summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f64.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f64.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f64.c318
1 files changed, 318 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f64.c b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f64.c
new file mode 100644
index 0000000..d686eb8
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f64.c
@@ -0,0 +1,318 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_cfft_f64.c
+ * Description: Combined Radix Decimation in Frequency CFFT Double Precision Floating point processing function
+ *
+ * $Date: 23 April 2021
+ * $Revision: V1.9.0
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dsp/transform_functions.h"
+#include "arm_common_tables.h"
+
+
+extern void arm_radix4_butterfly_f64(
+ float64_t * pSrc,
+ uint16_t fftLen,
+ const float64_t * pCoef,
+ uint16_t twidCoefModifier);
+
+extern void arm_bitreversal_64(
+ uint64_t * pSrc,
+ const uint16_t bitRevLen,
+ const uint16_t * pBitRevTable);
+
+/**
+* @} end of ComplexFFT group
+*/
+
+/* ----------------------------------------------------------------------
+ * Internal helper function used by the FFTs
+ * ---------------------------------------------------------------------- */
+
+/*
+* @brief Core function for the Double Precision floating-point CFFT butterfly process.
+* @param[in, out] *pSrc points to the in-place buffer of F64 data type.
+* @param[in] fftLen length of the FFT.
+* @param[in] *pCoef points to the twiddle coefficient buffer.
+* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+* @return none.
+*/
+
+void arm_radix4_butterfly_f64(
+ float64_t * pSrc,
+ uint16_t fftLen,
+ const float64_t * pCoef,
+ uint16_t twidCoefModifier)
+{
+
+ float64_t co1, co2, co3, si1, si2, si3;
+ uint32_t ia1, ia2, ia3;
+ uint32_t i0, i1, i2, i3;
+ uint32_t n1, n2, j, k;
+
+ float64_t t1, t2, r1, r2, s1, s2;
+
+
+ /* Initializations for the fft calculation */
+ n2 = fftLen;
+ n1 = n2;
+ for (k = fftLen; k > 1U; k >>= 2U)
+ {
+ /* Initializations for the fft calculation */
+ n1 = n2;
+ n2 >>= 2U;
+ ia1 = 0U;
+
+ /* FFT Calculation */
+ j = 0;
+ do
+ {
+ /* index calculation for the coefficients */
+ ia2 = ia1 + ia1;
+ ia3 = ia2 + ia1;
+ co1 = pCoef[ia1 * 2U];
+ si1 = pCoef[(ia1 * 2U) + 1U];
+ co2 = pCoef[ia2 * 2U];
+ si2 = pCoef[(ia2 * 2U) + 1U];
+ co3 = pCoef[ia3 * 2U];
+ si3 = pCoef[(ia3 * 2U) + 1U];
+
+ /* Twiddle coefficients index modifier */
+ ia1 = ia1 + twidCoefModifier;
+
+ i0 = j;
+ do
+ {
+ /* index calculation for the input as, */
+ /* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */
+ i1 = i0 + n2;
+ i2 = i1 + n2;
+ i3 = i2 + n2;
+
+ /* xa + xc */
+ r1 = pSrc[(2U * i0)] + pSrc[(2U * i2)];
+
+ /* xa - xc */
+ r2 = pSrc[(2U * i0)] - pSrc[(2U * i2)];
+
+ /* ya + yc */
+ s1 = pSrc[(2U * i0) + 1U] + pSrc[(2U * i2) + 1U];
+
+ /* ya - yc */
+ s2 = pSrc[(2U * i0) + 1U] - pSrc[(2U * i2) + 1U];
+
+ /* xb + xd */
+ t1 = pSrc[2U * i1] + pSrc[2U * i3];
+
+ /* xa' = xa + xb + xc + xd */
+ pSrc[2U * i0] = r1 + t1;
+
+ /* xa + xc -(xb + xd) */
+ r1 = r1 - t1;
+
+ /* yb + yd */
+ t2 = pSrc[(2U * i1) + 1U] + pSrc[(2U * i3) + 1U];
+
+ /* ya' = ya + yb + yc + yd */
+ pSrc[(2U * i0) + 1U] = s1 + t2;
+
+ /* (ya + yc) - (yb + yd) */
+ s1 = s1 - t2;
+
+ /* (yb - yd) */
+ t1 = pSrc[(2U * i1) + 1U] - pSrc[(2U * i3) + 1U];
+
+ /* (xb - xd) */
+ t2 = pSrc[2U * i1] - pSrc[2U * i3];
+
+ /* xc' = (xa-xb+xc-xd)co2 + (ya-yb+yc-yd)(si2) */
+ pSrc[2U * i1] = (r1 * co2) + (s1 * si2);
+
+ /* yc' = (ya-yb+yc-yd)co2 - (xa-xb+xc-xd)(si2) */
+ pSrc[(2U * i1) + 1U] = (s1 * co2) - (r1 * si2);
+
+ /* (xa - xc) + (yb - yd) */
+ r1 = r2 + t1;
+
+ /* (xa - xc) - (yb - yd) */
+ r2 = r2 - t1;
+
+ /* (ya - yc) - (xb - xd) */
+ s1 = s2 - t2;
+
+ /* (ya - yc) + (xb - xd) */
+ s2 = s2 + t2;
+
+ /* xb' = (xa+yb-xc-yd)co1 + (ya-xb-yc+xd)(si1) */
+ pSrc[2U * i2] = (r1 * co1) + (s1 * si1);
+
+ /* yb' = (ya-xb-yc+xd)co1 - (xa+yb-xc-yd)(si1) */
+ pSrc[(2U * i2) + 1U] = (s1 * co1) - (r1 * si1);
+
+ /* xd' = (xa-yb-xc+yd)co3 + (ya+xb-yc-xd)(si3) */
+ pSrc[2U * i3] = (r2 * co3) + (s2 * si3);
+
+ /* yd' = (ya+xb-yc-xd)co3 - (xa-yb-xc+yd)(si3) */
+ pSrc[(2U * i3) + 1U] = (s2 * co3) - (r2 * si3);
+
+ i0 += n1;
+ } while ( i0 < fftLen);
+ j++;
+ } while (j <= (n2 - 1U));
+ twidCoefModifier <<= 2U;
+ }
+}
+
+/*
+* @brief Core function for the Double Precision floating-point CFFT butterfly process.
+* @param[in, out] *pSrc points to the in-place buffer of F64 data type.
+* @param[in] fftLen length of the FFT.
+* @param[in] *pCoef points to the twiddle coefficient buffer.
+* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+* @return none.
+*/
+
+void arm_cfft_radix4by2_f64(
+ float64_t * pSrc,
+ uint32_t fftLen,
+ const float64_t * pCoef)
+{
+ uint32_t i, l;
+ uint32_t n2, ia;
+ float64_t xt, yt, cosVal, sinVal;
+ float64_t p0, p1,p2,p3,a0,a1;
+
+ n2 = fftLen >> 1;
+ ia = 0;
+ for (i = 0; i < n2; i++)
+ {
+ cosVal = pCoef[2*ia];
+ sinVal = pCoef[2*ia + 1];
+ ia++;
+
+ l = i + n2;
+
+ /* Butterfly implementation */
+ a0 = pSrc[2 * i] + pSrc[2 * l];
+ xt = pSrc[2 * i] - pSrc[2 * l];
+
+ yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
+ a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
+
+ p0 = xt * cosVal;
+ p1 = yt * sinVal;
+ p2 = yt * cosVal;
+ p3 = xt * sinVal;
+
+ pSrc[2 * i] = a0;
+ pSrc[2 * i + 1] = a1;
+
+ pSrc[2 * l] = p0 + p1;
+ pSrc[2 * l + 1] = p2 - p3;
+
+ }
+
+ // first col
+ arm_radix4_butterfly_f64( pSrc, n2, (float64_t*)pCoef, 2U);
+ // second col
+ arm_radix4_butterfly_f64( pSrc + fftLen, n2, (float64_t*)pCoef, 2U);
+
+}
+
+/**
+ @addtogroup ComplexFFT
+ @{
+ */
+
+/**
+ @brief Processing function for the Double Precision floating-point complex FFT.
+ @param[in] S points to an instance of the Double Precision floating-point CFFT structure
+ @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
+ @param[in] ifftFlag flag that selects transform direction
+ - value = 0: forward transform
+ - value = 1: inverse transform
+ @param[in] bitReverseFlag flag that enables / disables bit reversal of output
+ - value = 0: disables bit reversal of output
+ - value = 1: enables bit reversal of output
+ @return none
+ */
+
+void arm_cfft_f64(
+ const arm_cfft_instance_f64 * S,
+ float64_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag)
+{
+ uint32_t L = S->fftLen, l;
+ float64_t invL, * pSrc;
+
+ if (ifftFlag == 1U)
+ {
+ /* Conjugate input data */
+ pSrc = p1 + 1;
+ for(l=0; l<L; l++)
+ {
+ *pSrc = -*pSrc;
+ pSrc += 2;
+ }
+ }
+
+ switch (L)
+ {
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ arm_radix4_butterfly_f64 (p1, L, (float64_t*)S->pTwiddle, 1U);
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_f64 ( p1, L, (float64_t*)S->pTwiddle);
+ break;
+
+ }
+
+ if ( bitReverseFlag )
+ arm_bitreversal_64((uint64_t*)p1, S->bitRevLength,S->pBitRevTable);
+
+ if (ifftFlag == 1U)
+ {
+ invL = 1.0 / (float64_t)L;
+ /* Conjugate and scale output data */
+ pSrc = p1;
+ for(l=0; l<L; l++)
+ {
+ *pSrc++ *= invL ;
+ *pSrc = -(*pSrc) * invL;
+ pSrc++;
+ }
+ }
+}
+
+/**
+ @} end of ComplexFFT group
+ */