diff options
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f16.c')
-rw-r--r-- | Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f16.c | 842 |
1 files changed, 842 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f16.c b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f16.c new file mode 100644 index 0000000..edfc0b4 --- /dev/null +++ b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f16.c @@ -0,0 +1,842 @@ +/* ---------------------------------------------------------------------- + * Project: CMSIS DSP Library + * Title: arm_cfft_f32.c + * Description: Combined Radix Decimation in Frequency CFFT Floating point processing function + * + * $Date: 23 April 2021 + * $Revision: V1.9.0 + * + * Target Processor: Cortex-M and Cortex-A cores + * -------------------------------------------------------------------- */ +/* + * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "dsp/transform_functions_f16.h" +#include "arm_common_tables_f16.h" + + +#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) + +#include "arm_helium_utils.h" +#include "arm_vec_fft.h" +#include "arm_mve_tables_f16.h" + + +static float16_t arm_inverse_fft_length_f16(uint16_t fftLen) +{ + float16_t retValue=1.0; + + switch (fftLen) + { + + case 4096U: + retValue = (float16_t)0.000244140625f; + break; + + case 2048U: + retValue = (float16_t)0.00048828125f; + break; + + case 1024U: + retValue = (float16_t)0.0009765625f; + break; + + case 512U: + retValue = (float16_t)0.001953125f; + break; + + case 256U: + retValue = (float16_t)0.00390625f; + break; + + case 128U: + retValue = (float16_t)0.0078125f; + break; + + case 64U: + retValue = (float16_t)0.015625f; + break; + + case 32U: + retValue = (float16_t)0.03125f; + break; + + case 16U: + retValue = (float16_t)0.0625f; + break; + + + default: + break; + } + return(retValue); +} + + +static void _arm_radix4_butterfly_f16_mve(const arm_cfft_instance_f16 * S,float16_t * pSrc, uint32_t fftLen) +{ + f16x8_t vecTmp0, vecTmp1; + f16x8_t vecSum0, vecDiff0, vecSum1, vecDiff1; + f16x8_t vecA, vecB, vecC, vecD; + uint32_t blkCnt; + uint32_t n1, n2; + uint32_t stage = 0; + int32_t iter = 1; + static const int32_t strides[4] = + { ( 0 - 16) * (int32_t)sizeof(float16_t *) + , ( 4 - 16) * (int32_t)sizeof(float16_t *) + , ( 8 - 16) * (int32_t)sizeof(float16_t *) + , (12 - 16) * (int32_t)sizeof(float16_t *)}; + + n2 = fftLen; + n1 = n2; + n2 >>= 2u; + for (int k = fftLen / 4u; k > 1; k >>= 2) + { + float16_t const *p_rearranged_twiddle_tab_stride1 = + &S->rearranged_twiddle_stride1[ + S->rearranged_twiddle_tab_stride1_arr[stage]]; + float16_t const *p_rearranged_twiddle_tab_stride2 = + &S->rearranged_twiddle_stride2[ + S->rearranged_twiddle_tab_stride2_arr[stage]]; + float16_t const *p_rearranged_twiddle_tab_stride3 = + &S->rearranged_twiddle_stride3[ + S->rearranged_twiddle_tab_stride3_arr[stage]]; + float16_t * pBase = pSrc; + for (int i = 0; i < iter; i++) + { + float16_t *inA = pBase; + float16_t *inB = inA + n2 * CMPLX_DIM; + float16_t *inC = inB + n2 * CMPLX_DIM; + float16_t *inD = inC + n2 * CMPLX_DIM; + float16_t const *pW1 = p_rearranged_twiddle_tab_stride1; + float16_t const *pW2 = p_rearranged_twiddle_tab_stride2; + float16_t const *pW3 = p_rearranged_twiddle_tab_stride3; + f16x8_t vecW; + + blkCnt = n2 / 4; + /* + * load 2 f16 complex pair + */ + vecA = vldrhq_f16(inA); + vecC = vldrhq_f16(inC); + while (blkCnt > 0U) + { + vecB = vldrhq_f16(inB); + vecD = vldrhq_f16(inD); + + vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */ + vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */ + + vecSum1 = vecB + vecD; + vecDiff1 = vecB - vecD; + /* + * [ 1 1 1 1 ] * [ A B C D ]' .* 1 + */ + vecTmp0 = vecSum0 + vecSum1; + vst1q(inA, vecTmp0); + inA += 8; + + /* + * [ 1 -1 1 -1 ] * [ A B C D ]' + */ + vecTmp0 = vecSum0 - vecSum1; + /* + * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2 + */ + vecW = vld1q(pW2); + pW2 += 8; + vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0); + vst1q(inB, vecTmp1); + inB += 8; + + /* + * [ 1 -i -1 +i ] * [ A B C D ]' + */ + vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1); + /* + * [ 1 -i -1 +i ] * [ A B C D ]'.* W1 + */ + vecW = vld1q(pW1); + pW1 +=8; + vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0); + vst1q(inC, vecTmp1); + inC += 8; + + /* + * [ 1 +i -1 -i ] * [ A B C D ]' + */ + vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1); + /* + * [ 1 +i -1 -i ] * [ A B C D ]'.* W3 + */ + vecW = vld1q(pW3); + pW3 += 8; + vecTmp1 = MVE_CMPLX_MULT_FLT_Conj_AxB(vecW, vecTmp0); + vst1q(inD, vecTmp1); + inD += 8; + + vecA = vldrhq_f16(inA); + vecC = vldrhq_f16(inC); + + blkCnt--; + } + pBase += CMPLX_DIM * n1; + } + n1 = n2; + n2 >>= 2u; + iter = iter << 2; + stage++; + } + + /* + * start of Last stage process + */ + uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides); + vecScGathAddr = vecScGathAddr + (uint32_t) pSrc; + + /* load scheduling */ + vecA = (f16x8_t)vldrwq_gather_base_wb_f32(&vecScGathAddr, 64); + vecC = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 8); + + blkCnt = (fftLen >> 4); + while (blkCnt > 0U) + { + vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */ + vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */ + + vecB = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 4); + vecD = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 12); + + vecSum1 = vecB + vecD; + vecDiff1 = vecB - vecD; + + /* pre-load for next iteration */ + vecA = (f16x8_t)vldrwq_gather_base_wb_f32(&vecScGathAddr, 64); + vecC = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 8); + + vecTmp0 = vecSum0 + vecSum1; + vstrwq_scatter_base_f32(vecScGathAddr, -64, (f32x4_t)vecTmp0); + + vecTmp0 = vecSum0 - vecSum1; + vstrwq_scatter_base_f32(vecScGathAddr, -64 + 4, (f32x4_t)vecTmp0); + + vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1); + vstrwq_scatter_base_f32(vecScGathAddr, -64 + 8, (f32x4_t)vecTmp0); + + vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1); + vstrwq_scatter_base_f32(vecScGathAddr, -64 + 12, (f32x4_t)vecTmp0); + + blkCnt--; + } + + /* + * End of last stage process + */ +} + +static void arm_cfft_radix4by2_f16_mve(const arm_cfft_instance_f16 * S, float16_t *pSrc, uint32_t fftLen) +{ + float16_t const *pCoefVec; + float16_t const *pCoef = S->pTwiddle; + float16_t *pIn0, *pIn1; + uint32_t n2; + uint32_t blkCnt; + f16x8_t vecIn0, vecIn1, vecSum, vecDiff; + f16x8_t vecCmplxTmp, vecTw; + + + n2 = fftLen >> 1; + pIn0 = pSrc; + pIn1 = pSrc + fftLen; + pCoefVec = pCoef; + + blkCnt = n2 / 4; + while (blkCnt > 0U) + { + vecIn0 = *(f16x8_t *) pIn0; + vecIn1 = *(f16x8_t *) pIn1; + vecTw = vld1q(pCoefVec); + pCoefVec += 8; + + vecSum = vaddq(vecIn0, vecIn1); + vecDiff = vsubq(vecIn0, vecIn1); + + vecCmplxTmp = MVE_CMPLX_MULT_FLT_Conj_AxB(vecTw, vecDiff); + + vst1q(pIn0, vecSum); + pIn0 += 8; + vst1q(pIn1, vecCmplxTmp); + pIn1 += 8; + + blkCnt--; + } + + _arm_radix4_butterfly_f16_mve(S, pSrc, n2); + + _arm_radix4_butterfly_f16_mve(S, pSrc + fftLen, n2); + + pIn0 = pSrc; +} + +static void _arm_radix4_butterfly_inverse_f16_mve(const arm_cfft_instance_f16 * S,float16_t * pSrc, uint32_t fftLen, float16_t onebyfftLen) +{ + f16x8_t vecTmp0, vecTmp1; + f16x8_t vecSum0, vecDiff0, vecSum1, vecDiff1; + f16x8_t vecA, vecB, vecC, vecD; + uint32_t blkCnt; + uint32_t n1, n2; + uint32_t stage = 0; + int32_t iter = 1; + static const int32_t strides[4] = { + ( 0 - 16) * (int32_t)sizeof(q31_t *), + ( 4 - 16) * (int32_t)sizeof(q31_t *), + ( 8 - 16) * (int32_t)sizeof(q31_t *), + (12 - 16) * (int32_t)sizeof(q31_t *) + }; + + n2 = fftLen; + n1 = n2; + n2 >>= 2u; + for (int k = fftLen / 4; k > 1; k >>= 2) + { + float16_t const *p_rearranged_twiddle_tab_stride1 = + &S->rearranged_twiddle_stride1[ + S->rearranged_twiddle_tab_stride1_arr[stage]]; + float16_t const *p_rearranged_twiddle_tab_stride2 = + &S->rearranged_twiddle_stride2[ + S->rearranged_twiddle_tab_stride2_arr[stage]]; + float16_t const *p_rearranged_twiddle_tab_stride3 = + &S->rearranged_twiddle_stride3[ + S->rearranged_twiddle_tab_stride3_arr[stage]]; + + float16_t * pBase = pSrc; + for (int i = 0; i < iter; i++) + { + float16_t *inA = pBase; + float16_t *inB = inA + n2 * CMPLX_DIM; + float16_t *inC = inB + n2 * CMPLX_DIM; + float16_t *inD = inC + n2 * CMPLX_DIM; + float16_t const *pW1 = p_rearranged_twiddle_tab_stride1; + float16_t const *pW2 = p_rearranged_twiddle_tab_stride2; + float16_t const *pW3 = p_rearranged_twiddle_tab_stride3; + f16x8_t vecW; + + blkCnt = n2 / 4; + /* + * load 2 f32 complex pair + */ + vecA = vldrhq_f16(inA); + vecC = vldrhq_f16(inC); + while (blkCnt > 0U) + { + vecB = vldrhq_f16(inB); + vecD = vldrhq_f16(inD); + + vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */ + vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */ + + vecSum1 = vecB + vecD; + vecDiff1 = vecB - vecD; + /* + * [ 1 1 1 1 ] * [ A B C D ]' .* 1 + */ + vecTmp0 = vecSum0 + vecSum1; + vst1q(inA, vecTmp0); + inA += 8; + /* + * [ 1 -1 1 -1 ] * [ A B C D ]' + */ + vecTmp0 = vecSum0 - vecSum1; + /* + * [ 1 -1 1 -1 ] * [ A B C D ]'.* W1 + */ + vecW = vld1q(pW2); + pW2 += 8; + vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0); + vst1q(inB, vecTmp1); + inB += 8; + + /* + * [ 1 -i -1 +i ] * [ A B C D ]' + */ + vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1); + /* + * [ 1 -i -1 +i ] * [ A B C D ]'.* W2 + */ + vecW = vld1q(pW1); + pW1 += 8; + vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0); + vst1q(inC, vecTmp1); + inC += 8; + + /* + * [ 1 +i -1 -i ] * [ A B C D ]' + */ + vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1); + /* + * [ 1 +i -1 -i ] * [ A B C D ]'.* W3 + */ + vecW = vld1q(pW3); + pW3 += 8; + vecTmp1 = MVE_CMPLX_MULT_FLT_AxB(vecW, vecTmp0); + vst1q(inD, vecTmp1); + inD += 8; + + vecA = vldrhq_f16(inA); + vecC = vldrhq_f16(inC); + + blkCnt--; + } + pBase += CMPLX_DIM * n1; + } + n1 = n2; + n2 >>= 2u; + iter = iter << 2; + stage++; + } + + /* + * start of Last stage process + */ + uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides); + vecScGathAddr = vecScGathAddr + (uint32_t) pSrc; + + /* + * load scheduling + */ + vecA = (f16x8_t)vldrwq_gather_base_wb_f32(&vecScGathAddr, 64); + vecC = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 8); + + blkCnt = (fftLen >> 4); + while (blkCnt > 0U) + { + vecSum0 = vecA + vecC; /* vecSum0 = vaddq(vecA, vecC) */ + vecDiff0 = vecA - vecC; /* vecSum0 = vsubq(vecA, vecC) */ + + vecB = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 4); + vecD = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 12); + + vecSum1 = vecB + vecD; + vecDiff1 = vecB - vecD; + + vecA = (f16x8_t)vldrwq_gather_base_wb_f32(&vecScGathAddr, 64); + vecC = (f16x8_t)vldrwq_gather_base_f32(vecScGathAddr, 8); + + vecTmp0 = vecSum0 + vecSum1; + vecTmp0 = vecTmp0 * onebyfftLen; + vstrwq_scatter_base_f32(vecScGathAddr, -64, (f32x4_t)vecTmp0); + + vecTmp0 = vecSum0 - vecSum1; + vecTmp0 = vecTmp0 * onebyfftLen; + vstrwq_scatter_base_f32(vecScGathAddr, -64 + 4, (f32x4_t)vecTmp0); + + vecTmp0 = MVE_CMPLX_ADD_A_ixB(vecDiff0, vecDiff1); + vecTmp0 = vecTmp0 * onebyfftLen; + vstrwq_scatter_base_f32(vecScGathAddr, -64 + 8, (f32x4_t)vecTmp0); + + vecTmp0 = MVE_CMPLX_SUB_A_ixB(vecDiff0, vecDiff1); + vecTmp0 = vecTmp0 * onebyfftLen; + vstrwq_scatter_base_f32(vecScGathAddr, -64 + 12, (f32x4_t)vecTmp0); + + blkCnt--; + } + + /* + * End of last stage process + */ +} + +static void arm_cfft_radix4by2_inverse_f16_mve(const arm_cfft_instance_f16 * S,float16_t *pSrc, uint32_t fftLen) +{ + float16_t const *pCoefVec; + float16_t const *pCoef = S->pTwiddle; + float16_t *pIn0, *pIn1; + uint32_t n2; + float16_t onebyfftLen = arm_inverse_fft_length_f16(fftLen); + uint32_t blkCnt; + f16x8_t vecIn0, vecIn1, vecSum, vecDiff; + f16x8_t vecCmplxTmp, vecTw; + + + n2 = fftLen >> 1; + pIn0 = pSrc; + pIn1 = pSrc + fftLen; + pCoefVec = pCoef; + + blkCnt = n2 / 4; + while (blkCnt > 0U) + { + vecIn0 = *(f16x8_t *) pIn0; + vecIn1 = *(f16x8_t *) pIn1; + vecTw = vld1q(pCoefVec); + pCoefVec += 8; + + vecSum = vaddq(vecIn0, vecIn1); + vecDiff = vsubq(vecIn0, vecIn1); + + vecCmplxTmp = MVE_CMPLX_MULT_FLT_AxB(vecTw, vecDiff); + + vst1q(pIn0, vecSum); + pIn0 += 8; + vst1q(pIn1, vecCmplxTmp); + pIn1 += 8; + + blkCnt--; + } + + _arm_radix4_butterfly_inverse_f16_mve(S, pSrc, n2, onebyfftLen); + + _arm_radix4_butterfly_inverse_f16_mve(S, pSrc + fftLen, n2, onebyfftLen); +} + + +/** + @addtogroup ComplexFFT + @{ + */ + +/** + @brief Processing function for the floating-point complex FFT. + @param[in] S points to an instance of the floating-point CFFT structure + @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place + @param[in] ifftFlag flag that selects transform direction + - value = 0: forward transform + - value = 1: inverse transform + @param[in] bitReverseFlag flag that enables / disables bit reversal of output + - value = 0: disables bit reversal of output + - value = 1: enables bit reversal of output + @return none + */ + + +void arm_cfft_f16( + const arm_cfft_instance_f16 * S, + float16_t * pSrc, + uint8_t ifftFlag, + uint8_t bitReverseFlag) +{ + uint32_t fftLen = S->fftLen; + + if (ifftFlag == 1U) { + + switch (fftLen) { + case 16: + case 64: + case 256: + case 1024: + case 4096: + _arm_radix4_butterfly_inverse_f16_mve(S, pSrc, fftLen, arm_inverse_fft_length_f16(S->fftLen)); + break; + + case 32: + case 128: + case 512: + case 2048: + arm_cfft_radix4by2_inverse_f16_mve(S, pSrc, fftLen); + break; + } + } else { + switch (fftLen) { + case 16: + case 64: + case 256: + case 1024: + case 4096: + _arm_radix4_butterfly_f16_mve(S, pSrc, fftLen); + break; + + case 32: + case 128: + case 512: + case 2048: + arm_cfft_radix4by2_f16_mve(S, pSrc, fftLen); + break; + } + } + + + if (bitReverseFlag) + { + + arm_bitreversal_16_inpl_mve((uint16_t*)pSrc, S->bitRevLength, S->pBitRevTable); + + } +} + +#else + +#if defined(ARM_FLOAT16_SUPPORTED) + +extern void arm_bitreversal_16( + uint16_t * pSrc, + const uint16_t bitRevLen, + const uint16_t * pBitRevTable); + + +extern void arm_cfft_radix4by2_f16( + float16_t * pSrc, + uint32_t fftLen, + const float16_t * pCoef); + +extern void arm_radix4_butterfly_f16( + float16_t * pSrc, + uint16_t fftLen, + const float16_t * pCoef, + uint16_t twidCoefModifier); + +/** + @ingroup groupTransforms + */ + +/** + @defgroup ComplexFFT Complex FFT Functions + + @par + The Fast Fourier Transform (FFT) is an efficient algorithm for computing the + Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster + than the DFT, especially for long lengths. + The algorithms described in this section + operate on complex data. A separate set of functions is devoted to handling + of real sequences. + @par + There are separate algorithms for handling floating-point, Q15, and Q31 data + types. The algorithms available for each data type are described next. + @par + The FFT functions operate in-place. That is, the array holding the input data + will also be used to hold the corresponding result. The input data is complex + and contains <code>2*fftLen</code> interleaved values as shown below. + <pre>{real[0], imag[0], real[1], imag[1], ...} </pre> + The FFT result will be contained in the same array and the frequency domain + values will have the same interleaving. + + @par Floating-point + The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8 + stages are performed along with a single radix-2 or radix-4 stage, as needed. + The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses + a different twiddle factor table. + @par + The function uses the standard FFT definition and output values may grow by a + factor of <code>fftLen</code> when computing the forward transform. The + inverse transform includes a scale of <code>1/fftLen</code> as part of the + calculation and this matches the textbook definition of the inverse FFT. + @par + For the MVE version, the new arm_cfft_init_f32 initialization function is + <b>mandatory</b>. <b>Compilation flags are available to include only the required tables for the + needed FFTs.</b> Other FFT versions can continue to be initialized as + explained below. + @par + For not MVE versions, pre-initialized data structures containing twiddle factors + and bit reversal tables are provided and defined in <code>arm_const_structs.h</code>. Include + this header in your function and then pass one of the constant structures as + an argument to arm_cfft_f32. For example: + @par + <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code> + @par + computes a 64-point inverse complex FFT including bit reversal. + The data structures are treated as constant data and not modified during the + calculation. The same data structure can be reused for multiple transforms + including mixing forward and inverse transforms. + @par + Earlier releases of the library provided separate radix-2 and radix-4 + algorithms that operated on floating-point data. These functions are still + provided but are deprecated. The older functions are slower and less general + than the new functions. + @par + An example of initialization of the constants for the arm_cfft_f32 function follows: + @code + const static arm_cfft_instance_f32 *S; + ... + switch (length) { + case 16: + S = &arm_cfft_sR_f32_len16; + break; + case 32: + S = &arm_cfft_sR_f32_len32; + break; + case 64: + S = &arm_cfft_sR_f32_len64; + break; + case 128: + S = &arm_cfft_sR_f32_len128; + break; + case 256: + S = &arm_cfft_sR_f32_len256; + break; + case 512: + S = &arm_cfft_sR_f32_len512; + break; + case 1024: + S = &arm_cfft_sR_f32_len1024; + break; + case 2048: + S = &arm_cfft_sR_f32_len2048; + break; + case 4096: + S = &arm_cfft_sR_f32_len4096; + break; + } + @endcode + @par + The new arm_cfft_init_f32 can also be used. + @par Q15 and Q31 + The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4 + stages are performed along with a single radix-2 stage, as needed. + The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses + a different twiddle factor table. + @par + The function uses the standard FFT definition and output values may grow by a + factor of <code>fftLen</code> when computing the forward transform. The + inverse transform includes a scale of <code>1/fftLen</code> as part of the + calculation and this matches the textbook definition of the inverse FFT. + @par + Pre-initialized data structures containing twiddle factors and bit reversal + tables are provided and defined in <code>arm_const_structs.h</code>. Include + this header in your function and then pass one of the constant structures as + an argument to arm_cfft_q31. For example: + @par + <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code> + @par + computes a 64-point inverse complex FFT including bit reversal. + The data structures are treated as constant data and not modified during the + calculation. The same data structure can be reused for multiple transforms + including mixing forward and inverse transforms. + @par + Earlier releases of the library provided separate radix-2 and radix-4 + algorithms that operated on floating-point data. These functions are still + provided but are deprecated. The older functions are slower and less general + than the new functions. + @par + An example of initialization of the constants for the arm_cfft_q31 function follows: + @code + const static arm_cfft_instance_q31 *S; + ... + switch (length) { + case 16: + S = &arm_cfft_sR_q31_len16; + break; + case 32: + S = &arm_cfft_sR_q31_len32; + break; + case 64: + S = &arm_cfft_sR_q31_len64; + break; + case 128: + S = &arm_cfft_sR_q31_len128; + break; + case 256: + S = &arm_cfft_sR_q31_len256; + break; + case 512: + S = &arm_cfft_sR_q31_len512; + break; + case 1024: + S = &arm_cfft_sR_q31_len1024; + break; + case 2048: + S = &arm_cfft_sR_q31_len2048; + break; + case 4096: + S = &arm_cfft_sR_q31_len4096; + break; + } + @endcode + + */ + + +/** + @addtogroup ComplexFFT + @{ + */ + +/** + @brief Processing function for the floating-point complex FFT. + @param[in] S points to an instance of the floating-point CFFT structure + @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place + @param[in] ifftFlag flag that selects transform direction + - value = 0: forward transform + - value = 1: inverse transform + @param[in] bitReverseFlag flag that enables / disables bit reversal of output + - value = 0: disables bit reversal of output + - value = 1: enables bit reversal of output + @return none + */ + +void arm_cfft_f16( + const arm_cfft_instance_f16 * S, + float16_t * p1, + uint8_t ifftFlag, + uint8_t bitReverseFlag) +{ + uint32_t L = S->fftLen, l; + float16_t invL, * pSrc; + + if (ifftFlag == 1U) + { + /* Conjugate input data */ + pSrc = p1 + 1; + for(l=0; l<L; l++) + { + *pSrc = -(_Float16)*pSrc; + pSrc += 2; + } + } + + switch (L) + { + + case 16: + case 64: + case 256: + case 1024: + case 4096: + arm_radix4_butterfly_f16 (p1, L, (float16_t*)S->pTwiddle, 1U); + break; + + case 32: + case 128: + case 512: + case 2048: + arm_cfft_radix4by2_f16 ( p1, L, (float16_t*)S->pTwiddle); + break; + + } + + if ( bitReverseFlag ) + arm_bitreversal_16((uint16_t*)p1, S->bitRevLength,(uint16_t*)S->pBitRevTable); + + if (ifftFlag == 1U) + { + invL = 1.0f16/(_Float16)L; + /* Conjugate and scale output data */ + pSrc = p1; + for(l=0; l<L; l++) + { + *pSrc++ *= (_Float16)invL ; + *pSrc = -(_Float16)(*pSrc) * (_Float16)invL; + pSrc++; + } + } +} +#endif /* if defined(ARM_FLOAT16_SUPPORTED) */ +#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */ + +/** + @} end of ComplexFFT group + */ |