summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q31.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q31.c')
-rw-r--r--Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q31.c847
1 files changed, 847 insertions, 0 deletions
diff --git a/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q31.c b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q31.c
new file mode 100644
index 0000000..78ce505
--- /dev/null
+++ b/Drivers/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q31.c
@@ -0,0 +1,847 @@
+/* ----------------------------------------------------------------------
+ * Project: CMSIS DSP Library
+ * Title: arm_cfft_q31.c
+ * Description: Combined Radix Decimation in Frequency CFFT fixed point processing function
+ *
+ * $Date: 23 April 2021
+ * $Revision: V1.9.0
+ *
+ * Target Processor: Cortex-M and Cortex-A cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dsp/transform_functions.h"
+
+
+
+#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
+
+#include "arm_vec_fft.h"
+
+
+static void _arm_radix4_butterfly_q31_mve(
+ const arm_cfft_instance_q31 * S,
+ q31_t *pSrc,
+ uint32_t fftLen)
+{
+ q31x4_t vecTmp0, vecTmp1;
+ q31x4_t vecSum0, vecDiff0, vecSum1, vecDiff1;
+ q31x4_t vecA, vecB, vecC, vecD;
+ uint32_t blkCnt;
+ uint32_t n1, n2;
+ uint32_t stage = 0;
+ int32_t iter = 1;
+ static const int32_t strides[4] = {
+ (0 - 16) * (int32_t)sizeof(q31_t *), (1 - 16) * (int32_t)sizeof(q31_t *),
+ (8 - 16) * (int32_t)sizeof(q31_t *), (9 - 16) * (int32_t)sizeof(q31_t *)
+ };
+
+
+ /*
+ * Process first stages
+ * Each stage in middle stages provides two down scaling of the input
+ */
+ n2 = fftLen;
+ n1 = n2;
+ n2 >>= 2u;
+
+ for (int k = fftLen / 4u; k > 1; k >>= 2u)
+ {
+ q31_t const *p_rearranged_twiddle_tab_stride2 =
+ &S->rearranged_twiddle_stride2[
+ S->rearranged_twiddle_tab_stride2_arr[stage]];
+ q31_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[
+ S->rearranged_twiddle_tab_stride3_arr[stage]];
+ q31_t const *p_rearranged_twiddle_tab_stride1 =
+ &S->rearranged_twiddle_stride1[
+ S->rearranged_twiddle_tab_stride1_arr[stage]];
+
+ q31_t * pBase = pSrc;
+ for (int i = 0; i < iter; i++)
+ {
+ q31_t *inA = pBase;
+ q31_t *inB = inA + n2 * CMPLX_DIM;
+ q31_t *inC = inB + n2 * CMPLX_DIM;
+ q31_t *inD = inC + n2 * CMPLX_DIM;
+ q31_t const *pW1 = p_rearranged_twiddle_tab_stride1;
+ q31_t const *pW2 = p_rearranged_twiddle_tab_stride2;
+ q31_t const *pW3 = p_rearranged_twiddle_tab_stride3;
+ q31x4_t vecW;
+
+
+ blkCnt = n2 / 2;
+ /*
+ * load 2 x q31 complex pair
+ */
+ vecA = vldrwq_s32(inA);
+ vecC = vldrwq_s32(inC);
+ while (blkCnt > 0U)
+ {
+ vecB = vldrwq_s32(inB);
+ vecD = vldrwq_s32(inD);
+
+ vecSum0 = vhaddq(vecA, vecC);
+ vecDiff0 = vhsubq(vecA, vecC);
+
+ vecSum1 = vhaddq(vecB, vecD);
+ vecDiff1 = vhsubq(vecB, vecD);
+ /*
+ * [ 1 1 1 1 ] * [ A B C D ]' .* 1
+ */
+ vecTmp0 = vhaddq(vecSum0, vecSum1);
+ vst1q(inA, vecTmp0);
+ inA += 4;
+ /*
+ * [ 1 -1 1 -1 ] * [ A B C D ]'
+ */
+ vecTmp0 = vhsubq(vecSum0, vecSum1);
+ /*
+ * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
+ */
+ vecW = vld1q(pW2);
+ pW2 += 4;
+ vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t);
+
+ vst1q(inB, vecTmp1);
+ inB += 4;
+ /*
+ * [ 1 -i -1 +i ] * [ A B C D ]'
+ */
+ vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
+ /*
+ * [ 1 -i -1 +i ] * [ A B C D ]'.* W1
+ */
+ vecW = vld1q(pW1);
+ pW1 += 4;
+ vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t);
+ vst1q(inC, vecTmp1);
+ inC += 4;
+ /*
+ * [ 1 +i -1 -i ] * [ A B C D ]'
+ */
+ vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
+ /*
+ * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
+ */
+ vecW = vld1q(pW3);
+ pW3 += 4;
+ vecTmp1 = MVE_CMPLX_MULT_FX_AxB(vecW, vecTmp0, q31x4_t);
+ vst1q(inD, vecTmp1);
+ inD += 4;
+
+ vecA = vldrwq_s32(inA);
+ vecC = vldrwq_s32(inC);
+
+ blkCnt--;
+ }
+ pBase += CMPLX_DIM * n1;
+ }
+ n1 = n2;
+ n2 >>= 2u;
+ iter = iter << 2;
+ stage++;
+ }
+
+ /*
+ * End of 1st stages process
+ * data is in 11.21(q21) format for the 1024 point as there are 3 middle stages
+ * data is in 9.23(q23) format for the 256 point as there are 2 middle stages
+ * data is in 7.25(q25) format for the 64 point as there are 1 middle stage
+ * data is in 5.27(q27) format for the 16 point as there are no middle stages
+ */
+
+ /*
+ * start of Last stage process
+ */
+ uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
+ vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
+
+ /*
+ * load scheduling
+ */
+ vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
+ vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
+
+ blkCnt = (fftLen >> 3);
+ while (blkCnt > 0U)
+ {
+ vecSum0 = vhaddq(vecA, vecC);
+ vecDiff0 = vhsubq(vecA, vecC);
+
+ vecB = vldrwq_gather_base_s32(vecScGathAddr, 8);
+ vecD = vldrwq_gather_base_s32(vecScGathAddr, 24);
+
+ vecSum1 = vhaddq(vecB, vecD);
+ vecDiff1 = vhsubq(vecB, vecD);
+ /*
+ * pre-load for next iteration
+ */
+ vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
+ vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
+
+ vecTmp0 = vhaddq(vecSum0, vecSum1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64, vecTmp0);
+
+ vecTmp0 = vhsubq(vecSum0, vecSum1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, vecTmp0);
+
+ vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64 + 16, vecTmp0);
+
+ vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64 + 24, vecTmp0);
+
+ blkCnt--;
+ }
+
+ /*
+ * output is in 11.21(q21) format for the 1024 point
+ * output is in 9.23(q23) format for the 256 point
+ * output is in 7.25(q25) format for the 64 point
+ * output is in 5.27(q27) format for the 16 point
+ */
+}
+
+
+static void arm_cfft_radix4by2_q31_mve(const arm_cfft_instance_q31 *S, q31_t *pSrc, uint32_t fftLen)
+{
+ uint32_t n2;
+ q31_t *pIn0;
+ q31_t *pIn1;
+ const q31_t *pCoef = S->pTwiddle;
+ uint32_t blkCnt;
+ q31x4_t vecIn0, vecIn1, vecSum, vecDiff;
+ q31x4_t vecCmplxTmp, vecTw;
+
+ n2 = fftLen >> 1;
+ pIn0 = pSrc;
+ pIn1 = pSrc + fftLen;
+
+ blkCnt = n2 / 2;
+
+ while (blkCnt > 0U)
+ {
+ vecIn0 = vld1q_s32(pIn0);
+ vecIn1 = vld1q_s32(pIn1);
+
+ vecIn0 = vecIn0 >> 1;
+ vecIn1 = vecIn1 >> 1;
+ vecSum = vhaddq(vecIn0, vecIn1);
+ vst1q(pIn0, vecSum);
+ pIn0 += 4;
+
+ vecTw = vld1q_s32(pCoef);
+ pCoef += 4;
+ vecDiff = vhsubq(vecIn0, vecIn1);
+
+ vecCmplxTmp = MVE_CMPLX_MULT_FX_AxConjB(vecDiff, vecTw, q31x4_t);
+ vst1q(pIn1, vecCmplxTmp);
+ pIn1 += 4;
+
+ blkCnt--;
+ }
+
+ _arm_radix4_butterfly_q31_mve(S, pSrc, n2);
+
+ _arm_radix4_butterfly_q31_mve(S, pSrc + fftLen, n2);
+
+ pIn0 = pSrc;
+ blkCnt = (fftLen << 1) >> 2;
+ while (blkCnt > 0U)
+ {
+ vecIn0 = vld1q_s32(pIn0);
+ vecIn0 = vecIn0 << 1;
+ vst1q(pIn0, vecIn0);
+ pIn0 += 4;
+ blkCnt--;
+ }
+ /*
+ * tail
+ * (will be merged thru tail predication)
+ */
+ blkCnt = (fftLen << 1) & 3;
+ if (blkCnt > 0U)
+ {
+ mve_pred16_t p0 = vctp32q(blkCnt);
+
+ vecIn0 = vld1q_s32(pIn0);
+ vecIn0 = vecIn0 << 1;
+ vstrwq_p(pIn0, vecIn0, p0);
+ }
+
+}
+
+static void _arm_radix4_butterfly_inverse_q31_mve(
+ const arm_cfft_instance_q31 *S,
+ q31_t *pSrc,
+ uint32_t fftLen)
+{
+ q31x4_t vecTmp0, vecTmp1;
+ q31x4_t vecSum0, vecDiff0, vecSum1, vecDiff1;
+ q31x4_t vecA, vecB, vecC, vecD;
+ uint32_t blkCnt;
+ uint32_t n1, n2;
+ uint32_t stage = 0;
+ int32_t iter = 1;
+ static const int32_t strides[4] = {
+ (0 - 16) * (int32_t)sizeof(q31_t *), (1 - 16) * (int32_t)sizeof(q31_t *),
+ (8 - 16) * (int32_t)sizeof(q31_t *), (9 - 16) * (int32_t)sizeof(q31_t *)
+ };
+
+ /*
+ * Process first stages
+ * Each stage in middle stages provides two down scaling of the input
+ */
+ n2 = fftLen;
+ n1 = n2;
+ n2 >>= 2u;
+
+ for (int k = fftLen / 4u; k > 1; k >>= 2u)
+ {
+ q31_t const *p_rearranged_twiddle_tab_stride2 =
+ &S->rearranged_twiddle_stride2[
+ S->rearranged_twiddle_tab_stride2_arr[stage]];
+ q31_t const *p_rearranged_twiddle_tab_stride3 = &S->rearranged_twiddle_stride3[
+ S->rearranged_twiddle_tab_stride3_arr[stage]];
+ q31_t const *p_rearranged_twiddle_tab_stride1 =
+ &S->rearranged_twiddle_stride1[
+ S->rearranged_twiddle_tab_stride1_arr[stage]];
+
+ q31_t * pBase = pSrc;
+ for (int i = 0; i < iter; i++)
+ {
+ q31_t *inA = pBase;
+ q31_t *inB = inA + n2 * CMPLX_DIM;
+ q31_t *inC = inB + n2 * CMPLX_DIM;
+ q31_t *inD = inC + n2 * CMPLX_DIM;
+ q31_t const *pW1 = p_rearranged_twiddle_tab_stride1;
+ q31_t const *pW2 = p_rearranged_twiddle_tab_stride2;
+ q31_t const *pW3 = p_rearranged_twiddle_tab_stride3;
+ q31x4_t vecW;
+
+ blkCnt = n2 / 2;
+ /*
+ * load 2 x q31 complex pair
+ */
+ vecA = vldrwq_s32(inA);
+ vecC = vldrwq_s32(inC);
+ while (blkCnt > 0U)
+ {
+ vecB = vldrwq_s32(inB);
+ vecD = vldrwq_s32(inD);
+
+ vecSum0 = vhaddq(vecA, vecC);
+ vecDiff0 = vhsubq(vecA, vecC);
+
+ vecSum1 = vhaddq(vecB, vecD);
+ vecDiff1 = vhsubq(vecB, vecD);
+ /*
+ * [ 1 1 1 1 ] * [ A B C D ]' .* 1
+ */
+ vecTmp0 = vhaddq(vecSum0, vecSum1);
+ vst1q(inA, vecTmp0);
+ inA += 4;
+ /*
+ * [ 1 -1 1 -1 ] * [ A B C D ]'
+ */
+ vecTmp0 = vhsubq(vecSum0, vecSum1);
+ /*
+ * [ 1 -1 1 -1 ] * [ A B C D ]'.* W2
+ */
+ vecW = vld1q(pW2);
+ pW2 += 4;
+ vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t);
+
+ vst1q(inB, vecTmp1);
+ inB += 4;
+ /*
+ * [ 1 -i -1 +i ] * [ A B C D ]'
+ */
+ vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
+ /*
+ * [ 1 -i -1 +i ] * [ A B C D ]'.* W1
+ */
+ vecW = vld1q(pW1);
+ pW1 += 4;
+ vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t);
+ vst1q(inC, vecTmp1);
+ inC += 4;
+ /*
+ * [ 1 +i -1 -i ] * [ A B C D ]'
+ */
+ vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
+ /*
+ * [ 1 +i -1 -i ] * [ A B C D ]'.* W3
+ */
+ vecW = vld1q(pW3);
+ pW3 += 4;
+ vecTmp1 = MVE_CMPLX_MULT_FX_AxConjB(vecTmp0, vecW, q31x4_t);
+ vst1q(inD, vecTmp1);
+ inD += 4;
+
+ vecA = vldrwq_s32(inA);
+ vecC = vldrwq_s32(inC);
+
+ blkCnt--;
+ }
+ pBase += CMPLX_DIM * n1;
+ }
+ n1 = n2;
+ n2 >>= 2u;
+ iter = iter << 2;
+ stage++;
+ }
+
+ /*
+ * End of 1st stages process
+ * data is in 11.21(q21) format for the 1024 point as there are 3 middle stages
+ * data is in 9.23(q23) format for the 256 point as there are 2 middle stages
+ * data is in 7.25(q25) format for the 64 point as there are 1 middle stage
+ * data is in 5.27(q27) format for the 16 point as there are no middle stages
+ */
+
+ /*
+ * start of Last stage process
+ */
+ uint32x4_t vecScGathAddr = vld1q_u32((uint32_t*)strides);
+ vecScGathAddr = vecScGathAddr + (uint32_t) pSrc;
+
+ /*
+ * load scheduling
+ */
+ vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
+ vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
+
+ blkCnt = (fftLen >> 3);
+ while (blkCnt > 0U)
+ {
+ vecSum0 = vhaddq(vecA, vecC);
+ vecDiff0 = vhsubq(vecA, vecC);
+
+ vecB = vldrwq_gather_base_s32(vecScGathAddr, 8);
+ vecD = vldrwq_gather_base_s32(vecScGathAddr, 24);
+
+ vecSum1 = vhaddq(vecB, vecD);
+ vecDiff1 = vhsubq(vecB, vecD);
+ /*
+ * pre-load for next iteration
+ */
+ vecA = vldrwq_gather_base_wb_s32(&vecScGathAddr, 64);
+ vecC = vldrwq_gather_base_s32(vecScGathAddr, 16);
+
+ vecTmp0 = vhaddq(vecSum0, vecSum1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64, vecTmp0);
+
+ vecTmp0 = vhsubq(vecSum0, vecSum1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64 + 8, vecTmp0);
+
+ vecTmp0 = MVE_CMPLX_ADD_FX_A_ixB(vecDiff0, vecDiff1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64 + 16, vecTmp0);
+
+ vecTmp0 = MVE_CMPLX_SUB_FX_A_ixB(vecDiff0, vecDiff1);
+ vstrwq_scatter_base_s32(vecScGathAddr, -64 + 24, vecTmp0);
+
+ blkCnt--;
+ }
+ /*
+ * output is in 11.21(q21) format for the 1024 point
+ * output is in 9.23(q23) format for the 256 point
+ * output is in 7.25(q25) format for the 64 point
+ * output is in 5.27(q27) format for the 16 point
+ */
+}
+
+static void arm_cfft_radix4by2_inverse_q31_mve(const arm_cfft_instance_q31 *S, q31_t *pSrc, uint32_t fftLen)
+{
+ uint32_t n2;
+ q31_t *pIn0;
+ q31_t *pIn1;
+ const q31_t *pCoef = S->pTwiddle;
+
+ //uint16_t twidCoefModifier = arm_cfft_radix2_twiddle_factor(S->fftLen);
+ //q31_t twidIncr = (2 * twidCoefModifier * sizeof(q31_t));
+ uint32_t blkCnt;
+ //uint64x2_t vecOffs;
+ q31x4_t vecIn0, vecIn1, vecSum, vecDiff;
+ q31x4_t vecCmplxTmp, vecTw;
+
+ n2 = fftLen >> 1;
+
+ pIn0 = pSrc;
+ pIn1 = pSrc + fftLen;
+ //vecOffs[0] = 0;
+ //vecOffs[1] = (uint64_t) twidIncr;
+ blkCnt = n2 / 2;
+
+ while (blkCnt > 0U)
+ {
+ vecIn0 = vld1q_s32(pIn0);
+ vecIn1 = vld1q_s32(pIn1);
+
+ vecIn0 = vecIn0 >> 1;
+ vecIn1 = vecIn1 >> 1;
+ vecSum = vhaddq(vecIn0, vecIn1);
+ vst1q(pIn0, vecSum);
+ pIn0 += 4;
+
+ //vecTw = (q31x4_t) vldrdq_gather_offset_s64(pCoef, vecOffs);
+ vecTw = vld1q_s32(pCoef);
+ pCoef += 4;
+ vecDiff = vhsubq(vecIn0, vecIn1);
+
+ vecCmplxTmp = MVE_CMPLX_MULT_FX_AxB(vecDiff, vecTw, q31x4_t);
+ vst1q(pIn1, vecCmplxTmp);
+ pIn1 += 4;
+
+ //vecOffs = vaddq((q31x4_t) vecOffs, 2 * twidIncr);
+ blkCnt--;
+ }
+
+ _arm_radix4_butterfly_inverse_q31_mve(S, pSrc, n2);
+
+ _arm_radix4_butterfly_inverse_q31_mve(S, pSrc + fftLen, n2);
+
+ pIn0 = pSrc;
+ blkCnt = (fftLen << 1) >> 2;
+ while (blkCnt > 0U)
+ {
+ vecIn0 = vld1q_s32(pIn0);
+ vecIn0 = vecIn0 << 1;
+ vst1q(pIn0, vecIn0);
+ pIn0 += 4;
+ blkCnt--;
+ }
+ /*
+ * tail
+ * (will be merged thru tail predication)
+ */
+ blkCnt = (fftLen << 1) & 3;
+ if (blkCnt > 0U)
+ {
+ mve_pred16_t p0 = vctp32q(blkCnt);
+
+ vecIn0 = vld1q_s32(pIn0);
+ vecIn0 = vecIn0 << 1;
+ vstrwq_p(pIn0, vecIn0, p0);
+ }
+
+}
+
+/**
+ @ingroup groupTransforms
+ */
+
+/**
+ @addtogroup ComplexFFT
+ @{
+ */
+
+/**
+ @brief Processing function for the Q31 complex FFT.
+ @param[in] S points to an instance of the fixed-point CFFT structure
+ @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
+ @param[in] ifftFlag flag that selects transform direction
+ - value = 0: forward transform
+ - value = 1: inverse transform
+ @param[in] bitReverseFlag flag that enables / disables bit reversal of output
+ - value = 0: disables bit reversal of output
+ - value = 1: enables bit reversal of output
+ @return none
+ */
+void arm_cfft_q31(
+ const arm_cfft_instance_q31 * S,
+ q31_t * pSrc,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag)
+{
+ uint32_t fftLen = S->fftLen;
+
+ if (ifftFlag == 1U) {
+
+ switch (fftLen) {
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ _arm_radix4_butterfly_inverse_q31_mve(S, pSrc, fftLen);
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_inverse_q31_mve(S, pSrc, fftLen);
+ break;
+ }
+ } else {
+ switch (fftLen) {
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ _arm_radix4_butterfly_q31_mve(S, pSrc, fftLen);
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_q31_mve(S, pSrc, fftLen);
+ break;
+ }
+ }
+
+
+ if (bitReverseFlag)
+ {
+
+ arm_bitreversal_32_inpl_mve((uint32_t*)pSrc, S->bitRevLength, S->pBitRevTable);
+
+ }
+}
+#else
+
+extern void arm_radix4_butterfly_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ const q31_t * pCoef,
+ uint32_t twidCoefModifier);
+
+extern void arm_radix4_butterfly_inverse_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ const q31_t * pCoef,
+ uint32_t twidCoefModifier);
+
+extern void arm_bitreversal_32(
+ uint32_t * pSrc,
+ const uint16_t bitRevLen,
+ const uint16_t * pBitRevTable);
+
+void arm_cfft_radix4by2_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ const q31_t * pCoef);
+
+void arm_cfft_radix4by2_inverse_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ const q31_t * pCoef);
+
+
+/**
+ @ingroup groupTransforms
+ */
+
+/**
+ @addtogroup ComplexFFT
+ @{
+ */
+
+/**
+ @brief Processing function for the Q31 complex FFT.
+ @param[in] S points to an instance of the fixed-point CFFT structure
+ @param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
+ @param[in] ifftFlag flag that selects transform direction
+ - value = 0: forward transform
+ - value = 1: inverse transform
+ @param[in] bitReverseFlag flag that enables / disables bit reversal of output
+ - value = 0: disables bit reversal of output
+ - value = 1: enables bit reversal of output
+ @return none
+ */
+void arm_cfft_q31(
+ const arm_cfft_instance_q31 * S,
+ q31_t * p1,
+ uint8_t ifftFlag,
+ uint8_t bitReverseFlag)
+{
+ uint32_t L = S->fftLen;
+
+ if (ifftFlag == 1U)
+ {
+ switch (L)
+ {
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ arm_radix4_butterfly_inverse_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_inverse_q31 ( p1, L, S->pTwiddle );
+ break;
+ }
+ }
+ else
+ {
+ switch (L)
+ {
+ case 16:
+ case 64:
+ case 256:
+ case 1024:
+ case 4096:
+ arm_radix4_butterfly_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
+ break;
+
+ case 32:
+ case 128:
+ case 512:
+ case 2048:
+ arm_cfft_radix4by2_q31 ( p1, L, S->pTwiddle );
+ break;
+ }
+ }
+
+ if ( bitReverseFlag )
+ arm_bitreversal_32 ((uint32_t*) p1, S->bitRevLength, S->pBitRevTable);
+}
+
+/**
+ @} end of ComplexFFT group
+ */
+
+void arm_cfft_radix4by2_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ const q31_t * pCoef)
+{
+ uint32_t i, l;
+ uint32_t n2;
+ q31_t xt, yt, cosVal, sinVal;
+ q31_t p0, p1;
+
+ n2 = fftLen >> 1U;
+ for (i = 0; i < n2; i++)
+ {
+ cosVal = pCoef[2 * i];
+ sinVal = pCoef[2 * i + 1];
+
+ l = i + n2;
+
+ xt = (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U);
+ pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U);
+
+ yt = (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U);
+ pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U);
+
+ mult_32x32_keep32_R(p0, xt, cosVal);
+ mult_32x32_keep32_R(p1, yt, cosVal);
+ multAcc_32x32_keep32_R(p0, yt, sinVal);
+ multSub_32x32_keep32_R(p1, xt, sinVal);
+
+ pSrc[2 * l] = p0 << 1;
+ pSrc[2 * l + 1] = p1 << 1;
+ }
+
+
+ /* first col */
+ arm_radix4_butterfly_q31 (pSrc, n2, (q31_t*)pCoef, 2U);
+
+ /* second col */
+ arm_radix4_butterfly_q31 (pSrc + fftLen, n2, (q31_t*)pCoef, 2U);
+
+ n2 = fftLen >> 1U;
+ for (i = 0; i < n2; i++)
+ {
+ p0 = pSrc[4 * i + 0];
+ p1 = pSrc[4 * i + 1];
+ xt = pSrc[4 * i + 2];
+ yt = pSrc[4 * i + 3];
+
+ p0 <<= 1U;
+ p1 <<= 1U;
+ xt <<= 1U;
+ yt <<= 1U;
+
+ pSrc[4 * i + 0] = p0;
+ pSrc[4 * i + 1] = p1;
+ pSrc[4 * i + 2] = xt;
+ pSrc[4 * i + 3] = yt;
+ }
+
+}
+
+void arm_cfft_radix4by2_inverse_q31(
+ q31_t * pSrc,
+ uint32_t fftLen,
+ const q31_t * pCoef)
+{
+ uint32_t i, l;
+ uint32_t n2;
+ q31_t xt, yt, cosVal, sinVal;
+ q31_t p0, p1;
+
+ n2 = fftLen >> 1U;
+ for (i = 0; i < n2; i++)
+ {
+ cosVal = pCoef[2 * i];
+ sinVal = pCoef[2 * i + 1];
+
+ l = i + n2;
+
+ xt = (pSrc[2 * i] >> 2U) - (pSrc[2 * l] >> 2U);
+ pSrc[2 * i] = (pSrc[2 * i] >> 2U) + (pSrc[2 * l] >> 2U);
+
+ yt = (pSrc[2 * i + 1] >> 2U) - (pSrc[2 * l + 1] >> 2U);
+ pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2U) + (pSrc[2 * i + 1] >> 2U);
+
+ mult_32x32_keep32_R(p0, xt, cosVal);
+ mult_32x32_keep32_R(p1, yt, cosVal);
+ multSub_32x32_keep32_R(p0, yt, sinVal);
+ multAcc_32x32_keep32_R(p1, xt, sinVal);
+
+ pSrc[2 * l] = p0 << 1U;
+ pSrc[2 * l + 1] = p1 << 1U;
+ }
+
+ /* first col */
+ arm_radix4_butterfly_inverse_q31( pSrc, n2, (q31_t*)pCoef, 2U);
+
+ /* second col */
+ arm_radix4_butterfly_inverse_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2U);
+
+ n2 = fftLen >> 1U;
+ for (i = 0; i < n2; i++)
+ {
+ p0 = pSrc[4 * i + 0];
+ p1 = pSrc[4 * i + 1];
+ xt = pSrc[4 * i + 2];
+ yt = pSrc[4 * i + 3];
+
+ p0 <<= 1U;
+ p1 <<= 1U;
+ xt <<= 1U;
+ yt <<= 1U;
+
+ pSrc[4 * i + 0] = p0;
+ pSrc[4 * i + 1] = p1;
+ pSrc[4 * i + 2] = xt;
+ pSrc[4 * i + 3] = yt;
+ }
+}
+#endif /* defined(ARM_MATH_MVEI) */