summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q15.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q15.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q15.c893
1 files changed, 893 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q15.c b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q15.c
new file mode 100644
index 0000000..74a6e7a
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q15.c
@@ -0,0 +1,893 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_cfft_q15.c
+ * Description: Combined Radix Decimation in Q15 Frequency CFFT processing function
+ *
+ * $Date: 23 April 2021
+ * $Revision: V1.9.0
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dsp/transform_functions.h"
+
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#include "arm_vec_fft.h"
+
+
+static void _arm_radix4_butterfly_q15_mve(
+ const arm_cfft_instance_q15 * S,
+ q15_t *pSrc,
+ uint32_t fftLen)
+{
+ q15x8_t vecTmp0, vecTmp1;
+ q15x8_t vecSum0, vecDiff0, vecSum1, vecDiff1;
+ q15x8_t vecA, vecB, vecC, vecD;
+ uint32_t blkCnt;
+ uint32_t n1, n2;
+ uint32_t stage = 0;
+ int32_t iter = 1;
+ static const int32_t strides[4] = {
+ (0 - 16) * (int32_t)sizeof(q15_t *), (4 - 16) * (int32_t)sizeof(q15_t *),
+ (8 - 16) * (int32_t)sizeof(q15_t *), (12 - 16) * (int32_t)sizeof(q15_t *)
+ };
+
+ /*
+ * Process first stages
+ * Each stage in middle stages provides two down scaling of the input
+ */
+ n2 = fftLen;
+ n1 = n2;
+ n2 >>= 2u;
+
+ for (int k = fftLen / 4u; k > 1; k >>= 2u)
+ {
+ q15_t const *p_rearranged_twiddle_tab_stride2 =
+ &S->rearranged_twiddle_stride2[
+ S->rearranged_twiddle_tab_stride2_arr[stage]];
+ q15_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[
+ S->rearranged_twiddle_tab_stride3_arr[stage]];
+ q15_t const *p_rearranged_twiddle_tab_stride1 =
+ &S->rearranged_twiddle_stride1[
+ S->rearranged_twiddle_tab_stride1_arr[stage]];
+
+ q15_t * pBase = pSrc;
+ for (int i = 0; i < iter; i++)
+ {
+ q15_t *inA = pBase;
+ q15_t *inB = inA + n2 * CMPLX_DIM;
+ q15_t *inC = inB + n2 * CMPLX_DIM;
+ q15_t *inD = inC + n2 * CMPLX_DIM;
+ q15_t const *pW1 = p_rearranged_twiddle_tab_stride1;
+ q15_t const *pW2 = p_rearranged_twiddle_tab_stride2;
+ q15_t const *pW3 = p_rearranged_twiddle_tab_stride3;
+ q15x8_t vecW;
+
+ blkCnt = n2 / 4;
+ /*
+ * load 4 x q15 complex pair
+ */
+ vecA = vldrhq_s16(inA);
+ vecC = vldrhq_s16(inC);
+ while (blkCnt > 0U)
+ {
+ vecB = vldrhq_s16(inB);
+ vecD = vldrhq_s16(inD);
+
+ vecSum0 = vhaddq(vecA, vecC);
+ vecDiff0 = vhsubq(vecA, vecC);
+
+ vecSum1 = vhaddq(vecB, vecD);
+ vecDiff1 = vhsubq(vecB, vecD);
+ /*
+ * [ 1 1 1 1 ] * [ A B C D ]' .* 1
+ */
+ vecTmp0 = vhaddq(vecSum0, vecSum1);
+ vst1q(inA, vecTmp0);
+ inA += 8;
+ /*
+ * [ 1 -1 1 -1 ] * [ A B C D ]'
+ */
+ vecTmp0 = vhsubq(vecSum0, vecSum1);
+ /*
+ * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
+ */
+ vecW = vld1q(pW2);
+ pW2 += 8;
+ vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q15x8_t);
+
+ vst1q(inB, vecTmp1);
+ inB += 8;
+ /*
+ * [ 1 -i -1 +i ] * [ A B C D ]'
+ */
+ vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
+ /*
+ * [ 1 -i -1 +i ] * [ A B C D ]'.* W1
+ */
+ vecW = vld1q(pW1);
+ pW1 += 8;
+ vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q15x8_t);
+ vst1q(inC, vecTmp1);
+ inC += 8;
+
+ /*
+ * [ 1 +i -1 -i ] * [ A B C D ]'
+ */
+ vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
+ /*
+ * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
+ */
+ vecW = vld1q(pW3);
+ pW3 += 8;
+ vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q15x8_t);
+ vst1q(inD, vecTmp1);
+ inD += 8;
+
+ vecA = vldrhq_s16(inA);
+ vecC = vldrhq_s16(inC);
+
+ blkCnt--;
+ }
+ pBase += CMPLX_DIM * n1;
+ }
+ n1 = n2;
+ n2 >>= 2u;
+ iter = iter << 2;
+ stage++;
+ }
+
+ /*
+ * start of Last stage process
+ */
+ uint32x4_t vecScGathAddr = vld1q_u32 ((uint32_t*)strides);
+ vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
+
+ /*
+ * load scheduling
+ */
+ vecA = (q15x8_t) vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
+ vecC = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 8);
+
+ blkCnt = (fftLen >> 4);
+ while (blkCnt > 0U)
+ {
+ vecSum0 = vhaddq(vecA, vecC);
+ vecDiff0 = vhsubq(vecA, vecC);
+
+ vecB = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 4);
+ vecD = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 12);
+
+ vecSum1 = vhaddq(vecB, vecD);
+ vecDiff1 = vhsubq(vecB, vecD);
+ /*
+ * pre-load for next iteration
+ */
+ vecA = (q15x8_t) vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
+ vecC = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 8);
+
+ vecTmp0 = vhaddq(vecSum0, vecSum1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64, (int32x4_t) vecTmp0);
+
+ vecTmp0 = vhsubq(vecSum0, vecSum1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64 + 4, (int32x4_t) vecTmp0);
+
+ vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, (int32x4_t) vecTmp0);
+
+ vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64 + 12, (int32x4_t) vecTmp0);
+
+ blkCnt--;
+ }
+
+}
+
+static void arm_cfft_radix4by2_q15_mve(const arm_cfft_instance_q15 *S, q15_t *pSrc, uint32_t fftLen)
+{
+ uint32_t n2;
+ q15_t *pIn0;
+ q15_t *pIn1;
+ const q15_t *pCoef = S->pTwiddle;
+ uint32_t blkCnt;
+ q15x8_t vecIn0, vecIn1, vecSum, vecDiff;
+ q15x8_t vecCmplxTmp, vecTw;
+ q15_t const *pCoefVec;
+
+ n2 = fftLen >> 1;
+
+ pIn0 = pSrc;
+ pIn1 = pSrc + fftLen;
+ pCoefVec = pCoef;
+
+ blkCnt = n2 / 4;
+
+ while (blkCnt > 0U)
+ {
+ vecIn0 = *(q15x8_t *) pIn0;
+ vecIn1 = *(q15x8_t *) pIn1;
+
+ vecIn0 = vecIn0 >> 1;
+ vecIn1 = vecIn1 >> 1;
+ vecSum = vhaddq(vecIn0, vecIn1);
+ vst1q(pIn0, vecSum);
+ pIn0 += 8;
+
+ vecTw = vld1q(pCoefVec);
+ pCoefVec += 8;
+
+ vecDiff = vhsubq(vecIn0, vecIn1);
+ vecCmplxTmp = MVE_CMPLX_MULT_FX_AxConjB(vecDiff, vecTw, q15x8_t);
+ vst1q(pIn1, vecCmplxTmp);
+ pIn1 += 8;
+
+ blkCnt--;
+ }
+
+ _arm_radix4_butterfly_q15_mve(S, pSrc, n2);
+
+ _arm_radix4_butterfly_q15_mve(S, pSrc + fftLen, n2);
+
+
+ pIn0 = pSrc;
+ blkCnt = (fftLen << 1) >> 3;
+ while (blkCnt > 0U)
+ {
+ vecIn0 = *(q15x8_t *) pIn0;
+ vecIn0 = vecIn0 << 1;
+ vst1q(pIn0, vecIn0);
+ pIn0 += 8;
+ blkCnt--;
+ }
+ /*
+ * tail
+ * (will be merged thru tail predication)
+ */
+ blkCnt = (fftLen << 1) & 7;
+ if (blkCnt > 0U)
+ {
+ mve_pred16_t p0 = vctp16q(blkCnt);
+
+ vecIn0 = *(q15x8_t *) pIn0;
+ vecIn0 = vecIn0 << 1;
+ vstrhq_p(pIn0, vecIn0, p0);
+ }
+}
+
+static void _arm_radix4_butterfly_inverse_q15_mve(const arm_cfft_instance_q15 *S,q15_t *pSrc, uint32_t fftLen)
+{
+ q15x8_t vecTmp0, vecTmp1;
+ q15x8_t vecSum0, vecDiff0, vecSum1, vecDiff1;
+ q15x8_t vecA, vecB, vecC, vecD;
+ uint32_t blkCnt;
+ uint32_t n1, n2;
+ uint32_t stage = 0;
+ int32_t iter = 1;
+ static const int32_t strides[4] = {
+ (0 - 16) * (int32_t)sizeof(q15_t *), (4 - 16) * (int32_t)sizeof(q15_t *),
+ (8 - 16) * (int32_t)sizeof(q15_t *), (12 - 16) * (int32_t)sizeof(q15_t *)
+ };
+
+
+ /*
+ * Process first stages
+ * Each stage in middle stages provides two down scaling of the input
+ */
+ n2 = fftLen;
+ n1 = n2;
+ n2 >>= 2u;
+
+ for (int k = fftLen / 4u; k > 1; k >>= 2u)
+ {
+ q15_t const *p_rearranged_twiddle_tab_stride2 =
+ &S->rearranged_twiddle_stride2[
+ S->rearranged_twiddle_tab_stride2_arr[stage]];
+ q15_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[
+ S->rearranged_twiddle_tab_stride3_arr[stage]];
+ q15_t const *p_rearranged_twiddle_tab_stride1 =
+ &S->rearranged_twiddle_stride1[
+ S->rearranged_twiddle_tab_stride1_arr[stage]];
+
+ q15_t * pBase = pSrc;
+ for (int i = 0; i < iter; i++)
+ {
+ q15_t *inA = pBase;
+ q15_t *inB = inA + n2 * CMPLX_DIM;
+ q15_t *inC = inB + n2 * CMPLX_DIM;
+ q15_t *inD = inC + n2 * CMPLX_DIM;
+ q15_t const *pW1 = p_rearranged_twiddle_tab_stride1;
+ q15_t const *pW2 = p_rearranged_twiddle_tab_stride2;
+ q15_t const *pW3 = p_rearranged_twiddle_tab_stride3;
+ q15x8_t vecW;
+
+
+ blkCnt = n2 / 4;
+ /*
+ * load 4 x q15 complex pair
+ */
+ vecA = vldrhq_s16(inA);
+ vecC = vldrhq_s16(inC);
+ while (blkCnt > 0U)
+ {
+ vecB = vldrhq_s16(inB);
+ vecD = vldrhq_s16(inD);
+
+ vecSum0 = vhaddq(vecA, vecC);
+ vecDiff0 = vhsubq(vecA, vecC);
+
+ vecSum1 = vhaddq(vecB, vecD);
+ vecDiff1 = vhsubq(vecB, vecD);
+ /*
+ * [ 1 1 1 1 ] * [ A B C D ]' .* 1
+ */
+ vecTmp0 = vhaddq(vecSum0, vecSum1);
+ vst1q(inA, vecTmp0);
+ inA += 8;
+ /*
+ * [ 1 -1 1 -1 ] * [ A B C D ]'
+ */
+ vecTmp0 = vhsubq(vecSum0, vecSum1);
+ /*
+ * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
+ */
+ vecW = vld1q(pW2);
+ pW2 += 8;
+ vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q15x8_t);
+
+ vst1q(inB, vecTmp1);
+ inB += 8;
+ /*
+ * [ 1 -i -1 +i ] * [ A B C D ]'
+ */
+ vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
+ /*
+ * [ 1 -i -1 +i ] * [ A B C D ]'.* W1
+ */
+ vecW = vld1q(pW1);
+ pW1 += 8;
+ vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q15x8_t);
+ vst1q(inC, vecTmp1);
+ inC += 8;
+ /*
+ * [ 1 +i -1 -i ] * [ A B C D ]'
+ */
+ vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
+ /*
+ * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
+ */
+ vecW = vld1q(pW3);
+ pW3 += 8;
+ vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q15x8_t);
+ vst1q(inD, vecTmp1);
+ inD += 8;
+
+ vecA = vldrhq_s16(inA);
+ vecC = vldrhq_s16(inC);
+
+ blkCnt--;
+ }
+ pBase += CMPLX_DIM * n1;
+ }
+ n1 = n2;
+ n2 >>= 2u;
+ iter = iter << 2;
+ stage++;
+ }
+
+ /*
+ * start of Last stage process
+ */
+ uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
+ vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
+
+ /*
+ * load scheduling
+ */
+ vecA = (q15x8_t) vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
+ vecC = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 8);
+
+ blkCnt = (fftLen >> 4);
+ while (blkCnt > 0U)
+ {
+ vecSum0 = vhaddq(vecA, vecC);
+ vecDiff0 = vhsubq(vecA, vecC);
+
+ vecB = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 4);
+ vecD = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 12);
+
+ vecSum1 = vhaddq(vecB, vecD);
+ vecDiff1 = vhsubq(vecB, vecD);
+ /*
+ * pre-load for next iteration
+ */
+ vecA = (q15x8_t) vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
+ vecC = (q15x8_t) vldrwq_gather_base_s32(vecScGathAddr, 8);
+
+ vecTmp0 = vhaddq(vecSum0, vecSum1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64, (int32x4_t) vecTmp0);
+
+ vecTmp0 = vhsubq(vecSum0, vecSum1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64 + 4, (int32x4_t) vecTmp0);
+
+ vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, (int32x4_t) vecTmp0);
+
+ vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64 + 12, (int32x4_t) vecTmp0);
+
+ blkCnt--;
+ }
+}
+
+static void arm_cfft_radix4by2_inverse_q15_mve(const arm_cfft_instance_q15 *S, q15_t *pSrc, uint32_t fftLen)
+{
+ uint32_t n2;
+ q15_t *pIn0;
+ q15_t *pIn1;
+ const q15_t *pCoef = S->pTwiddle;
+
+ uint32_t blkCnt;
+ q15x8_t vecIn0, vecIn1, vecSum, vecDiff;
+ q15x8_t vecCmplxTmp, vecTw;
+ q15_t const *pCoefVec;
+
+ n2 = fftLen >> 1;
+
+ pIn0 = pSrc;
+ pIn1 = pSrc + fftLen;
+ pCoefVec = pCoef;
+
+ blkCnt = n2 / 4;
+
+ while (blkCnt > 0U)
+ {
+ vecIn0 = *(q15x8_t *) pIn0;
+ vecIn1 = *(q15x8_t *) pIn1;
+
+ vecIn0 = vecIn0 >> 1;
+ vecIn1 = vecIn1 >> 1;
+ vecSum = vhaddq(vecIn0, vecIn1);
+ vst1q(pIn0, vecSum);
+ pIn0 += 8;
+
+ vecTw = vld1q(pCoefVec);
+ pCoefVec += 8;
+
+ vecDiff = vhsubq(vecIn0, vecIn1);
+ vecCmplxTmp = vqrdmlsdhq(vuninitializedq_s16() , vecDiff, vecTw);
+ vecCmplxTmp = vqrdmladhxq(vecCmplxTmp, vecDiff, vecTw);
+ vst1q(pIn1, vecCmplxTmp);
+ pIn1 += 8;
+
+ blkCnt--;
+ }
+
+
+ _arm_radix4_butterfly_inverse_q15_mve(S, pSrc, n2);
+
+ _arm_radix4_butterfly_inverse_q15_mve(S, pSrc + fftLen, n2);
+
+ pIn0 = pSrc;
+ blkCnt = (fftLen << 1) >> 3;
+ while (blkCnt > 0U)
+ {
+ vecIn0 = *(q15x8_t *) pIn0;
+ vecIn0 = vecIn0 << 1;
+ vst1q(pIn0, vecIn0);
+ pIn0 += 8;
+ blkCnt--;
+ }
+ /*
+ * tail
+ * (will be merged thru tail predication)
+ */
+ blkCnt = (fftLen << 1) & 7;
+ while (blkCnt > 0U)
+ {
+ mve_pred16_t p0 = vctp16q(blkCnt);
+
+ vecIn0 = *(q15x8_t *) pIn0;
+ vecIn0 = vecIn0 << 1;
+ vstrhq_p(pIn0, vecIn0, p0);
+ }
+}
+
+/**
+ @ingroup groupTransforms
+ */
+
+/**
+ @addtogroup ComplexFFT
+ @{
+ */
+
+/**
+ @brief Processing function for Q15 complex FFT.
+ @param[in] S points to an instance of Q15 CFFT structure
+ @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
+ @param[in] ifftFlag flag that selects transform direction
+ - value = 0: forward transform
+ - value = 1: inverse transform
+ @param[in] bitReverseFlag flag that enables / disables bit reversal of output
+ - value = 0: disables bit reversal of output
+ - value = 1: enables bit reversal of output
+ @return none
+ */
+void arm_cfft_q15(
+ const arm_cfft_instance_q15 * S,
+ q15_t * pSrc,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag)
+{
+ uint32_t fftLen = S->fftLen;
+
+ if (ifftFlag == 1U) {
+
+ switch (fftLen) {
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ _arm_radix4_butterfly_inverse_q15_mve(S, pSrc, fftLen);
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_inverse_q15_mve(S, pSrc, fftLen);
+ break;
+ }
+ } else {
+ switch (fftLen) {
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ _arm_radix4_butterfly_q15_mve(S, pSrc, fftLen);
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_q15_mve(S, pSrc, fftLen);
+ break;
+ }
+ }
+
+
+ if (bitReverseFlag)
+ {
+
+ arm_bitreversal_16_inpl_mve((uint16_t*)pSrc, S->bitRevLength, S->pBitRevTable);
+
+ }
+}
+
+#else
+
+extern void arm_radix4_butterfly_q15(
+ q15_t * pSrc,
+ uint32_t fftLen,
+ const q15_t * pCoef,
+ uint32_t twidCoefModifier);
+
+extern void arm_radix4_butterfly_inverse_q15(
+ q15_t * pSrc,
+ uint32_t fftLen,
+ const q15_t * pCoef,
+ uint32_t twidCoefModifier);
+
+extern void arm_bitreversal_16(
+ uint16_t * pSrc,
+ const uint16_t bitRevLen,
+ const uint16_t * pBitRevTable);
+
+void arm_cfft_radix4by2_q15(
+ q15_t * pSrc,
+ uint32_t fftLen,
+ const q15_t * pCoef);
+
+void arm_cfft_radix4by2_inverse_q15(
+ q15_t * pSrc,
+ uint32_t fftLen,
+ const q15_t * pCoef);
+
+/**
+ @ingroup groupTransforms
+ */
+
+/**
+ @addtogroup ComplexFFT
+ @{
+ */
+
+/**
+ @brief Processing function for Q15 complex FFT.
+ @param[in] S points to an instance of Q15 CFFT structure
+ @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
+ @param[in] ifftFlag flag that selects transform direction
+ - value = 0: forward transform
+ - value = 1: inverse transform
+ @param[in] bitReverseFlag flag that enables / disables bit reversal of output
+ - value = 0: disables bit reversal of output
+ - value = 1: enables bit reversal of output
+ @return none
+ */
+
+void arm_cfft_q15(
+ const arm_cfft_instance_q15 * S,
+ q15_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag)
+{
+ uint32_t L = S->fftLen;
+
+ if (ifftFlag == 1U)
+ {
+ switch (L)
+ {
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ arm_radix4_butterfly_inverse_q15 ( p1, L, (q15_t*)S->pTwiddle, 1 );
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_inverse_q15 ( p1, L, S->pTwiddle );
+ break;
+ }
+ }
+ else
+ {
+ switch (L)
+ {
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ arm_radix4_butterfly_q15 ( p1, L, (q15_t*)S->pTwiddle, 1 );
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_q15 ( p1, L, S->pTwiddle );
+ break;
+ }
+ }
+
+ if ( bitReverseFlag )
+ arm_bitreversal_16 ((uint16_t*) p1, S->bitRevLength, S->pBitRevTable);
+}
+
+/**
+ @} end of ComplexFFT group
+ */
+
+void arm_cfft_radix4by2_q15(
+ q15_t * pSrc,
+ uint32_t fftLen,
+ const q15_t * pCoef)
+{
+ uint32_t i;
+ uint32_t n2;
+ q15_t p0, p1, p2, p3;
+#if defined (ARM_MATH_DSP)
+ q31_t T, S, R;
+ q31_t coeff, out1, out2;
+ const q15_t *pC = pCoef;
+ q15_t *pSi = pSrc;
+ q15_t *pSl = pSrc + fftLen;
+#else
+ uint32_t l;
+ q15_t xt, yt, cosVal, sinVal;
+#endif
+
+ n2 = fftLen >> 1U;
+
+#if defined (ARM_MATH_DSP)
+
+ for (i = n2; i > 0; i--)
+ {
+ coeff = read_q15x2_ia (&pC);
+
+ T = read_q15x2 (pSi);
+ T = __SHADD16(T, 0); /* this is just a SIMD arithmetic shift right by 1 */
+
+ S = read_q15x2 (pSl);
+ S = __SHADD16(S, 0); /* this is just a SIMD arithmetic shift right by 1 */
+
+ R = __QSUB16(T, S);
+
+ write_q15x2_ia (&pSi, __SHADD16(T, S));
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ out1 = __SMUAD(coeff, R) >> 16U;
+ out2 = __SMUSDX(coeff, R);
+#else
+ out1 = __SMUSDX(R, coeff) >> 16U;
+ out2 = __SMUAD(coeff, R);
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ write_q15x2_ia (&pSl, (q31_t)__PKHBT( out1, out2, 0 ) );
+ }
+
+#else /* #if defined (ARM_MATH_DSP) */
+
+ for (i = 0; i < n2; i++)
+ {
+ cosVal = pCoef[2 * i];
+ sinVal = pCoef[2 * i + 1];
+
+ l = i + n2;
+
+ xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
+ pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
+
+ yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
+ pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
+
+ pSrc[2 * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16U)) +
+ ((int16_t) (((q31_t) yt * sinVal) >> 16U)) );
+
+ pSrc[2 * l + 1] = (((int16_t) (((q31_t) yt * cosVal) >> 16U)) -
+ ((int16_t) (((q31_t) xt * sinVal) >> 16U)) );
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ /* first col */
+ arm_radix4_butterfly_q15( pSrc, n2, (q15_t*)pCoef, 2U);
+
+ /* second col */
+ arm_radix4_butterfly_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U);
+
+ n2 = fftLen >> 1U;
+ for (i = 0; i < n2; i++)
+ {
+ p0 = pSrc[4 * i + 0];
+ p1 = pSrc[4 * i + 1];
+ p2 = pSrc[4 * i + 2];
+ p3 = pSrc[4 * i + 3];
+
+ p0 <<= 1U;
+ p1 <<= 1U;
+ p2 <<= 1U;
+ p3 <<= 1U;
+
+ pSrc[4 * i + 0] = p0;
+ pSrc[4 * i + 1] = p1;
+ pSrc[4 * i + 2] = p2;
+ pSrc[4 * i + 3] = p3;
+ }
+
+}
+
+void arm_cfft_radix4by2_inverse_q15(
+ q15_t * pSrc,
+ uint32_t fftLen,
+ const q15_t * pCoef)
+{
+ uint32_t i;
+ uint32_t n2;
+ q15_t p0, p1, p2, p3;
+#if defined (ARM_MATH_DSP)
+ q31_t T, S, R;
+ q31_t coeff, out1, out2;
+ const q15_t *pC = pCoef;
+ q15_t *pSi = pSrc;
+ q15_t *pSl = pSrc + fftLen;
+#else
+ uint32_t l;
+ q15_t xt, yt, cosVal, sinVal;
+#endif
+
+ n2 = fftLen >> 1U;
+
+#if defined (ARM_MATH_DSP)
+
+ for (i = n2; i > 0; i--)
+ {
+ coeff = read_q15x2_ia (&pC);
+
+ T = read_q15x2 (pSi);
+ T = __SHADD16(T, 0); /* this is just a SIMD arithmetic shift right by 1 */
+
+ S = read_q15x2 (pSl);
+ S = __SHADD16(S, 0); /* this is just a SIMD arithmetic shift right by 1 */
+
+ R = __QSUB16(T, S);
+
+ write_q15x2_ia (&pSi, __SHADD16(T, S));
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ out1 = __SMUSD(coeff, R) >> 16U;
+ out2 = __SMUADX(coeff, R);
+#else
+ out1 = __SMUADX(R, coeff) >> 16U;
+ out2 = __SMUSD(__QSUB(0, coeff), R);
+#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
+
+ write_q15x2_ia (&pSl, (q31_t)__PKHBT( out1, out2, 0 ));
+ }
+
+#else /* #if defined (ARM_MATH_DSP) */
+
+ for (i = 0; i < n2; i++)
+ {
+ cosVal = pCoef[2 * i];
+ sinVal = pCoef[2 * i + 1];
+
+ l = i + n2;
+
+ xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
+ pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
+
+ yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
+ pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
+
+ pSrc[2 * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16U)) -
+ ((int16_t) (((q31_t) yt * sinVal) >> 16U)) );
+
+ pSrc[2 * l + 1] = (((int16_t) (((q31_t) yt * cosVal) >> 16U)) +
+ ((int16_t) (((q31_t) xt * sinVal) >> 16U)) );
+ }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+ /* first col */
+ arm_radix4_butterfly_inverse_q15( pSrc, n2, (q15_t*)pCoef, 2U);
+
+ /* second col */
+ arm_radix4_butterfly_inverse_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U);
+
+ n2 = fftLen >> 1U;
+ for (i = 0; i < n2; i++)
+ {
+ p0 = pSrc[4 * i + 0];
+ p1 = pSrc[4 * i + 1];
+ p2 = pSrc[4 * i + 2];
+ p3 = pSrc[4 * i + 3];
+
+ p0 <<= 1U;
+ p1 <<= 1U;
+ p2 <<= 1U;
+ p3 <<= 1U;
+
+ pSrc[4 * i + 0] = p0;
+ pSrc[4 * i + 1] = p1;
+ pSrc[4 * i + 2] = p2;
+ pSrc[4 * i + 3] = p3;
+ }
+}
+
+#endif /* defined(ARM_MATH_MVEI) */