diff options
Diffstat (limited to 'Drivers/CMSIS/NN/Include/arm_nnfunctions.h')
-rw-r--r-- | Drivers/CMSIS/NN/Include/arm_nnfunctions.h | 3607 |
1 files changed, 1075 insertions, 2532 deletions
diff --git a/Drivers/CMSIS/NN/Include/arm_nnfunctions.h b/Drivers/CMSIS/NN/Include/arm_nnfunctions.h index deaade7..eccbb41 100644 --- a/Drivers/CMSIS/NN/Include/arm_nnfunctions.h +++ b/Drivers/CMSIS/NN/Include/arm_nnfunctions.h @@ -1,2532 +1,1075 @@ -/* - * Copyright (C) 2010-2022 Arm Limited or its affiliates. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* ---------------------------------------------------------------------- - * Project: CMSIS NN Library - * Title: arm_nnfunctions.h - * Description: Public header file for CMSIS NN Library - * - * $Date: 19 April 2022 - * $Revision: V.9.0.0 - * - * Target Processor: Cortex-M CPUs - * -------------------------------------------------------------------- */ - -/** - \mainpage CMSIS NN Software Library - * - * Introduction - * ------------ - * - * This user manual describes the CMSIS NN software library, - * a collection of efficient neural network kernels developed to maximize the - * performance and minimize the memory footprint of neural networks on Cortex-M processor cores. - * - * The library is divided into a number of functions each covering a specific category: - * - Convolution Functions - * - Activation Functions - * - Fully-connected Layer Functions - * - SVDF Layer Functions - * - Pooling Functions - * - Softmax Functions - * - Basic math Functions - * - * The library has separate functions for operating on different weight and activation data - * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the - * kernels are included in the function description. The implementation details are also - * described in this paper [1]. - * - * Supported Processors - * ------- - * CMSIS-NN targets Cortex-M processors with typically three different implementations for each function. Each - * targets a different group of processors. - * - Processors without SIMD capability (e.g, Cortex-M0) - * - Processors with DSP extention (e.g Cortex-M4) - * - Processors with MVE extension (e.g Cortex-M55) - * The right implementation is picked through feature flags and the user usually does not have to explicit set it. - * - * Function Classification - * -------- - * The functions can be classified into two segments - * - Legacy functions supporting ARM's internal symmetric quantization(8 bits). - * - Functions that support TensorFlow Lite framework with symmetric quantization(8 bits). - * - * The legacy functions can be identified with their suffix of _q7 or _q15 and are no new development is done there. - * The article in [2] describes in detail how to run a network using the legacy functions. - * - * The functions supporting TensorFlow Lite framework is identified by the _s8 suffix and can be invoked from TFL - * micro. The functions are bit exact to TensorFlow Lite. Refer to the TensorFlow's documentation in [3] on how to run - * a TensorFlow Lite model using optimized CMSIS-NN kernels. - * - * Block Diagram - * -------- - * \image html CMSIS-NN-OVERVIEW.PNG - * - * Examples - * -------- - * - * The library ships with a number of examples which demonstrate how to use the library functions. - * - * Pre-processor Macros - * ------------ - * - * Each library project have different pre-processor macros. - * - * - ARM_MATH_DSP: - * - * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions(DSP extension). - * - * - ARM_MATH_MVEI: - * - * Define macro ARM_MATH_MVEI, If the silicon supports M-Profile Vector Extension. - - * - ARM_MATH_AUTOVECTORIZE - * Used in conjucture with ARM_MATH_MVEI to let the compiler auto vectorize for the functions that uses inline - * assembly. It does not affect functions that use C or intrinsics. - * - ARM_MATH_BIG_ENDIAN: - * - * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. This is supported only for the legacy - * functions i.e, functions targetted at TensorFlow Lite do not support big endianness. By default library builds for - * little endian targets. - * - * - ARM_NN_TRUNCATE: - * - * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation. - * - * - * Copyright Notice - * ------------ - * - * Copyright (C) 2010-2019 Arm Limited. All rights reserved. - * - * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601 - * - * [2] Converting a Neural Network for Arm Cortex-M with CMSIS-NN - * - https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/converting-a-neural-network-for-arm-cortex-m-with-cmsis-nn/single-page - * [3] https://www.tensorflow.org/lite/microcontrollers/library - * - * [4] https://github.com/ARM-software/CMSIS_5/tree/develop/CMSIS/NN#legacy-vs-tfl-micro-compliant-apis - */ - -/** - * @defgroup groupNN Neural Network Functions - * A collection of functions to perform basic operations for neural network layers. Functions with a _s8 suffix support - * TensorFlow Lite framework. - */ - -#ifndef _ARM_NNFUNCTIONS_H -#define _ARM_NNFUNCTIONS_H - -#include "arm_nn_math_types.h" -#include "arm_nn_types.h" - -#define USE_INTRINSIC - -//#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */ - -#ifdef __cplusplus -extern "C" { -#endif - -/** - * @brief Struct for specifying activation function types - * - */ -typedef enum -{ - ARM_SIGMOID = 0, - /**< Sigmoid activation function */ - ARM_TANH = 1, - /**< Tanh activation function */ -} arm_nn_activation_type; - -/** - * @defgroup NNConv Convolution Functions - * - * Collection of convolution, depthwise convolution functions and their variants. - * - * The convolution is implemented in 2 steps: im2col and GEMM - * - * im2col is a process of converting each patch of image data into - * a column. After im2col, the convolution is computed as matrix-matrix - * multiplication. - * - * To reduce the memory footprint, the im2col is performed partially. - * Each iteration, only a few column (i.e., patches) are generated and - * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions. - * - */ - -/** - * @brief s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in - cmsis-nn - * to perform the convolution. - * - * @param[in, out] ctx Function context that contains the additional buffer if required by the function. - arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required - * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). - * Range of conv_params->input_offset : [-127, 128] - * Range of conv_params->output_offset : [-128, 127] - * @param[in] quant_params Per-channel quantization info. - * It contains the multiplier and shift values to be applied to each output channel - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * @param[in] input_data Input (activation) data pointer. Data type: int8 - * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the - * spatial filter dimensions - * @param[in] filter_data Filter data pointer. Data type: int8 - * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] - * @param[in] bias_data Bias data pointer. Data type: int32 - * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] - * @param[out] output_data Output data pointer. Data type: int8 - * - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or, - * <code>ARM_MATH_SUCCESS</code> on successful completion. - * - */ -arm_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx, - const cmsis_nn_conv_params *conv_params, - const cmsis_nn_per_channel_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q7_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int32_t *bias_data, - const cmsis_nn_dims *output_dims, - q7_t *output_data); - -/** - * @brief Get the required buffer size for arm_convolve_wrapper_s8 - * - * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). - * Range of conv_params->input_offset : [-127, 128] - * Range of conv_params->output_offset : [-128, 127] - * @param[in] input_dims Input (activation) dimensions. Format: [N, H, W, C_IN] - * @param[in] filter_dims Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial - * filter dimensions - * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] - * - * @return The function returns required buffer size(bytes) - * - */ -int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params *conv_params, - const cmsis_nn_dims *input_dims, - const cmsis_nn_dims *filter_dims, - const cmsis_nn_dims *output_dims); - -/** - * @brief s16 convolution layer wrapper function with the main purpose to call the optimal kernel available in - cmsis-nn - * to perform the convolution. - * - * @param[in, out] ctx Function context that contains the additional buffer if required by the function. - arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required - * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). - * conv_params->input_offset : Not used - * conv_params->output_offset : Not used - * @param[in] quant_params Per-channel quantization info. - * It contains the multiplier and shift values to be applied to each output channel - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * @param[in] input_data Input (activation) data pointer. Data type: int16 - * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the - * spatial filter dimensions - * @param[in] filter_data Filter data pointer. Data type: int8 - * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] - * @param[in] bias_data Bias data pointer. Data type: int64 - * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] - * @param[out] output_data Output data pointer. Data type: int16 - * - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or, - * <code>ARM_MATH_SUCCESS</code> on successful completion. - * - */ -arm_status arm_convolve_wrapper_s16(const cmsis_nn_context *ctx, - const cmsis_nn_conv_params *conv_params, - const cmsis_nn_per_channel_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q15_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int64_t *bias_data, - const cmsis_nn_dims *output_dims, - q15_t *output_data); - -/** - * @brief Get the required buffer size for arm_convolve_wrapper_s16 - * - * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). - * conv_params->input_offset : Not used - * conv_params->output_offset : Not used - * @param[in] input_dims Input (activation) dimensions. Format: [N, H, W, C_IN] - * @param[in] filter_dims Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial - * filter dimensions - * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] - * - * @return The function returns required buffer size(bytes) - * - */ -int32_t arm_convolve_wrapper_s16_get_buffer_size(const cmsis_nn_conv_params *conv_params, - const cmsis_nn_dims *input_dims, - const cmsis_nn_dims *filter_dims, - const cmsis_nn_dims *output_dims); - -/** - * @brief Basic s8 convolution function - * @param[in, out] ctx Function context that contains the additional buffer if required by the function. - arm_convolve_s8_get_buffer_size will return the buffer_size if required - * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). - * Range of conv_params->input_offset : [-127, 128] - * Range of conv_params->output_offset : [-128, 127] - * @param[in] quant_params Per-channel quantization info. - * It contains the multiplier and shift values to be applied to each output channel - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * @param[in] input_data Input (activation) data pointer. Data type: int8 - * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the - * spatial filter dimensions - * @param[in] filter_data Filter data pointer. Data type: int8 - * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] - * @param[in] bias_data Optional bias data pointer. Data type: int32 - * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] - * @param[out] output_data Output data pointer. Data type: int8 - - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - * @details - * 1. Supported framework: TensorFlow Lite micro - * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. - * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details. - * - */ -arm_status arm_convolve_s8(const cmsis_nn_context *ctx, - const cmsis_nn_conv_params *conv_params, - const cmsis_nn_per_channel_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q7_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int32_t *bias_data, - const cmsis_nn_dims *output_dims, - q7_t *output_data); - -/** - * @brief Get the required buffer size for s8 convolution function - * - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK - * are the spatial filter dimensions - * @return The function returns required buffer size(bytes) - * - */ -int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims); - -/** - * @brief Basic s16 convolution function - * @param[in, out] ctx Function context that contains the additional buffer if required by the function. - arm_convolve_s16_get_buffer_size will return the buffer_size if required - * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). - * conv_params->input_offset : Not used - * conv_params->output_offset : Not used - * @param[in] quant_params Per-channel quantization info. - * It contains the multiplier and shift values to be applied to each output channel - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * @param[in] input_data Input (activation) data pointer. Data type: int16 - * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the - * spatial filter dimensions - * @param[in] filter_data Filter data pointer. Data type: int8 - * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] - * @param[in] bias_data Optional bias data pointer. Data type: int64 - * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] - * @param[out] output_data Output data pointer. Data type: int16 - - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - * @details - * 1. Supported framework: TensorFlow Lite micro - * 2. q7/q15 is used as data type eventhough it is s8/s16 data. It is done so to be consistent with existing APIs. - * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details. - * - */ -arm_status arm_convolve_s16(const cmsis_nn_context *ctx, - const cmsis_nn_conv_params *conv_params, - const cmsis_nn_per_channel_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q15_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int64_t *bias_data, - const cmsis_nn_dims *output_dims, - q15_t *output_data); -/** - * @brief Optimized s16 convolution function - * @param[in, out] ctx Function context that contains the additional buffer if required by the function. - arm_convolve_fast_s16_get_buffer_size will return the buffer_size if required - * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). - * conv_params->input_offset : Not used - * conv_params->output_offset : Not used - * @param[in] quant_params Per-channel quantization info. - * It contains the multiplier and shift values to be applied to each output channel - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * @param[in] input_data Input (activation) data pointer. Data type: int16 - * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the - * spatial filter dimensions. (filter_dims->w * filter_dims->h * input_dims->c) must not - exceed 512 - * @param[in] filter_data Filter data pointer. Data type: int8 - * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] - * @param[in] bias_data Optional bias data pointer. Data type: int64 - * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] - * @param[out] output_data Output data pointer. Data type: int16 - - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - * @details - * 1. Supported framework: TensorFlow Lite micro - * 2. q7/q15 is used as data type eventhough it is s8/s16 data. It is done so to be consistent with existing APIs. - * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details. - * 4. Implementation supports kernel volumes (filter width * filter height * input channels) < 512. - * - */ - -arm_status arm_convolve_fast_s16(const cmsis_nn_context *ctx, - const cmsis_nn_conv_params *conv_params, - const cmsis_nn_per_channel_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q15_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int64_t *bias_data, - const cmsis_nn_dims *output_dims, - q15_t *output_data); - -/** - * @brief Get the required buffer size for s16 convolution function - * - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK - * are the spatial filter dimensions - * @return The function returns required buffer size(bytes) - * - */ -int32_t arm_convolve_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims); - -/** - * @brief Get the required buffer size for fast s16 convolution function - * - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK - * are the spatial filter dimensions - * @return The function returns required buffer size(bytes) - * - */ -int32_t arm_convolve_fast_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims); - -/** - * @brief Basic Q7 convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - */ -arm_status arm_convolve_HWC_q7_basic(const q7_t *Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q7_t *wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q7_t *bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t *Im_out, - const uint16_t dim_im_out, - q15_t *bufferA, - q7_t *bufferB); - -/** - * @brief Basic Q7 convolution function (non-square shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimension x - * @param[in] dim_im_in_y input tensor dimension y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding size x - * @param[in] padding_y padding size y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns <code>ARM_MATH_SUCCESS</code> - */ -arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t *Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q7_t *wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q7_t *bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t *Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t *bufferA, - q7_t *bufferB); - -/** - * @brief Basic Q15 convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - */ -arm_status arm_convolve_HWC_q15_basic(const q15_t *Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q15_t *wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q15_t *bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q15_t *Im_out, - const uint16_t dim_im_out, - q15_t *bufferA, - q7_t *bufferB); - -/** - * @brief Fast Q7 convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some contraints: - * ch_im_in is multiple of 4 - * ch_im_out is multiple of 2 - */ -arm_status arm_convolve_HWC_q7_fast(const q7_t *Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q7_t *wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q7_t *bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t *Im_out, - const uint16_t dim_im_out, - q15_t *bufferA, - q7_t *bufferB); - -/** - * @brief Fast Q7 convolution function (non-sqaure shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimension x - * @param[in] dim_im_in_y input tensor dimension y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding size x - * @param[in] padding_y padding size y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some contraints: - * ch_im_in is multiple of 4 - * ch_im_out is multiple of 2 - */ - -arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t *Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q7_t *wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q7_t *bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t *Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t *bufferA, - q7_t *bufferB); - -/** - * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimension x - * @param[in] dim_im_in_y input tensor dimension y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding size x - * @param[in] padding_y padding size y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or, - * <code>ARM_MATH_SUCCESS</code> on successful completion. - * - * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1 - * and dim_kernel_y=1). It can be used for - * second half of MobileNets after depthwise separable convolution. - * - * This function is the version with full list of optimization tricks, but with - * some contraints: - * ch_im_in is multiple of 4 - * ch_im_out is multiple of 2 - */ -arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t *Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q7_t *wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q7_t *bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t *Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t *bufferA, - q7_t *bufferB); - -/** - * @brief Fast s8 version for 1x1 convolution (non-square shape) - * - * @param[in, out] ctx Function context that contains the additional buffer if required by the function. - arm_convolve_1x1_s8_fast_get_buffer_size will return the buffer_size if required - * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). - * Range of conv_params->input_offset : [-127, 128] - * Range of conv_params->output_offset : [-128, 127] - * @param[in] quant_params Per-channel quantization info. - * It contains the multiplier and shift values to be applied to each output channel - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * @param[in] input_data Input (activation) data pointer. Data type: int8 - * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, 1, C_IN] - * @param[in] filter_data Filter data pointer. Data type: int8 - * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] - * @param[in] bias_data Optional bias data pointer. Data type: int32 - * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] - * @param[out] output_data Output data pointer. Data type: int8 - * - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or, - * <code>ARM_MATH_SUCCESS</code> on successful completion. - * - * @details - * - Supported framework : TensorFlow Lite Micro - * - The following constrains on the arguments apply - * -# input_dims->c is a multiple of 4 - * -# conv_params->padding.w = conv_params->padding.h = 0 - * -# conv_params->stride.w = conv_params->stride.h = 1 - * - */ -arm_status arm_convolve_1x1_s8_fast(const cmsis_nn_context *ctx, - const cmsis_nn_conv_params *conv_params, - const cmsis_nn_per_channel_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q7_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int32_t *bias_data, - const cmsis_nn_dims *output_dims, - q7_t *output_data); - -/** - * @brief Get the required buffer size for arm_convolve_1x1_s8_fast - * - * @param[in] input_dims Input (activation) dimensions - * @return The function returns the required buffer size in bytes - * - */ -int32_t arm_convolve_1x1_s8_fast_get_buffer_size(const cmsis_nn_dims *input_dims); - -/** - * @brief 1xn convolution - * - * @param[in, out] ctx Function context that contains the additional buffer if required by the function. - arm_convolve_1_x_n_s8_get_buffer_size will return the buffer_size if required - * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...). - * Range of conv_params->input_offset : [-127, 128] - * Range of conv_params->output_offset : [-128, 127] - * @param[in] quant_params Per-channel quantization info. - * It contains the multiplier and shift values to be applied to each output channel - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * @param[in] input_data Input (activation) data pointer. Data type: int8 - * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the horizontal - * spatial filter dimension - * @param[in] filter_data Filter data pointer. Data type: int8 - * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] - * @param[in] bias_data Optional bias data pointer. Data type: int32 - * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] - * @param[out] output_data Output data pointer. Data type: int8 - * - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or, - * <code>ARM_MATH_SUCCESS</code> on successful completion. - * - * @details - * - Supported framework : TensorFlow Lite Micro - * - The following constrains on the arguments apply - * -# input_dims->n equals 1 - * -# ouput_dims->w is a multiple of 4 - * -# Explicit constraints(since it is for 1xN convolution) - * -## input_dims->h equals 1 - * -## output_dims->h equals 1 - * -## filter_dims->h equals 1 - *@todo Remove constraint on output_dims->w to make the function generic. - * - */ -arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context *ctx, - const cmsis_nn_conv_params *conv_params, - const cmsis_nn_per_channel_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q7_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int32_t *bias_data, - const cmsis_nn_dims *output_dims, - q7_t *output_data); - -/** - * @brief Get the required additional buffer size for 1xn convolution - * - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the - * horizontal spatial filter dimension - * @return The function returns required buffer size(bytes) - * - */ -int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims); - -/** - * @brief Q7 version of convolution for RGB image - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. - * - * This kernel is written exclusively for convolution with ch_im_in - * equals 3. This applies on the first layer of CNNs which has input - * image with RGB format. - */ - -arm_status arm_convolve_HWC_q7_RGB(const q7_t *Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q7_t *wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q7_t *bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t *Im_out, - const uint16_t dim_im_out, - q15_t *bufferA, - q7_t *bufferB); - -/** - * @brief Fast Q15 convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some contraints: - * ch_im_in is multiple of 2 - * ch_im_out is multiple of 2 - * dim_im_out is a multiple of 2 - */ - -arm_status arm_convolve_HWC_q15_fast(const q15_t *Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q15_t *wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q15_t *bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q15_t *Im_out, - const uint16_t dim_im_out, - q15_t *bufferA, - q7_t *bufferB); - -/** - * @brief Fast Q15 convolution function (non-sqaure shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimension x - * @param[in] dim_im_in_y input tensor dimension y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding size x - * @param[in] padding_y padding size y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. - * - * @details - * - * <b>Buffer size:</b> - * - * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel - * - * bufferB size: 0 - * - * <b>Input dimension constraints:</b> - * - * ch_im_in is multiple of 2 - * - * ch_im_out is multipe of 2 - * - */ - -arm_status arm_convolve_HWC_q15_fast_nonsquare(const q15_t *Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q15_t *wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q15_t *bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q15_t *Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t *bufferA, - q7_t *bufferB); - -/** - * @brief Q7 depthwise separable convolution function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some contraints: - * ch_im_in is multiple of 2 - * ch_im_out is multiple of 2 - */ - -arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t *Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const q7_t *wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const q7_t *bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t *Im_out, - const uint16_t dim_im_out, - q15_t *bufferA, - q7_t *bufferB); - -/** - * @brief Q7 depthwise separable convolution function (non-square shape) - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in_x input tensor dimension x - * @param[in] dim_im_in_y input tensor dimension y - * @param[in] ch_im_in number of input tensor channels - * @param[in] wt pointer to kernel weights - * @param[in] ch_im_out number of filters, i.e., output tensor channels - * @param[in] dim_kernel_x filter kernel size x - * @param[in] dim_kernel_y filter kernel size y - * @param[in] padding_x padding sizes x - * @param[in] padding_y padding sizes y - * @param[in] stride_x convolution stride x - * @param[in] stride_y convolution stride y - * @param[in] bias pointer to bias - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in,out] Im_out pointer to output tensor - * @param[in] dim_im_out_x output tensor dimension x - * @param[in] dim_im_out_y output tensor dimension y - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] bufferB pointer to buffer space for output - * @return The function returns either - * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. - * - * This function is the version with full list of optimization tricks, but with - * some contraints: - * ch_im_in is multiple of 2 - * ch_im_out is multiple of 2 - */ -arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t *Im_in, - const uint16_t dim_im_in_x, - const uint16_t dim_im_in_y, - const uint16_t ch_im_in, - const q7_t *wt, - const uint16_t ch_im_out, - const uint16_t dim_kernel_x, - const uint16_t dim_kernel_y, - const uint16_t padding_x, - const uint16_t padding_y, - const uint16_t stride_x, - const uint16_t stride_y, - const q7_t *bias, - const uint16_t bias_shift, - const uint16_t out_shift, - q7_t *Im_out, - const uint16_t dim_im_out_x, - const uint16_t dim_im_out_y, - q15_t *bufferA, - q7_t *bufferB); - -/** - * @brief Wrapper function to pick the right optimized s8 depthwise convolution function - * - * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function - * definition file to see if an additional buffer is required. - * Optional function {API}_get_buffer_size() provides the buffer - * size if required. - * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...) - * dw_conv_params->dilation is not used. - * Range of dw_conv_params->input_offset : [-127, 128] - * Range of dw_conv_params->output_offset : [-128, 127] - * @param[in] quant_params Per-channel quantization info. - * It contains the multiplier and shift values to be applied to each - * output channel - * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] - * Batch argument N is not used and assumed to be 1. - * @param[in] input_data Input (activation) data pointer. Data type: int8 - * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] - * @param[in] filter_data Filter data pointer. Data type: int8 - * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] - * @param[in] bias_data Bias data pointer. Data type: int32 - * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT] - * @param[in, out] output_data Output data pointer. Data type: int8 - * @return The function returns - * <code>ARM_MATH_SUCCESS</code> - Successful completion. - * - * @details - * - Supported framework: TensorFlow Lite - * - Picks one of the the following functions - * -# arm_depthwise_conv_s8() - * -# arm_depthwise_conv_3x3_s8() - Cortex-M CPUs with DSP extension only - * -# arm_depthwise_conv_s8_opt() - * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. - * - Check details of arm_depthwise_conv_s8_opt() for potential data that can be accessed outside of the - * boundary. - */ -arm_status arm_depthwise_conv_wrapper_s8(const cmsis_nn_context *ctx, - const cmsis_nn_dw_conv_params *dw_conv_params, - const cmsis_nn_per_channel_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q7_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int32_t *bias_data, - const cmsis_nn_dims *output_dims, - q7_t *output_data); - -/** - * @brief Get size of additional buffer required by arm_depthwise_conv_wrapper_s8() - * - * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...) - * dw_conv_params->dilation is not used. - * Range of dw_conv_params->input_offset : [-127, 128] - * Range of dw_conv_params->input_offset : [-128, 127] - * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] - * Batch argument N is not used and assumed to be 1. - * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] - * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT] - * @return Size of additional memory required for optimizations in bytes. - * - */ -int32_t arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params *dw_conv_params, - const cmsis_nn_dims *input_dims, - const cmsis_nn_dims *filter_dims, - const cmsis_nn_dims *output_dims); - -/** - * @brief Basic s8 depthwise convolution function that doesn't have any constraints on the input dimensions. - * - * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function - * definition file to see if an additional buffer is required. - * Optional function {API}_get_buffer_size() provides the buffer - * size if an additional buffer is required. - * exists if additional memory is. - * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...) - * dw_conv_params->dilation is not used. - * Range of dw_conv_params->input_offset : [-127, 128] - * Range of dw_conv_params->input_offset : [-128, 127] - * @param[in] quant_params Per-channel quantization info. - * It contains the multiplier and shift values to be applied to each - * output channel - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * Batch argument N is not used. - * @param[in] input_data Input (activation) data pointer. Data type: int8 - * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] - * @param[in] filter_data Filter data pointer. Data type: int8 - * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] - * @param[in] bias_data Bias data pointer. Data type: int32 - * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] - * @param[in, out] output_data Output data pointer. Data type: int8 - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - * @details - * - Supported framework: TensorFlow Lite - * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. - */ -arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx, - const cmsis_nn_dw_conv_params *dw_conv_params, - const cmsis_nn_per_channel_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q7_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int32_t *bias_data, - const cmsis_nn_dims *output_dims, - q7_t *output_data); - -/** - * @brief Basic s16 depthwise convolution function that doesn't have any constraints on the input dimensions. - * - * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function - * definition file to see if an additional buffer is required. - * Optional function {API}_get_buffer_size() provides the buffer - * size if an additional buffer is required. - * exists if additional memory is. - * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...) - * conv_params->input_offset : Not used - * conv_params->output_offset : Not used - * @param[in] quant_params Per-channel quantization info. - * It contains the multiplier and shift values to be applied to each - * output channel - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * Batch argument N is not used. - * @param[in] input_data Input (activation) data pointer. Data type: int8 - * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] - * @param[in] filter_data Filter data pointer. Data type: int8 - * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] - * @param[in] bias_data Bias data pointer. Data type: int64 - * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT] - * @param[in, out] output_data Output data pointer. Data type: int16 - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - * @details - * - Supported framework: TensorFlow Lite - * - q15 is used as data type eventhough it is s16 data. It is done so to be consistent with existing APIs. - */ -arm_status arm_depthwise_conv_s16(const cmsis_nn_context *ctx, - const cmsis_nn_dw_conv_params *dw_conv_params, - const cmsis_nn_per_channel_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q15_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int64_t *bias_data, - const cmsis_nn_dims *output_dims, - q15_t *output_data); - -/** - * @brief Optimized s8 depthwise convolution function for 3x3 kernel size with some constraints on - * the input arguments(documented below). Refer arm_depthwise_conv_s8() for function - * argument details. - * - * @return The function returns one of the following - * <code>ARM_MATH_SIZE_MISMATCH</code> - Unsupported dimension of tensors - * <code>ARM_MATH_ARGUMENT_ERROR</code> - Unsupported pad size along the x axis - * <code>ARM_MATH_SUCCESS</code> - Successful operation - * - * @details - * - Supported framework : TensorFlow Lite Micro - * - The following constrains on the arguments apply - * -# Number of input channel equals number of output channels - * -# Filter height and width equals 3 - * -# Padding along x is either 0 or 1. - * - */ -arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx, - const cmsis_nn_dw_conv_params *dw_conv_params, - const cmsis_nn_per_channel_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q7_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int32_t *bias_data, - const cmsis_nn_dims *output_dims, - q7_t *output_data); - -/** - * @brief Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel. - * Refer arm_depthwise_conv_s8() for function argument details. - * - * @return The function returns one of the following - * <code>ARM_MATH_SIZE_MISMATCH</code> - input channel != output channel or - * ch_mult != 1 - * <code>ARM_MATH_SUCCESS</code> - Successful operation - * - * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read out - * for the following if MVE optimizations(Arm Helium Technology) are used. - * - Output shift - * - Output multiplier - * - Output bias - * - kernel - * @details - * - Supported framework: TensorFlow Lite - * - The following constrains on the arguments apply - * -# Number of input channel equals number of output channels or ch_mult equals 1 - * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. - * - Reccomended when number of channels is 4 or greater. - * - */ -arm_status arm_depthwise_conv_s8_opt(const cmsis_nn_context *ctx, - const cmsis_nn_dw_conv_params *dw_conv_params, - const cmsis_nn_per_channel_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q7_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int32_t *bias_data, - const cmsis_nn_dims *output_dims, - q7_t *output_data); - -/** - * @brief Get the required buffer size for optimized s8 depthwise convolution - * function with constraint that in_channel equals out_channel. - * @param[in] input_dims Input (activation) tensor dimensions. Format: [1, H, W, C_IN] - * Batch argument N is not used. - * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT] - * @return The function returns required buffer size in bytes - * - */ -int32_t arm_depthwise_conv_s8_opt_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims); - -/** - * @defgroup FC Fully-connected Layer Functions - * - * Collection of fully-connected and matrix multiplication functions. - * - * Fully-connected layer is basically a matrix-vector multiplication - * with bias. The matrix is the weights and the input/output vectors - * are the activation values. Supported {weight, activation} precisions - * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}. - * - * Here we have two types of kernel functions. The basic function - * implements the function using regular GEMV approach. The opt functions - * operates with weights in interleaved formats. - * - */ - -/** - *@brief Q7 basic fully-connected layer function - *@param[in] pV pointer to input vector - *@param[in] pM pointer to matrix weights - *@param[in] dim_vec length of the vector - *@param[in] num_of_rows number of rows in weight matrix - *@param[in] bias_shift amount of left-shift for bias - *@param[in] out_shift amount of right-shift for output - *@param[in] bias pointer to bias - *@param[in,out] pOut pointer to output vector - *@param[in,out] vec_buffer pointer to buffer space for input - *@return The function returns <code>ARM_MATH_SUCCESS</code> - * - */ - -arm_status arm_fully_connected_q7(const q7_t *pV, - const q7_t *pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t *bias, - q7_t *pOut, - q15_t *vec_buffer); - -/** - * @brief Basic s8 Fully Connected function. - * - * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function - * definition file to see if an additional buffer is required. - * Optional function {API}_get_buffer_size() provides the buffer - * size if an additional buffer is required. - * @param[in] fc_params Fully Connected layer parameters. - * Range of fc_params->input_offset : [-127, 128] - * fc_params->filter_offset : 0 - * Range of fc_params->output_offset : [-128, 127] - * @param[in] quant_params Per-tensor quantization info. - * It contains the multiplier and shift values to be applied to the output tensor. - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * Input dimension is taken as Nx(H * W * C_IN) - * @param[in] input_data Input (activation) data pointer. Data type: int8 - * @param[in] filter_dims Two dimensional filter dimensions. Format: [N, C] - * N : accumulation depth and equals (H * W * C_IN) from input_dims - * C : output depth and equals C_OUT in output_dims - * H & W : Not used - * @param[in] filter_data Filter data pointer. Data type: int8 - * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] - * N, H, W : Not used - * @param[in] bias_data Bias data pointer. Data type: int32 - * @param[in] output_dims Output tensor dimensions. Format: [N, C_OUT] - * N : Batches - * C_OUT : Output depth - * H & W : Not used. - * @param[in, out] output_data Output data pointer. Data type: int8 - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - * @details - * - Supported framework: TensorFlow Lite - * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. - */ -arm_status arm_fully_connected_s8(const cmsis_nn_context *ctx, - const cmsis_nn_fc_params *fc_params, - const cmsis_nn_per_tensor_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q7_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int32_t *bias_data, - const cmsis_nn_dims *output_dims, - q7_t *output_data); - -/** - * @brief Get the required buffer size for S8 basic fully-connected and - * matrix multiplication layer function for TF Lite - * @param[in] filter_dims dimension of filter - * @return The function returns required buffer size in bytes - * - */ -int32_t arm_fully_connected_s8_get_buffer_size(const cmsis_nn_dims *filter_dims); - -/** - * @brief Basic s16 Fully Connected function. - * - * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function - * definition file to see if an additional buffer is required. - * Optional function {API}_get_buffer_size() provides the buffer - * size if an additional buffer is required. - * @param[in] fc_params Fully Connected layer parameters. - * fc_params->input_offset : 0 - * fc_params->filter_offset : 0 - * fc_params->output_offset : 0 - * @param[in] quant_params Per-tensor quantization info. - * It contains the multiplier and shift values to be applied to the output tensor. - * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN] - * Input dimension is taken as Nx(H * W * C_IN) - * @param[in] input_data Input (activation) data pointer. Data type: int16 - * @param[in] filter_dims Two dimensional filter dimensions. Format: [N, C] - * N : accumulation depth and equals (H * W * C_IN) from input_dims - * C : output depth and equals C_OUT in output_dims - * H & W : Not used - * @param[in] filter_data Filter data pointer. Data type: int8 - * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT] - * N, H, W : Not used - * @param[in] bias_data Bias data pointer. Data type: int64 - * @param[in] output_dims Output tensor dimensions. Format: [N, C_OUT] - * N : Batches - * C_OUT : Output depth - * H & W : Not used. - * @param[in, out] output_data Output data pointer. Data type: int16 - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - * @details - * - Supported framework: TensorFlow Lite - * - q15 is used as data type eventhough it is s16 data. It is done so to be consistent with existing APIs. - */ -arm_status arm_fully_connected_s16(const cmsis_nn_context *ctx, - const cmsis_nn_fc_params *fc_params, - const cmsis_nn_per_tensor_quant_params *quant_params, - const cmsis_nn_dims *input_dims, - const q15_t *input_data, - const cmsis_nn_dims *filter_dims, - const q7_t *filter_data, - const cmsis_nn_dims *bias_dims, - const int64_t *bias_data, - const cmsis_nn_dims *output_dims, - q15_t *output_data); - -/** - * @brief Get the required buffer size for S16 basic fully-connected and - * matrix multiplication layer function for TF Lite - * @param[in] filter_dims dimension of filter - * @return The function returns required buffer size in bytes - * - */ -int32_t arm_fully_connected_s16_get_buffer_size(const cmsis_nn_dims *filter_dims); - -/** - * @brief Q7 opt fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - */ - -arm_status arm_fully_connected_q7_opt(const q7_t *pV, - const q7_t *pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t *bias, - q7_t *pOut, - q15_t *vec_buffer); - -/** - * @brief Q15 basic fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - */ - -arm_status arm_fully_connected_q15(const q15_t *pV, - const q15_t *pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q15_t *bias, - q15_t *pOut, - q15_t *vec_buffer); - -/** - * @brief Q15 opt fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - */ - -arm_status arm_fully_connected_q15_opt(const q15_t *pV, - const q15_t *pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q15_t *bias, - q15_t *pOut, - q15_t *vec_buffer); - -/** - * @brief Mixed Q15-Q7 fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - */ - -arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t *pV, - const q7_t *pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t *bias, - q15_t *pOut, - q15_t *vec_buffer); - -/** - * @brief Mixed Q15-Q7 opt fully-connected layer function - * @param[in] pV pointer to input vector - * @param[in] pM pointer to matrix weights - * @param[in] dim_vec length of the vector - * @param[in] num_of_rows number of rows in weight matrix - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias pointer to bias - * @param[in,out] pOut pointer to output vector - * @param[in,out] vec_buffer pointer to buffer space for input - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - */ - -arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t *pV, - const q7_t *pM, - const uint16_t dim_vec, - const uint16_t num_of_rows, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t *bias, - q15_t *pOut, - q15_t *vec_buffer); - -/** - * @brief Matrix-Multiplication Kernels for Convolution - * - * These functions are used within convolution layer functions for - * matrix multiplication. - * - * The implementation is similar to CMSIS-DSP arm_mat_mult functions - * with one Q7 and one Q15 operands. The Q15 operand is the im2col - * output which is always with 2 columns. - * - */ - -/** - * @brief Matrix-multiplication function for convolution - * @param[in] pA pointer to operand A - * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors - * @param[in] ch_im_out numRow of A - * @param[in] numCol_A numCol of A - * @param[in] bias_shift amount of left-shift for bias - * @param[in] out_shift amount of right-shift for output - * @param[in] bias the bias - * @param[in,out] pOut pointer to output - * @return The function returns the incremented output pointer - */ - -q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t *pA, - const q15_t *pInBuffer, - const uint16_t ch_im_out, - const uint16_t numCol_A, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t *bias, - q7_t *pOut); - -#ifdef __cplusplus -} -#endif - -/* - * Other functions - * These layers are typically not timing critical - * Basic implementation is supported here - */ - -#ifdef __cplusplus -extern "C" { -#endif - -/** - * @defgroup BasicMath Basic math functions - * - * Elementwise add and multiplication functions. - * - */ - -/** - * @brief s8 elementwise add of two vectors - * @param[in] input_1_vect pointer to input vector 1 - * @param[in] input_2_vect pointer to input vector 2 - * @param[in] input_1_offset offset for input 1. Range: -127 to 128 - * @param[in] input_1_mult multiplier for input 1 - * @param[in] input_1_shift shift for input 1 - * @param[in] input_2_offset offset for input 2. Range: -127 to 128 - * @param[in] input_2_mult multiplier for input 2 - * @param[in] input_2_shift shift for input 2 - * @param[in] left_shift input left shift - * @param[in,out] output pointer to output vector - * @param[in] out_offset output offset. Range: -128 to 127 - * @param[in] out_mult output multiplier - * @param[in] out_shift output shift - * @param[in] out_activation_min minimum value to clamp output to. Min: -128 - * @param[in] out_activation_max maximum value to clamp output to. Max: 127 - * @param[in] block_size number of samples - * @return The function returns ARM_MATH_SUCCESS - */ -arm_status arm_elementwise_add_s8(const int8_t *input_1_vect, - const int8_t *input_2_vect, - const int32_t input_1_offset, - const int32_t input_1_mult, - const int32_t input_1_shift, - const int32_t input_2_offset, - const int32_t input_2_mult, - const int32_t input_2_shift, - const int32_t left_shift, - int8_t *output, - const int32_t out_offset, - const int32_t out_mult, - const int32_t out_shift, - const int32_t out_activation_min, - const int32_t out_activation_max, - const int32_t block_size); - -/** - * @brief s16 elementwise add of two vectors - * @param[in] input_1_vect pointer to input vector 1 - * @param[in] input_2_vect pointer to input vector 2 - * @param[in] input_1_offset offset for input 1. Not used. - * @param[in] input_1_mult multiplier for input 1 - * @param[in] input_1_shift shift for input 1 - * @param[in] input_2_offset offset for input 2. Not used. - * @param[in] input_2_mult multiplier for input 2 - * @param[in] input_2_shift shift for input 2 - * @param[in] left_shift input left shift - * @param[in,out] output pointer to output vector - * @param[in] out_offset output offset. Not used. - * @param[in] out_mult output multiplier - * @param[in] out_shift output shift - * @param[in] out_activation_min minimum value to clamp output to. Min: -32768 - * @param[in] out_activation_max maximum value to clamp output to. Max: 32767 - * @param[in] block_size number of samples - * @return The function returns ARM_MATH_SUCCESS - */ -arm_status arm_elementwise_add_s16(const int16_t *input_1_vect, - const int16_t *input_2_vect, - const int32_t input_1_offset, - const int32_t input_1_mult, - const int32_t input_1_shift, - const int32_t input_2_offset, - const int32_t input_2_mult, - const int32_t input_2_shift, - const int32_t left_shift, - int16_t *output, - const int32_t out_offset, - const int32_t out_mult, - const int32_t out_shift, - const int32_t out_activation_min, - const int32_t out_activation_max, - const int32_t block_size); - -/** - * @brief s8 elementwise multiplication - * @param[in] input_1_vect pointer to input vector 1 - * @param[in] input_2_vect pointer to input vector 2 - * @param[in] input_1_offset offset for input 1. Range: -127 to 128 - * @param[in] input_2_offset offset for input 2. Range: -127 to 128 - * @param[in,out] output pointer to output vector - * @param[in] out_offset output offset. Range: -128 to 127 - * @param[in] out_mult output multiplier - * @param[in] out_shift output shift - * @param[in] out_activation_min minimum value to clamp output to. Min: -128 - * @param[in] out_activation_max maximum value to clamp output to. Max: 127 - * @param[in] block_size number of samples - * @return The function returns ARM_MATH_SUCCESS - * - * @details Supported framework: TensorFlow Lite micro - */ -arm_status arm_elementwise_mul_s8(const int8_t *input_1_vect, - const int8_t *input_2_vect, - const int32_t input_1_offset, - const int32_t input_2_offset, - int8_t *output, - const int32_t out_offset, - const int32_t out_mult, - const int32_t out_shift, - const int32_t out_activation_min, - const int32_t out_activation_max, - const int32_t block_size); - -/** - * @brief s16 elementwise multiplication - * @param[in] input_1_vect pointer to input vector 1 - * @param[in] input_2_vect pointer to input vector 2 - * @param[in] input_1_offset offset for input 1. Not used. - * @param[in] input_2_offset offset for input 2. Not used. - * @param[in,out] output pointer to output vector - * @param[in] out_offset output offset. Not used. - * @param[in] out_mult output multiplier - * @param[in] out_shift output shift - * @param[in] out_activation_min minimum value to clamp output to. Min: -32768 - * @param[in] out_activation_max maximum value to clamp output to. Max: 32767 - * @param[in] block_size number of samples - * @return The function returns ARM_MATH_SUCCESS - * - * @details Supported framework: TensorFlow Lite micro - */ -arm_status arm_elementwise_mul_s16(const int16_t *input_1_vect, - const int16_t *input_2_vect, - const int32_t input_1_offset, - const int32_t input_2_offset, - int16_t *output, - const int32_t out_offset, - const int32_t out_mult, - const int32_t out_shift, - const int32_t out_activation_min, - const int32_t out_activation_max, - const int32_t block_size); - -/** - * @defgroup Acti Activation Functions - * - * Perform activation layers, including ReLU (Rectified Linear Unit), - * sigmoid and tanh - * - */ - -/** - * @brief Q7 RELU function - * @param[in,out] data pointer to input - * @param[in] size number of elements - * @return none. - */ - -void arm_relu_q7(q7_t *data, uint16_t size); - -/** - * @brief s8 ReLU6 function - * @param[in,out] data pointer to input - * @param[in] size number of elements - */ - -void arm_relu6_s8(q7_t *data, uint16_t size); - -/** - * @brief Q15 RELU function - * @param[in,out] data pointer to input - * @param[in] size number of elements - * @return none. - */ - -void arm_relu_q15(q15_t *data, uint16_t size); - -/** - * @brief Q7 neural network activation function using direct table look-up - * @param[in,out] data pointer to input - * @param[in] size number of elements - * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 - * @param[in] type type of activation functions - * @return none. - */ - -void arm_nn_activations_direct_q7(q7_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type); - -/** - * @brief Q15 neural network activation function using direct table look-up - * @param[in,out] data pointer to input - * @param[in] size number of elements - * @param[in] int_width bit-width of the integer part, assume to be smaller than 3 - * @param[in] type type of activation functions - * @return none. - * - * @details - * - * This is the direct table look-up approach. - * - * Assume here the integer part of the fixed-point is <= 3. - * More than 3 just not making much sense, makes no difference with - * saturation followed by any of these activation functions. - */ - -void arm_nn_activations_direct_q15(q15_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type); - -/** - * @defgroup Pooling Pooling Functions - * - * Perform pooling functions, including max pooling and average pooling - * - */ - -/** - * @brief Q7 max pooling function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] Im_out pointer to output tensor - * @return none. - * - */ - -void arm_maxpool_q7_HWC(q7_t *Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const uint16_t dim_im_out, - q7_t *bufferA, - q7_t *Im_out); - -/** - * @brief Q7 average pooling function - * @param[in] Im_in pointer to input tensor - * @param[in] dim_im_in input tensor dimension - * @param[in] ch_im_in number of input tensor channels - * @param[in] dim_kernel filter kernel size - * @param[in] padding padding sizes - * @param[in] stride convolution stride - * @param[in] dim_im_out output tensor dimension - * @param[in,out] bufferA pointer to buffer space for input - * @param[in,out] Im_out pointer to output tensor - * @return none. - * - */ - -void arm_avepool_q7_HWC(q7_t *Im_in, - const uint16_t dim_im_in, - const uint16_t ch_im_in, - const uint16_t dim_kernel, - const uint16_t padding, - const uint16_t stride, - const uint16_t dim_im_out, - q7_t *bufferA, - q7_t *Im_out); - -/** - * @brief s8 average pooling function. - * - * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function - * definition file to see if an additional buffer is required. - * Optional function {API}_get_buffer_size() provides the buffer - * size if an additional buffer is required. - * @param[in] pool_params Pooling parameters - * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] - * Argument 'N' is not used. - * @param[in] input_data Input (activation) data pointer. Data type: int8 - * @param[in] filter_dims Filter tensor dimensions. Format: [H, W] - * Argument N and C are not used. - * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT] - * Argument N is not used. - * C_OUT equals C_IN. - * @param[in, out] output_data Output data pointer. Data type: int8 - * @return The function returns - * <code>ARM_MATH_SUCCESS</code> - Successful operation - * - * @details - * - Supported Framework: TensorFlow Lite - * - */ -arm_status arm_avgpool_s8(const cmsis_nn_context *ctx, - const cmsis_nn_pool_params *pool_params, - const cmsis_nn_dims *input_dims, - const q7_t *input_data, - const cmsis_nn_dims *filter_dims, - const cmsis_nn_dims *output_dims, - q7_t *output_data); - -/** - * @brief Get the required buffer size for S8 average pooling function - * @param[in] dim_dst_width output tensor dimension - * @param[in] ch_src number of input tensor channels - * @return The function returns required buffer size in bytes - * - */ -int32_t arm_avgpool_s8_get_buffer_size(const int dim_dst_width, const int ch_src); - -/** - * @brief s16 average pooling function. - * - * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function - * definition file to see if an additional buffer is required. - * Optional function {API}_get_buffer_size() provides the buffer - * size if an additional buffer is required. - * @param[in] pool_params Pooling parameters - * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] - * Argument 'N' is not used. - * @param[in] input_data Input (activation) data pointer. Data type: int16 - * @param[in] filter_dims Filter tensor dimensions. Format: [H, W] - * Argument N and C are not used. - * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT] - * Argument N is not used. - * C_OUT equals C_IN. - * @param[in, out] output_data Output data pointer. Data type: int16 - * @return The function returns - * <code>ARM_MATH_SUCCESS</code> - Successful operation - * - * @details - * - Supported Framework: TensorFlow Lite - * - */ -arm_status arm_avgpool_s16(const cmsis_nn_context *ctx, - const cmsis_nn_pool_params *pool_params, - const cmsis_nn_dims *input_dims, - const int16_t *input_data, - const cmsis_nn_dims *filter_dims, - const cmsis_nn_dims *output_dims, - int16_t *output_data); - -/** - * @brief Get the required buffer size for S16 average pooling function - * @param[in] dim_dst_width output tensor dimension - * @param[in] ch_src number of input tensor channels - * @return The function returns required buffer size in bytes - * - */ -int32_t arm_avgpool_s16_get_buffer_size(const int dim_dst_width, const int ch_src); - -/** - * @brief s8 max pooling function. - * - * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function - * definition file to see if an additional buffer is required. - * Optional function {API}_get_buffer_size() provides the buffer - * size if an additional buffer is required. - * @param[in] pool_params Pooling parameters - * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] - * Argument 'N' is not used. - * @param[in] input_data Input (activation) data pointer. The input tensor must not - * overlap with the output tensor. Data type: int8 - * @param[in] filter_dims Filter tensor dimensions. Format: [H, W] - * Argument N and C are not used. - * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT] - * Argument N is not used. - * C_OUT equals C_IN. - * @param[in, out] output_data Output data pointer. Data type: int8 - * @return The function returns - * <code>ARM_MATH_SUCCESS</code> - Successful operation - * - * @details - * - Supported Framework: TensorFlow Lite - * - */ -arm_status arm_max_pool_s8(const cmsis_nn_context *ctx, - const cmsis_nn_pool_params *pool_params, - const cmsis_nn_dims *input_dims, - const q7_t *input_data, - const cmsis_nn_dims *filter_dims, - const cmsis_nn_dims *output_dims, - q7_t *output_data); - -/** - * @brief s16 max pooling function. - * - * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function - * definition file to see if an additional buffer is required. - * Optional function {API}_get_buffer_size() provides the buffer - * size if an additional buffer is required. - * @param[in] pool_params Pooling parameters - * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN] - * Argument 'N' is not used. - * @param[in] src Input (activation) data pointer. The input tensor must not - * overlap with the output tensor. Data type: int16 - * @param[in] filter_dims Filter tensor dimensions. Format: [H, W] - * Argument N and C are not used. - * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT] - * Argument N is not used. - * C_OUT equals C_IN. - * @param[in, out] dst Output data pointer. Data type: int16 - * @return The function returns - * <code>ARM_MATH_SUCCESS</code> - Successful operation - * - * @details - * - Supported Framework: TensorFlow Lite - * - */ -arm_status arm_max_pool_s16(const cmsis_nn_context *ctx, - const cmsis_nn_pool_params *pool_params, - const cmsis_nn_dims *input_dims, - const int16_t *src, - const cmsis_nn_dims *filter_dims, - const cmsis_nn_dims *output_dims, - int16_t *dst); - -/** - * @defgroup Softmax Softmax Functions - * - * EXP(2) based softmax functions. - * - */ - -/** - * @brief Q7 softmax function - * @param[in] vec_in pointer to input vector - * @param[in] dim_vec input vector dimension - * @param[out] p_out pointer to output vector - * - * @note This function is an optimized version which is not bit-accurate with - * TensorFlow Lite's kernel - * - */ - -void arm_softmax_q7(const q7_t *vec_in, const uint16_t dim_vec, q7_t *p_out); - -/** - * @brief Q7 softmax function with batch parameter - * @param[in] vec_in pointer to input vector - * @param[in] nb_batches number of batches - * @param[in] dim_vec input vector dimension - * @param[out] p_out pointer to output vector - * @return none. - * - * @note This function is an optimized version which is not bit-accurate with - * TensorFlow Lite's kernel - * - */ - -void arm_softmax_with_batch_q7(const q7_t *vec_in, const uint16_t nb_batches, const uint16_t dim_vec, q7_t *p_out); -/** - * @brief Q15 softmax function - * @param[in] vec_in pointer to input vector - * @param[in] dim_vec input vector dimension - * @param[out] p_out pointer to output vector - * @return none. - * - * @note This function is an optimized version which is not bit-accurate with - * TensorFlow Lite's kernel - * - */ - -void arm_softmax_q15(const q15_t *vec_in, const uint16_t dim_vec, q15_t *p_out); - -/** - * @brief S8 softmax function - * @param[in] input Pointer to the input tensor - * @param[in] num_rows Number of rows in the input tensor - * @param[in] row_size Number of elements in each input row - * @param[in] mult Input quantization multiplier - * @param[in] shift Input quantization shift within the range [0, 31] - * @param[in] diff_min Minimum difference with max in row. Used to check if - * the quantized exponential operation can be performed - * @param[out] output Pointer to the output tensor - * - * @note Supported framework: TensorFlow Lite micro (bit-accurate) - * - */ -void arm_softmax_s8(const int8_t *input, - const int32_t num_rows, - const int32_t row_size, - const int32_t mult, - const int32_t shift, - const int32_t diff_min, - int8_t *output); - -/** - * @brief S8 to s16 softmax function - * @param[in] input Pointer to the input tensor - * @param[in] num_rows Number of rows in the input tensor - * @param[in] row_size Number of elements in each input row - * @param[in] mult Input quantization multiplier - * @param[in] shift Input quantization shift within the range [0, 31] - * @param[in] diff_min Minimum difference with max in row. Used to check if - * the quantized exponential operation can be performed - * @param[out] output Pointer to the output tensor - * - * @note Supported framework: TensorFlow Lite micro (bit-accurate) - * - */ -void arm_softmax_s8_s16(const int8_t *input, - const int32_t num_rows, - const int32_t row_size, - const int32_t mult, - const int32_t shift, - const int32_t diff_min, - int16_t *output); - -/** - * @brief S16 softmax function - * @param[in] input Pointer to the input tensor - * @param[in] num_rows Number of rows in the input tensor - * @param[in] row_size Number of elements in each input row - * @param[in] mult Input quantization multiplier - * @param[in] shift Input quantization shift within the range [0, 31] - * @param[in] softmax_params Softmax s16 layer parameters with two pointers to LUTs speficied below. - * For indexing the high 9 bits are used and 7 remaining for interpolation. - * That means 512 entries for the 9-bit indexing and 1 extra for interpolation, i.e. 513 - * values for each LUT. - * - Lookup table for exp(x), where x uniform distributed between [-10.0 , 0.0] - * - Lookup table for 1 / (1 + x), where x uniform distributed between [0.0 , 1.0] - * @param[out] output Pointer to the output tensor - * @return The function returns - * <code>ARM_MATH_ARGUMENT_ERROR</code> if LUTs are NULL - * <code>ARM_MATH_SUCCESS</code> - Successful operation - * - * @note Supported framework: TensorFlow Lite micro (bit-accurate) - * - */ -arm_status arm_softmax_s16(const int16_t *input, - const int32_t num_rows, - const int32_t row_size, - const int32_t mult, - const int32_t shift, - const cmsis_nn_softmax_lut_s16 *softmax_params, - int16_t *output); - -/** - * @brief U8 softmax function - * @param[in] input Pointer to the input tensor - * @param[in] num_rows Number of rows in the input tensor - * @param[in] row_size Number of elements in each input row - * @param[in] mult Input quantization multiplier - * @param[in] shift Input quantization shift within the range [0, 31] - * @param[in] diff_min Minimum difference with max in row. Used to check if - * the quantized exponential operation can be performed - * @param[out] output Pointer to the output tensor - * - * @note Supported framework: TensorFlow Lite micro (bit-accurate) - * - */ - -void arm_softmax_u8(const uint8_t *input, - const int32_t num_rows, - const int32_t row_size, - const int32_t mult, - const int32_t shift, - const int32_t diff_min, - uint8_t *output); - -/** - * @brief uint8 depthwise convolution function with asymmetric quantization - * Unless specified otherwise, arguments are mandatory. - * - * @param[in] input Pointer to input tensor - * @param[in] input_x Width of input tensor - * @param[in] input_y Height of input tensor - * @param[in] input_ch Channels in input tensor - * @param[in] kernel Pointer to kernel weights - * @param[in] kernel_x Width of kernel - * @param[in] kernel_y Height of kernel - * @param[in] ch_mult Number of channel multiplier - * @param[in] pad_x Padding sizes x - * @param[in] pad_y Padding sizes y - * @param[in] stride_x stride along the width - * @param[in] stride_y stride along the height - * @param[in] dilation_x Dilation along width. Not used and intended for future enhancement. - * @param[in] dilation_y Dilation along height. Not used and intended for future enhancement. - * @param[in] bias Pointer to optional bias values. If no bias is - * availble, NULL is expected - * @param[in] input_offset Input tensor zero offset - * @param[in] filter_offset Kernel tensor zero offset - * @param[in] output_offset Output tensor zero offset - * @param[in,out] output Pointer to output tensor - * @param[in] output_x Width of output tensor - * @param[in] output_y Height of output tensor - * @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255} - * @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255} - * @param[in] out_shift Amount of right-shift for output - * @param[in] out_mult Output multiplier for requantization - * @return The function returns the following - * <code>ARM_MATH_SUCCESS</code> - Successful operation - * - */ -arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input, - const uint16_t input_x, - const uint16_t input_y, - const uint16_t input_ch, - const uint8_t *kernel, - const uint16_t kernel_x, - const uint16_t kernel_y, - const int16_t ch_mult, - const int16_t pad_x, - const int16_t pad_y, - const int16_t stride_x, - const int16_t stride_y, - const int16_t dilation_x, - const int16_t dilation_y, - const int32_t *bias, - const int32_t input_offset, - const int32_t filter_offset, - const int32_t output_offset, - uint8_t *output, - const uint16_t output_x, - const uint16_t output_y, - const int32_t output_activation_min, - const int32_t output_activation_max, - const int32_t out_shift, - const int32_t out_mult); - -/** - * @defgroup Reshape Reshape Functions - * - */ - -/** - * @brief Reshape a s8 vector into another with different shape - * @param[in] input points to the s8 input vector - * @param[out] output points to the s8 output vector - * @param[in] total_size total size of the input and output vectors in bytes - * - * @note The output is expected to be in a memory area that does not overlap with the input's - * - */ -void arm_reshape_s8(const int8_t *input, int8_t *output, const uint32_t total_size); - -/** - * @defgroup Concatenation Concatenation Functions - * - */ - -/** - * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the X axis - * This function should be called for each input tensor to concatenate. The argument offset_x - * will be used to store the input tensor in the correct position in the output tensor - * - * i.e. offset_x = 0 - * for(i = 0 i < num_input_tensors; ++i) - * { - * arm_concatenation_s8_x(&input[i], ..., &output, ..., ..., offset_x) - * offset_x += input_x[i] - * } - * - * This function assumes that the output tensor has: - * -# The same height of the input tensor - * -# The same number of channels of the input tensor - * -# The same batch size of the input tensor - * - * Unless specified otherwise, arguments are mandatory. - * - * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it - * does not involve any arithmetic operation - * - * @param[in] input Pointer to input tensor. Input tensor must not overlap with the output tensor. - * @param[in] input_x Width of input tensor - * @param[in] input_y Height of input tensor - * @param[in] input_z Channels in input tensor - * @param[in] input_w Batch size in input tensor - * @param[out] output Pointer to output tensor. Expected to be at least - * (input_x * input_y * input_z * input_w) + offset_x - * bytes. - * @param[in] output_x Width of output tensor - * @param[in] offset_x The offset (in number of elements) on the X axis to start concatenating the input tensor - * It is user responsibility to provide the correct value - * - * <b> Input constraints</b> - * offset_x is less than output_x - * - */ -void arm_concatenation_s8_x(const int8_t *input, - const uint16_t input_x, - const uint16_t input_y, - const uint16_t input_z, - const uint16_t input_w, - int8_t *output, - const uint16_t output_x, - const uint32_t offset_x); - -/** - * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Y axis - * This function should be called for each input tensor to concatenate. The argument offset_y - * will be used to store the input tensor in the correct position in the output tensor - * - * i.e. offset_y = 0 - * for(i = 0 i < num_input_tensors; ++i) - * { - * arm_concatenation_s8_y(&input[i], ..., &output, ..., ..., offset_y) - * offset_y += input_y[i] - * } - * - * This function assumes that the output tensor has: - * -# The same width of the input tensor - * -# The same number of channels of the input tensor - * -# The same batch size of the input tensor - * - * Unless specified otherwise, arguments are mandatory. - * - * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it - * does not involve any arithmetic operation - * - * @param[in] input Pointer to input tensor. Input tensor must not overlap with the output tensor. - * @param[in] input_x Width of input tensor - * @param[in] input_y Height of input tensor - * @param[in] input_z Channels in input tensor - * @param[in] input_w Batch size in input tensor - * @param[out] output Pointer to output tensor. Expected to be at least - * (input_z * input_w * input_x * input_y) + offset_y - * bytes. - * @param[in] output_y Height of output tensor - * @param[in] offset_y The offset on the Y axis to start concatenating the input tensor - * It is user responsibility to provide the correct value - * - * <b> Input constraints</b> - * offset_y is less than output_y - * - */ -void arm_concatenation_s8_y(const int8_t *input, - const uint16_t input_x, - const uint16_t input_y, - const uint16_t input_z, - const uint16_t input_w, - int8_t *output, - const uint16_t output_y, - const uint32_t offset_y); - -/** - * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Z axis - * This function should be called for each input tensor to concatenate. The argument offset_z - * will be used to store the input tensor in the correct position in the output tensor - * - * i.e. offset_z = 0 - * for(i = 0 i < num_input_tensors; ++i) - * { - * arm_concatenation_s8_z(&input[i], ..., &output, ..., ..., offset_z) - * offset_z += input_z[i] - * } - * - * This function assumes that the output tensor has: - * -# The same width of the input tensor - * -# The same height of the input tensor - * -# The same batch size of the input tensor - * - * Unless specified otherwise, arguments are mandatory. - * - * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it - * does not involve any arithmetic operation - * - * @param[in] input Pointer to input tensor. Input tensor must not overlap with output tensor. - * @param[in] input_x Width of input tensor - * @param[in] input_y Height of input tensor - * @param[in] input_z Channels in input tensor - * @param[in] input_w Batch size in input tensor - * @param[out] output Pointer to output tensor. Expected to be at least - * (input_x * input_y * input_z * input_w) + offset_z - * bytes. - * @param[in] output_z Channels in output tensor - * @param[in] offset_z The offset on the Z axis to start concatenating the input tensor - * It is user responsibility to provide the correct value - * - * <b> Input constraints</b> - * offset_z is less than output_z - * - */ -void arm_concatenation_s8_z(const int8_t *input, - const uint16_t input_x, - const uint16_t input_y, - const uint16_t input_z, - const uint16_t input_w, - int8_t *output, - const uint16_t output_z, - const uint32_t offset_z); - -/** - * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the W axis (Batch size) - * This function should be called for each input tensor to concatenate. The argument offset_w - * will be used to store the input tensor in the correct position in the output tensor - * - * i.e. offset_w = 0 - * for(i = 0 i < num_input_tensors; ++i) - * { - * arm_concatenation_s8_w(&input[i], ..., &output, ..., ..., offset_w) - * offset_w += input_w[i] - * } - * - * This function assumes that the output tensor has: - * -# The same width of the input tensor - * -# The same height of the input tensor - * -# The same number o channels of the input tensor - * - * Unless specified otherwise, arguments are mandatory. - * - * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it - * does not involve any arithmetic operation - * - * @param[in] input Pointer to input tensor - * @param[in] input_x Width of input tensor - * @param[in] input_y Height of input tensor - * @param[in] input_z Channels in input tensor - * @param[in] input_w Batch size in input tensor - * @param[out] output Pointer to output tensor. Expected to be at least - * input_x * input_y * input_z * input_w - * bytes. - * @param[in] offset_w The offset on the W axis to start concatenating the input tensor - * It is user responsibility to provide the correct value - * - */ -void arm_concatenation_s8_w(const int8_t *input, - const uint16_t input_x, - const uint16_t input_y, - const uint16_t input_z, - const uint16_t input_w, - int8_t *output, - const uint32_t offset_w); -/** - * @defgroup SVDF SVDF Layer Functions - * - */ - -/** - * @brief s8 SVDF function with 8 bit state tensor and 8 bit time weights - * - * @param[in] input_ctx Temporary scratch buffer - * @param[in] output_ctx Temporary output scratch buffer - * @param[in] svdf_params SVDF Parameters - * Range of svdf_params->input_offset : [-128, 127] - * Range of svdf_params->output_offset : [-128, 127] - * @param[in] input_quant_params Input quantization parameters - * @param[in] output_quant_params Output quantization parameters - * @param[in] input_dims Input tensor dimensions - * @param[in] input_data Pointer to input tensor - * @param[in] state_dims State tensor dimensions - * @param[in] state_data Pointer to state tensor - * @param[in] weights_feature_dims Weights (feature) tensor dimensions - * @param[in] weights_feature_data Pointer to the weights (feature) tensor - * @param[in] weights_time_dims Weights (time) tensor dimensions - * @param[in] weights_time_data Pointer to the weights (time) tensor - * @param[in] bias_dims Bias tensor dimensions - * @param[in] bias_data Pointer to bias tensor - * @param[in] output_dims Output tensor dimensions - * @param[out] output_data Pointer to the output tensor - * - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - * @details - * 1. Supported framework: TensorFlow Lite micro - * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. - * - */ -arm_status arm_svdf_s8(const cmsis_nn_context *input_ctx, - const cmsis_nn_context *output_ctx, - const cmsis_nn_svdf_params *svdf_params, - const cmsis_nn_per_tensor_quant_params *input_quant_params, - const cmsis_nn_per_tensor_quant_params *output_quant_params, - const cmsis_nn_dims *input_dims, - const q7_t *input_data, - const cmsis_nn_dims *state_dims, - q7_t *state_data, - const cmsis_nn_dims *weights_feature_dims, - const q7_t *weights_feature_data, - const cmsis_nn_dims *weights_time_dims, - const q7_t *weights_time_data, - const cmsis_nn_dims *bias_dims, - const q31_t *bias_data, - const cmsis_nn_dims *output_dims, - q7_t *output_data); - -/** - * @brief s8 SVDF function with 16 bit state tensor and 16 bit time weights - * - * @param[in] input_ctx Temporary scratch buffer - * @param[in] output_ctx Temporary output scratch buffer - * @param[in] svdf_params SVDF Parameters - * Range of svdf_params->input_offset : [-128, 127] - * Range of svdf_params->output_offset : [-128, 127] - * @param[in] input_quant_params Input quantization parameters - * @param[in] output_quant_params Output quantization parameters - * @param[in] input_dims Input tensor dimensions - * @param[in] input_data Pointer to input tensor - * @param[in] state_dims State tensor dimensions - * @param[in] state_data Pointer to state tensor - * @param[in] weights_feature_dims Weights (feature) tensor dimensions - * @param[in] weights_feature_data Pointer to the weights (feature) tensor - * @param[in] weights_time_dims Weights (time) tensor dimensions - * @param[in] weights_time_data Pointer to the weights (time) tensor - * @param[in] bias_dims Bias tensor dimensions - * @param[in] bias_data Pointer to bias tensor - * @param[in] output_dims Output tensor dimensions - * @param[out] output_data Pointer to the output tensor - * - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - * @details - * 1. Supported framework: TensorFlow Lite micro - * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs. - * - */ -arm_status arm_svdf_state_s16_s8(const cmsis_nn_context *input_ctx, - const cmsis_nn_context *output_ctx, - const cmsis_nn_svdf_params *svdf_params, - const cmsis_nn_per_tensor_quant_params *input_quant_params, - const cmsis_nn_per_tensor_quant_params *output_quant_params, - const cmsis_nn_dims *input_dims, - const q7_t *input_data, - const cmsis_nn_dims *state_dims, - q15_t *state_data, - const cmsis_nn_dims *weights_feature_dims, - const q7_t *weights_feature_data, - const cmsis_nn_dims *weights_time_dims, - const q15_t *weights_time_data, - const cmsis_nn_dims *bias_dims, - const q31_t *bias_data, - const cmsis_nn_dims *output_dims, - q7_t *output_data); - -#ifdef __cplusplus -} -#endif - -#endif +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_nnfunctions.h
+ * Description: Public header file for CMSIS NN Library
+ *
+ * $Date: 13. July 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+
+/**
+ \mainpage CMSIS NN Software Library
+ *
+ * Introduction
+ * ------------
+ *
+ * This user manual describes the CMSIS NN software library,
+ * a collection of efficient neural network kernels developed to maximize the
+ * performance and minimize the memory footprint of neural networks on Cortex-M processor cores.
+ *
+ * The library is divided into a number of functions each covering a specific category:
+ * - Neural Network Convolution Functions
+ * - Neural Network Activation Functions
+ * - Fully-connected Layer Functions
+ * - Neural Network Pooling Functions
+ * - Softmax Functions
+ * - Neural Network Support Functions
+ *
+ * The library has separate functions for operating on different weight and activation data
+ * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the
+ * kernels are included in the function description. The implementation details are also
+ * described in this paper [1].
+ *
+ * Block Diagram
+ * --------
+ * \image html CMSIS-NN-OVERVIEW.PNG
+ *
+ * Examples
+ * --------
+ *
+ * The library ships with a number of examples which demonstrate how to use the library functions.
+ *
+ * Pre-processor Macros
+ * ------------
+ *
+ * Each library project have differant pre-processor macros.
+ *
+ * - ARM_MATH_DSP:
+ *
+ * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions.
+ *
+ * - ARM_MATH_BIG_ENDIAN:
+ *
+ * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
+ *
+ * - ARM_NN_TRUNCATE:
+ *
+ * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation.
+ *
+ * Copyright Notice
+ * ------------
+ *
+ * Copyright (C) 2010-2018 Arm Limited. All rights reserved.
+ *
+ * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601
+ */
+
+/**
+ * @defgroup groupNN Neural Network Functions
+ * These functions perform basic operations for neural network layers.
+ */
+
+#ifndef _ARM_NNFUNCTIONS_H
+#define _ARM_NNFUNCTIONS_H
+
+#include "arm_nnsupportfunctions.h"
+#include "arm_nn_tables.h"
+
+#define USE_INTRINSIC
+
+//#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup NNConv Neural Network Convolution Functions
+ *
+ * Perform convolution layer
+ *
+ * The convolution is implemented in 2 steps: im2col and GEMM
+ *
+ * im2col is a process of converting each patch of image data into
+ * a column. After im2col, the convolution is computed as matrix-matrix
+ * multiplication.
+ *
+ * To reduce the memory footprint, the im2col is performed partially.
+ * Each iteration, only a few column (i.e., patches) are generated and
+ * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
+ *
+ */
+
+ /**
+ * @brief Basic Q7 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_convolve_HWC_q7_basic(const q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Basic Q7 convolution function (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ */
+
+ arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Basic Q15 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_convolve_HWC_q15_basic(const q15_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q15_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q15_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q15_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Fast Q7 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 4
+ * ch_im_out is multiple of 2
+ */
+
+ arm_status arm_convolve_HWC_q7_fast(const q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Fast Q7 convolution function (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 4
+ * ch_im_out is multiple of 2
+ */
+
+ arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1
+ * and dim_kernel_y=1). It can be used for
+ * second half of MobileNets after depthwise separable convolution.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 4
+ * ch_im_out is multiple of 2
+ */
+ arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Q7 version of convolution for RGB image
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This kernel is written exclusively for convolution with ch_im_in
+ * equals 3. This applies on the first layer of CNNs which has input
+ * image with RGB format.
+ */
+
+ arm_status arm_convolve_HWC_q7_RGB(const q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Fast Q15 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 2
+ * ch_im_out is multiple of 2
+ */
+
+ arm_status arm_convolve_HWC_q15_fast(const q15_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q15_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q15_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q15_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Fast Q15 convolution function (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+ *
+ * bufferB size: 0
+ *
+ * <b>Input dimension constraints:</b>
+ *
+ * ch_im_in is multiple of 2
+ *
+ * ch_im_out is multipe of 2
+ *
+ */
+
+ arm_status
+ arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q15_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q15_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q15_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Q7 depthwise separable convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 2
+ * ch_im_out is multiple of 2
+ */
+
+ arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Q7 depthwise separable convolution function (non-square shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding sizes x
+ * @param[in] padding_y padding sizes y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 2
+ * ch_im_out is multiple of 2
+ */
+ arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+
+/**
+ * @defgroup FC Fully-connected Layer Functions
+ *
+ * Perform fully-connected layer
+ *
+ * Fully-connected layer is basically a matrix-vector multiplication
+ * with bias. The matrix is the weights and the input/output vectors
+ * are the activation values. Supported {weight, activation} precisions
+ * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
+ *
+ * Here we have two types of kernel functions. The basic function
+ * implements the function using regular GEMV approach. The opt functions
+ * operates with weights in interleaved formats.
+ *
+ */
+
+ /**
+ * @brief Q7 basic fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_fully_connected_q7(const q7_t * pV,
+ const q7_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q7_t * pOut,
+ q15_t * vec_buffer);
+
+ /**
+ * @brief Q7 opt fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_fully_connected_q7_opt(const q7_t * pV,
+ const q7_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q7_t * pOut,
+ q15_t * vec_buffer);
+
+ /**
+ * @brief Q15 basic fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_fully_connected_q15(const q15_t * pV,
+ const q15_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q15_t * bias,
+ q15_t * pOut,
+ q15_t * vec_buffer);
+
+ /**
+ * @brief Q15 opt fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_fully_connected_q15_opt(const q15_t * pV,
+ const q15_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q15_t * bias,
+ q15_t * pOut,
+ q15_t * vec_buffer);
+
+ /**
+ * @brief Mixed Q15-Q7 fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t * pV,
+ const q7_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q15_t * pOut,
+ q15_t * vec_buffer);
+
+ /**
+ * @brief Mixed Q15-Q7 opt fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV,
+ const q7_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q15_t * pOut,
+ q15_t * vec_buffer);
+
+/**
+ * @brief Matrix-Multiplication Kernels for Convolution
+ *
+ * These functions are used within convolution layer functions for
+ * matrix multiplication.
+ *
+ * The implementation is similar to CMSIS-DSP arm_mat_mult functions
+ * with one Q7 and one Q15 operands. The Q15 operand is the im2col
+ * output which is always with 2 columns.
+ *
+ */
+
+ /**
+ * @brief Matrix-multiplication function for convolution
+ * @param[in] pA pointer to operand A
+ * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
+ * @param[in] ch_im_out numRow of A
+ * @param[in] numCol_A numCol of A
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias the bias
+ * @param[in,out] pOut pointer to output
+ * @return The function returns the incremented output pointer
+ */
+
+ q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA,
+ const q15_t * pInBuffer,
+ const uint16_t ch_im_out,
+ const uint16_t numCol_A,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q7_t * pOut);
+
+ /**
+ * @brief Matrix-multiplication function for convolution with reordered columns
+ * @param[in] pA pointer to operand A
+ * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
+ * @param[in] ch_im_out numRow of A
+ * @param[in] numCol_A numCol of A
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias the bias
+ * @param[in,out] pOut pointer to output
+ * @return The function returns the incremented output pointer
+ */
+
+ q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA,
+ const q15_t * pInBuffer,
+ const uint16_t ch_im_out,
+ const uint16_t numCol_A,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q7_t * pOut);
+
+#ifdef __cplusplus
+}
+#endif
+
+/*
+ * Other functions
+ * These layers are typically not timing critical
+ * Basic implementation is supported here
+ */
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup Acti Neural Network Activation Functions
+ *
+ * Perform activation layers, including ReLU (Rectified Linear Unit),
+ * sigmoid and tanh
+ *
+ */
+
+ /**
+ * @brief Q7 RELU function
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @return none.
+ */
+
+ void arm_relu_q7(q7_t * data, uint16_t size);
+
+ /**
+ * @brief Q15 RELU function
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @return none.
+ */
+
+ void arm_relu_q15(q15_t * data, uint16_t size);
+
+ /**
+ * @brief Q7 neural network activation function using direct table look-up
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
+ * @param[in] type type of activation functions
+ * @return none.
+ */
+
+ void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width,
+ arm_nn_activation_type type);
+
+ /**
+ * @brief Q15 neural network activation function using direct table look-up
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
+ * @param[in] type type of activation functions
+ * @return none.
+ */
+
+ void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width,
+ arm_nn_activation_type type);
+
+/**
+ * @defgroup Pooling Neural Network Pooling Functions
+ *
+ * Perform pooling functions, including max pooling and average pooling
+ *
+ */
+
+ /**
+ * @brief Q7 max pooling function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] Im_out pointer to output tensor
+ * @return none.
+ *
+ */
+
+ void arm_maxpool_q7_HWC(q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const uint16_t dim_im_out,
+ q7_t * bufferA,
+ q7_t * Im_out);
+
+ /**
+ * @brief Q7 average pooling function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] Im_out pointer to output tensor
+ * @return none.
+ *
+ */
+
+ void arm_avepool_q7_HWC(q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const uint16_t dim_im_out,
+ q7_t * bufferA,
+ q7_t * Im_out);
+
+/**
+ * @defgroup Softmax Softmax Functions
+ *
+ * EXP(2) based softmax function
+ *
+ */
+
+ /**
+ * @brief Q7 softmax function
+ * @param[in] vec_in pointer to input vector
+ * @param[in] dim_vec input vector dimention
+ * @param[out] p_out pointer to output vector
+ * @return none.
+ *
+ */
+
+ void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out);
+
+ /**
+ * @brief Q15 softmax function
+ * @param[in] vec_in pointer to input vector
+ * @param[in] dim_vec input vector dimention
+ * @param[out] p_out pointer to output vector
+ * @return none.
+ *
+ */
+
+ void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out);
+
+ /**
+ * @brief uint8 depthwise convolution function with asymmetric quantization for even number of channel multiplier
+ * and input channels. Unless specified otherwise, arguments are mandatory.
+ *
+ * @param[in] input Pointer to input tensor
+ * @param[in] input_x Width of input tensor
+ * @param[in] input_y Height of input tensor
+ * @param[in] input_ch Channels in input tensor
+ * @param[in] kernel Pointer to kernel weights
+ * @param[in] kernel_x Width of kernel
+ * @param[in] kernel_y Height of kernel
+ * @param[in] ch_mult Number of channel multiplier
+ * @param[in] pad_x Padding sizes x
+ * @param[in] pad_y Padding sizes y
+ * @param[in] stride_x Convolution stride along the width
+ * @param[in] stride_y Convolution stride along the height
+ * @param[in] dilation_x Dilation along width. Not used and intended for future enhancement.
+ * @param[in] dilation_y Dilation along height. Not used and intended for future enhancement.
+ * @param[in] bias Pointer to optional bias values. If no bias is
+ * availble, NULL is expected
+ * @param[in] input_offset Input tensor zero offset
+ * @param[in] filter_offset Kernel tensor zero offset
+ * @param[in] output_offset Output tensor zero offset
+ * @param[in,out] output Pointer to output tensor
+ * @param[in] output_x Width of output tensor
+ * @param[in] output_y Height of output tensor
+ * @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255}
+ * @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255}
+ * @param[in] out_shift Amount of right-shift for output
+ * @param[in] out_mult Output multiplier for requantization
+ * @return The function returns one of the following
+ * <code>ARM_MATH_SIZE_MISMATCH</code> - Not supported dimension of tensors
+ * <code>ARM_MATH_SUCCESS</code> - Successful operation
+ * <code>ARM_MATH_ARGUMENT_ERROR</code> - Implementation not available
+ *
+ * <b> Input constraints</b>
+ * ch_mult is multiple of 2
+ * kernel_x is multiple of 2
+ *
+ */
+ arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
+ const uint16_t input_x,
+ const uint16_t input_y,
+ const uint16_t input_ch,
+ const uint8_t *kernel,
+ const uint16_t kernel_x,
+ const uint16_t kernel_y,
+ const int16_t ch_mult,
+ const int16_t pad_x,
+ const int16_t pad_y,
+ const int16_t stride_x,
+ const int16_t stride_y,
+ const int16_t dilation_x,
+ const int16_t dilation_y,
+ const int32_t *bias,
+ const int32_t input_offset,
+ const int32_t filter_offset,
+ const int32_t output_offset,
+ uint8_t *output,
+ const uint16_t output_x,
+ const uint16_t output_y,
+ const int32_t output_activation_min,
+ const int32_t output_activation_max,
+ const int32_t out_shift,
+ const int32_t out_mult);
+#ifdef __cplusplus
+}
+#endif
+
+#endif
|