC + n2 * CMPLX_DIM;
+ float16_t const *pW1 = p_rearranged_twiddle_tab_stride1;
+ float16_t const *pW2 = p_rearranged_twiddle_tab_stride2;
+ float16_t const *pW3 = p_rearranged_twiddle_tab_stride3;
+ f16x8_t vecW;
+
+ blkCnt = n2 / 4;
+ /*
+ * load 2 f16 complex pair
+ */
+ vecA = vldrhq_f16(inA);
+ vecC = vldrhq_f16(inC);
+ while (blkCnt > 0U)
+ {
+ vecB = vldrhq_f16(inB);
+ vecD = vldrhq_f16(inD);
+
+ vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */
+ vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
+
+ vecSum1 = vecB + vecD;
+ vecDiff1 = vecB - vecD;
+ /*
+ * [ 1 1 1 1 ] * [ A B C D ]' .* 1
+ */
+ vecTmp0 = vecSum0 + vecSum1;
+ vst1q(inA, vecTmp0);
+ inA += 8;
+
+ /*
+ * [ 1 -1 1 -1 ] * [ A B C D ]'
+ */
+ vecTmp0 = vecSum0 - vecSum1;
+ /*
+ * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
+ */
+ vecW = vld1q(pW2);
+ pW2 += 8;
+ vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0);
+ vst1q(inB, vecTmp1);
+ inB += 8;
+
+ /*
+ * [ 1 -i -1 +i ] * [ A B C D ]'
+ */
+ vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
+ /*
+ * [ 1 -i -1 +i ] * [ A B C D ]'.* W1
+ */
+ vecW = vld1q(pW1);
+ pW1 +=8;
+ vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0);
+ vst1q(inC, vecTmp1);
+ inC += 8;
+
+ /*
+ * [ 1 +i -1 -i ] * [ A B C D ]'
+ */
+ vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
+ /*
+ * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
+ */
+ vecW = vld1q(pW3);
+ pW3 += 8;
+ vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0);
+ vst1q(inD, vecTmp1);
+ inD += 8;
+
+ vecA = vldrhq_f16(inA);
+ vecC = vldrhq_f16(inC);
+
+ blkCnt--;
+ }
+ pBase += CMPLX_DIM * n1;
+ }
+ n1 = n2;
+ n2 >>= 2u;
+ iter = iter << 2;
+ stage++;
+ }
+
+ /*
+ * start of Last stage process
+ */
+ uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
+ vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
+
+ /* load scheduling */
+ vecA = (f16x8_t)vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
+ vecC = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 8);
+
+ blkCnt = (fftLen >> 4);
+ while (blkCnt > 0U)
+ {
+ vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */
+ vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
+
+ vecB = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 4);
+ vecD = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 12);
+
+ vecSum1 = vecB + vecD;
+ vecDiff1 = vecB - vecD;
+
+ /* pre-load for next iteration */
+ vecA = (f16x8_t)vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
+ vecC = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 8);
+
+ vecTmp0 = vecSum0 + vecSum1;
+ vstrwq_scatter_base_f32(vecScGathAddr, -64, (f32x4_t)vecTmp0);
+
+ vecTmp0 = vecSum0 - vecSum1;
+ vstrwq_scatter_base_f32(vecScGathAddr, -64 + 4, (f32x4_t)vecTmp0);
+
+ vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
+ vstrwq_scatter_base_f32(vecScGathAddr, -64 + 8, (f32x4_t)vecTmp0);
+
+ vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
+ vstrwq_scatter_base_f32(vecScGathAddr, -64 + 12, (f32x4_t)vecTmp0);
+
+ blkCnt--;
+ }
+
+ /*
+ * End of last stage process
+ */
+}
+
+static void arm_cfft_radix4by2_f16_mve(const arm_cfft_instance_f16 * S, float16_t *pSrc, uint32_t fftLen)
+{
+ float16_t const *pCoefVec;
+ float16_t const *pCoef = S->pTwiddle;
+ float16_t *pIn0, *pIn1;
+ uint32_t n2;
+ uint32_t blkCnt;
+ f16x8_t vecIn0, vecIn1, vecSum, vecDiff;
+ f16x8_t vecCmplxTmp, vecTw;
+
+
+ n2 = fftLen >> 1;
+ pIn0 = pSrc;
+ pIn1 = pSrc + fftLen;
+ pCoefVec = pCoef;
+
+ blkCnt = n2 / 4;
+ while (blkCnt > 0U)
+ {
+ vecIn0 = *(f16x8_t *) pIn0;
+ vecIn1 = *(f16x8_t *) pIn1;
+ vecTw = vld1q(pCoefVec);
+ pCoefVec += 8;
+
+ vecSum = vaddq(vecIn0, vecIn1);
+ vecDiff = vsubq(vecIn0, vecIn1);
+
+ vecCmplxTmp = MVE_CMPLX_MULT_FLT_Conj_AxB(vecTw, vecDiff);
+
+ vst1q(pIn0, vecSum);
+ pIn0 += 8;
+ vst1q(pIn1, vecCmplxTmp);
+ pIn1 += 8;
+
+ blkCnt--;
+ }
+
+ _arm_radix4_butterfly_f16_mve(S, pSrc, n2);
+
+ _arm_radix4_butterfly_f16_mve(S, pSrc + fftLen, n2);
+
+ pIn0 = pSrc;
+}
+
+static void _arm_radix4_butterfly_inverse_f16_mve(const arm_cfft_instance_f16 * S,float16_t * pSrc, uint32_t fftLen, float16_t onebyfftLen)
+{
+ f16x8_t vecTmp0, vecTmp1;
+ f16x8_t vecSum0, vecDiff0, vecSum1, vecDiff1;
+ f16x8_t vecA, vecB, vecC, vecD;
+ uint32_t blkCnt;
+ uint32_t n1, n2;
+ uint32_t stage = 0;
+ int32_t iter = 1;
+ static const int32_t strides[4] = {
+ ( 0 - 16) * (int32_t)sizeof(q31_t *),
+ ( 4 - 16) * (int32_t)sizeof(q31_t *),
+ ( 8 - 16) * (int32_t)sizeof(q31_t *),
+ (12 - 16) * (int32_t)sizeof(q31_t *)
+ };
+
+ n2 = fftLen;
+ n1 = n2;
+ n2 >>= 2u;
+ for (int k = fftLen / 4; k > 1; k >>= 2)
+ {
+ float16_t const *p_rearranged_twiddle_tab_stride1 =
+ &S->rearranged_twiddle_stride1[
+ S->rearranged_twiddle_tab_stride1_arr[stage]];
+ float16_t const *p_rearranged_twiddle_tab_stride2 =
+ &S->rearranged_twiddle_stride2[
+ S->rearranged_twiddle_tab_stride2_arr[stage]];
+ float16_t const *p_rearranged_twiddle_tab_stride3 =
+ &S->rearranged_twiddle_stride3[
+ S->rearranged_twiddle_tab_stride3_arr[stage]];
+
+ float16_t * pBase = pSrc;
+ for (int i = 0; i < iter; i++)
+ {
+ float16_t *inA = pBase;
+ float16_t *inB = inA + n2 * CMPLX_DIM;
+ float16_t *inC = inB + n2 * CMPLX_DIM;
+ float16_t *inD = inC + n2 * CMPLX_DIM;
+ float16_t const *pW1 = p_rearranged_twiddle_tab_stride1;
+ float16_t const *pW2 = p_rearranged_twiddle_tab_stride2;
+ float16_t const *pW3 = p_rearranged_twiddle_tab_stride3;
+ f16x8_t vecW;
+
+ blkCnt = n2 / 4;
+ /*
+ * load 2 f32 complex pair
+ */
+ vecA = vldrhq_f16(inA);
+ vecC = vldrhq_f16(inC);
+ while (blkCnt > 0U)
+ {
+ vecB = vldrhq_f16(inB);
+ vecD = vldrhq_f16(inD);
+
+ vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */
+ vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
+
+ vecSum1 = vecB + vecD;
+ vecDiff1 = vecB - vecD;
+ /*
+ * [ 1 1 1 1 ] * [ A B C D ]' .* 1
+ */
+ vecTmp0 = vecSum0 + vecSum1;
+ vst1q(inA, vecTmp0);
+ inA += 8;
+ /*
+ * [ 1 -1 1 -1 ] * [ A B C D ]'
+ */
+ vecTmp0 = vecSum0 - vecSum1;
+ /*
+ * [ 1 -1 1 -1 ] * [ A B C D ]'.* W1
+ */
+ vecW = vld1q(pW2);
+ pW2 += 8;
+ vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0);
+ vst1q(inB, vecTmp1);
+ inB += 8;
+
+ /*
+ * [ 1 -i -1 +i ] * [ A B C D ]'
+ */
+ vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
+ /*
+ * [ 1 -i -1 +i ] * [ A B C D ]'.* W2
+ */
+ vecW = vld1q(pW1);
+ pW1 += 8;
+ vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0);
+ vst1q(inC, vecTmp1);
+ inC += 8;
+
+ /*
+ * [ 1 +i -1 -i ] * [ A B C D ]'
+ */
+ vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
+ /*
+ * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
+ */
+ vecW = vld1q(pW3);
+ pW3 += 8;
+ vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0);
+ vst1q(inD, vecTmp1);
+ inD += 8;
+
+ vecA = vldrhq_f16(inA);
+ vecC = vldrhq_f16(inC);
+
+ blkCnt--;
+ }
+ pBase += CMPLX_DIM * n1;
+ }
+ n1 = n2;
+ n2 >>= 2u;
+ iter = iter << 2;
+ stage++;
+ }
+
+ /*
+ * start of Last stage process
+ */
+ uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
+ vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
+
+ /*
+ * load scheduling
+ */
+ vecA = (f16x8_t)vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
+ vecC = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 8);
+
+ blkCnt = (fftLen >> 4);
+ while (blkCnt > 0U)
+ {
+ vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */
+ vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */
+
+ vecB = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 4);
+ vecD = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 12);
+
+ vecSum1 = vecB + vecD;
+ vecDiff1 = vecB - vecD;
+
+ vecA = (f16x8_t)vldrwq_gather_base_wb_f32(&vecScGathAddr, 64);
+ vecC = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 8);
+
+ vecTmp0 = vecSum0 + vecSum1;
+ vecTmp0 = vecTmp0 * onebyfftLen;
+ vstrwq_scatter_base_f32(vecScGathAddr, -64, (f32x4_t)vecTmp0);
+
+ vecTmp0 = vecSum0 - vecSum1;
+ vecTmp0 = vecTmp0 * onebyfftLen;
+ vstrwq_scatter_base_f32(vecScGathAddr, -64 + 4, (f32x4_t)vecTmp0);
+
+ vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1);
+ vecTmp0 = vecTmp0 * onebyfftLen;
+ vstrwq_scatter_base_f32(vecScGathAddr, -64 + 8, (f32x4_t)vecTmp0);
+
+ vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1);
+ vecTmp0 = vecTmp0 * onebyfftLen;
+ vstrwq_scatter_base_f32(vecScGathAddr, -64 + 12, (f32x4_t)vecTmp0);
+
+ blkCnt--;
+ }
+
+ /*
+ * End of last stage process
+ */
+}
+
+static void arm_cfft_radix4by2_inverse_f16_mve(const arm_cfft_instance_f16 * S,float16_t *pSrc, uint32_t fftLen)
+{
+ float16_t const *pCoefVec;
+ float16_t const *pCoef = S->pTwiddle;
+ float16_t *pIn0, *pIn1;
+ uint32_t n2;
+ float16_t onebyfftLen = arm_inverse_fft_length_f16(fftLen);
+ uint32_t blkCnt;
+ f16x8_t vecIn0, vecIn1, vecSum, vecDiff;
+ f16x8_t vecCmplxTmp, vecTw;
+
+
+ n2 = fftLen >> 1;
+ pIn0 = pSrc;
+ pIn1 = pSrc + fftLen;
+ pCoefVec = pCoef;
+
+ blkCnt = n2 / 4;
+ while (blkCnt > 0U)
+ {
+ vecIn0 = *(f16x8_t *) pIn0;
+ vecIn1 = *(f16x8_t *) pIn1;
+ vecTw = vld1q(pCoefVec);
+ pCoefVec += 8;
+
+ vecSum = vaddq(vecIn0, vecIn1);
+ vecDiff = vsubq(vecIn0, vecIn1);
+
+ vecCmplxTmp = MVE_CMPLX_MULT_FLT_AxB(vecTw, vecDiff);
+
+ vst1q(pIn0, vecSum);
+ pIn0 += 8;
+ vst1q(pIn1, vecCmplxTmp);
+ pIn1 += 8;
+
+ blkCnt--;
+ }
+
+ _arm_radix4_butterfly_inverse_f16_mve(S, pSrc, n2, onebyfftLen);
+
+ _arm_radix4_butterfly_inverse_f16_mve(S, pSrc + fftLen, n2, onebyfftLen);
+}
+
+
+/**
+ @addtogroup ComplexFFT
+ @{
+ */
+
+/**
+ @brief Processing function for the floating-point complex FFT.
+ @param[in] S points to an instance of the floating-point CFFT structure
+ @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
+ @param[in] ifftFlag flag that selects transform direction
+ - value = 0: forward transform
+ - value = 1: inverse transform
+ @param[in] bitReverseFlag flag that enables / disables bit reversal of output
+ - value = 0: disables bit reversal of output
+ - value = 1: enables bit reversal of output
+ @return none
+ */
+
+
+void arm_cfft_f16(
+ const arm_cfft_instance_f16 * S,
+ float16_t * pSrc,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag)
+{
+ uint32_t fftLen = S->fftLen;
+
+ if (ifftFlag == 1U) {
+
+ switch (fftLen) {
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ _arm_radix4_butterfly_inverse_f16_mve(S, pSrc, fftLen, arm_inverse_fft_length_f16(S->fftLen));
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_inverse_f16_mve(S, pSrc, fftLen);
+ break;
+ }
+ } else {
+ switch (fftLen) {
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ _arm_radix4_butterfly_f16_mve(S, pSrc, fftLen);
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_f16_mve(S, pSrc, fftLen);
+ break;
+ }
+ }
+
+
+ if (bitReverseFlag)
+ {
+
+ arm_bitreversal_16_inpl_mve((uint16_t*)pSrc, S->bitRevLength, S->pBitRevTable);
+
+ }
+}
+
+#else
+
+#if defined(ARM_FLOAT16_SUPPORTED)
+
+extern void arm_bitreversal_16(
+ uint16_t * pSrc,
+ const uint16_t bitRevLen,
+ const uint16_t * pBitRevTable);
+
+
+extern void arm_cfft_radix4by2_f16(
+ float16_t * pSrc,
+ uint32_t fftLen,
+ const float16_t * pCoef);
+
+extern void arm_radix4_butterfly_f16(
+ float16_t * pSrc,
+ uint16_t fftLen,
+ const float16_t * pCoef,
+ uint16_t twidCoefModifier);
+
+/**
+ @ingroup groupTransforms
+ */
+
+/**
+ @defgroup ComplexFFT Complex FFT Functions
+
+ @par
+ The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
+ Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster
+ than the DFT, especially for long lengths.
+ The algorithms described in this section
+ operate on complex data. A separate set of functions is devoted to handling
+ of real sequences.
+ @par
+ There are separate algorithms for handling floating-point, Q15, and Q31 data
+ types. The algorithms available for each data type are described next.
+ @par
+ The FFT functions operate in-place. That is, the array holding the input data
+ will also be used to hold the corresponding result. The input data is complex
+ and contains <code>2*fftLen</code> interleaved values as shown below.
+ <pre>{real[0], imag[0], real[1], imag[1], ...} </pre>
+ The FFT result will be contained in the same array and the frequency domain
+ values will have the same interleaving.
+
+ @par Floating-point
+ The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8
+ stages are performed along with a single radix-2 or radix-4 stage, as needed.
+ The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
+ a different twiddle factor table.
+ @par
+ The function uses the standard FFT definition and output values may grow by a
+ factor of <code>fftLen</code> when computing the forward transform. The
+ inverse transform includes a scale of <code>1/fftLen</code> as part of the
+ calculation and this matches the textbook definition of the inverse FFT.
+ @par
+ For the MVE version, the new arm_cfft_init_f32 initialization function is
+ <b>mandatory</b>. <b>Compilation flags are available to include only the required tables for the
+ needed FFTs.</b> Other FFT versions can continue to be initialized as
+ explained below.
+ @par
+ For not MVE versions, pre-initialized data structures containing twiddle factors
+ and bit reversal tables are provided and defined in <code>arm_const_structs.h</code>. Include
+ this header in your function and then pass one of the constant structures as
+ an argument to arm_cfft_f32. For example:
+ @par
+ <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
+ @par
+ computes a 64-point inverse complex FFT including bit reversal.
+ The data structures are treated as constant data and not modified during the
+ calculation. The same data structure can be reused for multiple transforms
+ including mixing forward and inverse transforms.
+ @par
+ Earlier releases of the library provided separate radix-2 and radix-4
+ algorithms that operated on floating-point data. These functions are still
+ provided but are deprecated. The older functions are slower and less general
+ than the new functions.
+ @par
+ An example of initialization of the constants for the arm_cfft_f32 function follows:
+ @code
+ const static arm_cfft_instance_f32 *S;
+ ...
+ switch (length) {
+ case 16:
+ S = &arm_cfft_sR_f32_len16;
+ break;
+ case 32:
+ S = &arm_cfft_sR_f32_len32;
+ break;
+ case 64:
+ S = &arm_cfft_sR_f32_len64;
+ break;
+ case 128:
+ S = &arm_cfft_sR_f32_len128;
+ break;
+ case 256:
+ S = &arm_cfft_sR_f32_len256;
+ break;
+ case 512:
+ S = &arm_cfft_sR_f32_len512;
+ break;
+ case 1024:
+ S = &arm_cfft_sR_f32_len1024;
+ break;
+ case 2048:
+ S = &arm_cfft_sR_f32_len2048;
+ break;
+ case 4096:
+ S = &arm_cfft_sR_f32_len4096;
+ break;
+ }
+ @endcode
+ @par
+ The new arm_cfft_init_f32 can also be used.
+ @par Q15 and Q31
+ The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4
+ stages are performed along with a single radix-2 stage, as needed.
+ The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
+ a different twiddle factor table.
+ @par
+ The function uses the standard FFT definition and output values may grow by a
+ factor of <code>fftLen</code> when computing the forward transform. The
+ inverse transform includes a scale of <code>1/fftLen</code> as part of the
+ calculation and this matches the textbook definition of the inverse FFT.
+ @par
+ Pre-initialized data structures containing twiddle factors and bit reversal
+ tables are provided and defined in <code>arm_const_structs.h</code>. Include
+ this header in your function and then pass one of the constant structures as
+ an argument to arm_cfft_q31. For example:
+ @par
+ <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
+ @par
+ computes a 64-point inverse complex FFT including bit reversal.
+ The data structures are treated as constant data and not modified during the
+ calculation. The same data structure can be reused for multiple transforms
+ including mixing forward and inverse transforms.
+ @par
+ Earlier releases of the library provided separate radix-2 and radix-4
+ algorithms that operated on floating-point data. These functions are still
+ provided but are deprecated. The older functions are slower and less general
+ than the new functions.
+ @par
+ An example of initialization of the constants for the arm_cfft_q31 function follows:
+ @code
+ const static arm_cfft_instance_q31 *S;
+ ...
+ switch (length) {
+ case 16:
+ S = &arm_cfft_sR_q31_len16;
+ break;
+ case 32:
+ S = &arm_cfft_sR_q31_len32;
+ break;
+ case 64:
+ S = &arm_cfft_sR_q31_len64;
+ break;
+ case 128:
+ S = &arm_cfft_sR_q31_len128;
+ break;
+ case 256:
+ S = &arm_cfft_sR_q31_len256;
+ break;
+ case 512:
+ S = &arm_cfft_sR_q31_len512;
+ break;
+ case 1024:
+ S = &arm_cfft_sR_q31_len1024;
+ break;
+ case 2048:
+ S = &arm_cfft_sR_q31_len2048;
+ break;
+ case 4096:
+ S = &arm_cfft_sR_q31_len4096;
+ break;
+ }
+ @endcode
+
+ */
+
+
+/**
+ @addtogroup ComplexFFT
+ @{
+ */
+
+/**
+ @brief Processing function for the floating-point complex FFT.
+ @param[in] S points to an instance of the floating-point CFFT structure
+ @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
+ @param[in] ifftFlag flag that selects transform direction
+ - value = 0: forward transform
+ - value = 1: inverse transform
+ @param[in] bitReverseFlag flag that enables / disables bit reversal of output
+ - value = 0: disables bit reversal of output
+ - value = 1: enables bit reversal of output
+ @return none
+ */
+
+void arm_cfft_f16(
+ const arm_cfft_instance_f16 * S,
+ float16_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag)
+{
+ uint32_t L = S->fftLen, l;
+ float16_t invL, * pSrc;
+
+ if (ifftFlag == 1U)
+ {
+ /* Conjugate input data */
+ pSrc = p1 + 1;
+ for(l=0; l<L; l++)
+ {
+ *pSrc = -(_Float16)*pSrc;
+ pSrc += 2;
+ }
+ }
+
+ switch (L)
+ {
+
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ arm_radix4_butterfly_f16 (p1, L, (float16_t*)S->pTwiddle, 1U);
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_f16 ( p1, L, (float16_t*)S->pTwiddle);
+ break;
+
+ }
+
+ if ( bitReverseFlag )
+ arm_bitreversal_16((uint16_t*)p1, S->bitRevLength,(uint16_t*)S->pBitRevTable);
+
+ if (ifftFlag == 1U)
+ {
+ invL = 1.0f16/(_Float16)L;
+ /* Conjugate and scale output data */
+ pSrc = p1;
+ for(l=0; l<L; l++)
+ {
+ *pSrc++ *= (_Float16)invL ;
+ *pSrc = -(_Float16)(*pSrc) * (_Float16)invL;
+ pSrc++;
+ }
+ }
+}
+#endif /* if defined(ARM_FLOAT16_SUPPORTED) */
+#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
+
+/**
+ @} end of ComplexFFT group
+ */