summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/NN/Include/arm_nnfunctions.h
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/NN/Include/arm_nnfunctions.h')
-rw-r--r--Drivers/CMSIS/NN/Include/arm_nnfunctions.h3607
1 files changed, 1075 insertions, 2532 deletions
diff --git a/Drivers/CMSIS/NN/Include/arm_nnfunctions.h b/Drivers/CMSIS/NN/Include/arm_nnfunctions.h
index deaade7..eccbb41 100644
--- a/Drivers/CMSIS/NN/Include/arm_nnfunctions.h
+++ b/Drivers/CMSIS/NN/Include/arm_nnfunctions.h
@@ -1,2532 +1,1075 @@
-/*
- * Copyright (C) 2010-2022 Arm Limited or its affiliates.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-/* ----------------------------------------------------------------------
- * Project: CMSIS NN Library
- * Title: arm_nnfunctions.h
- * Description: Public header file for CMSIS NN Library
- *
- * $Date: 19 April 2022
- * $Revision: V.9.0.0
- *
- * Target Processor: Cortex-M CPUs
- * -------------------------------------------------------------------- */
-
-/**
- \mainpage CMSIS NN Software Library
- *
- * Introduction
- * ------------
- *
- * This user manual describes the CMSIS NN software library,
- * a collection of efficient neural network kernels developed to maximize the
- * performance and minimize the memory footprint of neural networks on Cortex-M processor cores.
- *
- * The library is divided into a number of functions each covering a specific category:
- * - Convolution Functions
- * - Activation Functions
- * - Fully-connected Layer Functions
- * - SVDF Layer Functions
- * - Pooling Functions
- * - Softmax Functions
- * - Basic math Functions
- *
- * The library has separate functions for operating on different weight and activation data
- * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the
- * kernels are included in the function description. The implementation details are also
- * described in this paper [1].
- *
- * Supported Processors
- * -------
- * CMSIS-NN targets Cortex-M processors with typically three different implementations for each function. Each
- * targets a different group of processors.
- * - Processors without SIMD capability (e.g, Cortex-M0)
- * - Processors with DSP extention (e.g Cortex-M4)
- * - Processors with MVE extension (e.g Cortex-M55)
- * The right implementation is picked through feature flags and the user usually does not have to explicit set it.
- *
- * Function Classification
- * --------
- * The functions can be classified into two segments
- * - Legacy functions supporting ARM's internal symmetric quantization(8 bits).
- * - Functions that support TensorFlow Lite framework with symmetric quantization(8 bits).
- *
- * The legacy functions can be identified with their suffix of _q7 or _q15 and are no new development is done there.
- * The article in [2] describes in detail how to run a network using the legacy functions.
- *
- * The functions supporting TensorFlow Lite framework is identified by the _s8 suffix and can be invoked from TFL
- * micro. The functions are bit exact to TensorFlow Lite. Refer to the TensorFlow's documentation in [3] on how to run
- * a TensorFlow Lite model using optimized CMSIS-NN kernels.
- *
- * Block Diagram
- * --------
- * \image html CMSIS-NN-OVERVIEW.PNG
- *
- * Examples
- * --------
- *
- * The library ships with a number of examples which demonstrate how to use the library functions.
- *
- * Pre-processor Macros
- * ------------
- *
- * Each library project have different pre-processor macros.
- *
- * - ARM_MATH_DSP:
- *
- * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions(DSP extension).
- *
- * - ARM_MATH_MVEI:
- *
- * Define macro ARM_MATH_MVEI, If the silicon supports M-Profile Vector Extension.
-
- * - ARM_MATH_AUTOVECTORIZE
- * Used in conjucture with ARM_MATH_MVEI to let the compiler auto vectorize for the functions that uses inline
- * assembly. It does not affect functions that use C or intrinsics.
- * - ARM_MATH_BIG_ENDIAN:
- *
- * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. This is supported only for the legacy
- * functions i.e, functions targetted at TensorFlow Lite do not support big endianness. By default library builds for
- * little endian targets.
- *
- * - ARM_NN_TRUNCATE:
- *
- * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation.
- *
- *
- * Copyright Notice
- * ------------
- *
- * Copyright (C) 2010-2019 Arm Limited. All rights reserved.
- *
- * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601
- *
- * [2] Converting a Neural Network for Arm Cortex-M with CMSIS-NN
- *
- https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/converting-a-neural-network-for-arm-cortex-m-with-cmsis-nn/single-page
- * [3] https://www.tensorflow.org/lite/microcontrollers/library
- *
- * [4] https://github.com/ARM-software/CMSIS_5/tree/develop/CMSIS/NN#legacy-vs-tfl-micro-compliant-apis
- */
-
-/**
- * @defgroup groupNN Neural Network Functions
- * A collection of functions to perform basic operations for neural network layers. Functions with a _s8 suffix support
- * TensorFlow Lite framework.
- */
-
-#ifndef _ARM_NNFUNCTIONS_H
-#define _ARM_NNFUNCTIONS_H
-
-#include "arm_nn_math_types.h"
-#include "arm_nn_types.h"
-
-#define USE_INTRINSIC
-
-//#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/**
- * @brief Struct for specifying activation function types
- *
- */
-typedef enum
-{
- ARM_SIGMOID = 0,
- /**< Sigmoid activation function */
- ARM_TANH = 1,
- /**< Tanh activation function */
-} arm_nn_activation_type;
-
-/**
- * @defgroup NNConv Convolution Functions
- *
- * Collection of convolution, depthwise convolution functions and their variants.
- *
- * The convolution is implemented in 2 steps: im2col and GEMM
- *
- * im2col is a process of converting each patch of image data into
- * a column. After im2col, the convolution is computed as matrix-matrix
- * multiplication.
- *
- * To reduce the memory footprint, the im2col is performed partially.
- * Each iteration, only a few column (i.e., patches) are generated and
- * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
- *
- */
-
-/**
- * @brief s8 convolution layer wrapper function with the main purpose to call the optimal kernel available in
- cmsis-nn
- * to perform the convolution.
- *
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * Range of conv_params->input_offset : [-127, 128]
- * Range of conv_params->output_offset : [-128, 127]
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
- * spatial filter dimensions
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int8
- *
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- * <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- */
-arm_status arm_convolve_wrapper_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
-
-/**
- * @brief Get the required buffer size for arm_convolve_wrapper_s8
- *
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * Range of conv_params->input_offset : [-127, 128]
- * Range of conv_params->output_offset : [-128, 127]
- * @param[in] input_dims Input (activation) dimensions. Format: [N, H, W, C_IN]
- * @param[in] filter_dims Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial
- * filter dimensions
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- *
- * @return The function returns required buffer size(bytes)
- *
- */
-int32_t arm_convolve_wrapper_s8_get_buffer_size(const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_dims *input_dims,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims);
-
-/**
- * @brief s16 convolution layer wrapper function with the main purpose to call the optimal kernel available in
- cmsis-nn
- * to perform the convolution.
- *
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_wrapper_s8_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * conv_params->input_offset : Not used
- * conv_params->output_offset : Not used
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int16
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
- * spatial filter dimensions
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Bias data pointer. Data type: int64
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int16
- *
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- * <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- */
-arm_status arm_convolve_wrapper_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q15_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int64_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q15_t *output_data);
-
-/**
- * @brief Get the required buffer size for arm_convolve_wrapper_s16
- *
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * conv_params->input_offset : Not used
- * conv_params->output_offset : Not used
- * @param[in] input_dims Input (activation) dimensions. Format: [N, H, W, C_IN]
- * @param[in] filter_dims Filter dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the spatial
- * filter dimensions
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- *
- * @return The function returns required buffer size(bytes)
- *
- */
-int32_t arm_convolve_wrapper_s16_get_buffer_size(const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_dims *input_dims,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims);
-
-/**
- * @brief Basic s8 convolution function
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_s8_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * Range of conv_params->input_offset : [-127, 128]
- * Range of conv_params->output_offset : [-128, 127]
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
- * spatial filter dimensions
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Optional bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int8
-
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * 1. Supported framework: TensorFlow Lite micro
- * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
- *
- */
-arm_status arm_convolve_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
-
-/**
- * @brief Get the required buffer size for s8 convolution function
- *
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK
- * are the spatial filter dimensions
- * @return The function returns required buffer size(bytes)
- *
- */
-int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
-
-/**
- * @brief Basic s16 convolution function
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_s16_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * conv_params->input_offset : Not used
- * conv_params->output_offset : Not used
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int16
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
- * spatial filter dimensions
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Optional bias data pointer. Data type: int64
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int16
-
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * 1. Supported framework: TensorFlow Lite micro
- * 2. q7/q15 is used as data type eventhough it is s8/s16 data. It is done so to be consistent with existing APIs.
- * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
- *
- */
-arm_status arm_convolve_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q15_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int64_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q15_t *output_data);
-/**
- * @brief Optimized s16 convolution function
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_fast_s16_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * conv_params->input_offset : Not used
- * conv_params->output_offset : Not used
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int16
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK are the
- * spatial filter dimensions. (filter_dims->w * filter_dims->h * input_dims->c) must not
- exceed 512
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Optional bias data pointer. Data type: int64
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int16
-
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * 1. Supported framework: TensorFlow Lite micro
- * 2. q7/q15 is used as data type eventhough it is s8/s16 data. It is done so to be consistent with existing APIs.
- * 3. Additional memory is required for optimization. Refer to argument 'ctx' for details.
- * 4. Implementation supports kernel volumes (filter width * filter height * input channels) < 512.
- *
- */
-
-arm_status arm_convolve_fast_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q15_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int64_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q15_t *output_data);
-
-/**
- * @brief Get the required buffer size for s16 convolution function
- *
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK
- * are the spatial filter dimensions
- * @return The function returns required buffer size(bytes)
- *
- */
-int32_t arm_convolve_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
-
-/**
- * @brief Get the required buffer size for fast s16 convolution function
- *
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, HK, WK, C_IN] where HK and WK
- * are the spatial filter dimensions
- * @return The function returns required buffer size(bytes)
- *
- */
-int32_t arm_convolve_fast_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
-
-/**
- * @brief Basic Q7 convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
-arm_status arm_convolve_HWC_q7_basic(const q7_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out,
- q15_t *bufferA,
- q7_t *bufferB);
-
-/**
- * @brief Basic Q7 convolution function (non-square shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimension x
- * @param[in] dim_im_in_y input tensor dimension y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding size x
- * @param[in] padding_y padding size y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- */
-arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t *Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t *bufferA,
- q7_t *bufferB);
-
-/**
- * @brief Basic Q15 convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
-arm_status arm_convolve_HWC_q15_basic(const q15_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q15_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q15_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q15_t *Im_out,
- const uint16_t dim_im_out,
- q15_t *bufferA,
- q7_t *bufferB);
-
-/**
- * @brief Fast Q7 convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 4
- * ch_im_out is multiple of 2
- */
-arm_status arm_convolve_HWC_q7_fast(const q7_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out,
- q15_t *bufferA,
- q7_t *bufferB);
-
-/**
- * @brief Fast Q7 convolution function (non-sqaure shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimension x
- * @param[in] dim_im_in_y input tensor dimension y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding size x
- * @param[in] padding_y padding size y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 4
- * ch_im_out is multiple of 2
- */
-
-arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t *Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t *bufferA,
- q7_t *bufferB);
-
-/**
- * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimension x
- * @param[in] dim_im_in_y input tensor dimension y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding size x
- * @param[in] padding_y padding size y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- * <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1
- * and dim_kernel_y=1). It can be used for
- * second half of MobileNets after depthwise separable convolution.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 4
- * ch_im_out is multiple of 2
- */
-arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t *Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t *bufferA,
- q7_t *bufferB);
-
-/**
- * @brief Fast s8 version for 1x1 convolution (non-square shape)
- *
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_1x1_s8_fast_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * Range of conv_params->input_offset : [-127, 128]
- * Range of conv_params->output_offset : [-128, 127]
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, 1, C_IN]
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Optional bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int8
- *
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- * <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- * @details
- * - Supported framework : TensorFlow Lite Micro
- * - The following constrains on the arguments apply
- * -# input_dims->c is a multiple of 4
- * -# conv_params->padding.w = conv_params->padding.h = 0
- * -# conv_params->stride.w = conv_params->stride.h = 1
- *
- */
-arm_status arm_convolve_1x1_s8_fast(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
-
-/**
- * @brief Get the required buffer size for arm_convolve_1x1_s8_fast
- *
- * @param[in] input_dims Input (activation) dimensions
- * @return The function returns the required buffer size in bytes
- *
- */
-int32_t arm_convolve_1x1_s8_fast_get_buffer_size(const cmsis_nn_dims *input_dims);
-
-/**
- * @brief 1xn convolution
- *
- * @param[in, out] ctx Function context that contains the additional buffer if required by the function.
- arm_convolve_1_x_n_s8_get_buffer_size will return the buffer_size if required
- * @param[in] conv_params Convolution parameters (e.g. strides, dilations, pads,...).
- * Range of conv_params->input_offset : [-127, 128]
- * Range of conv_params->output_offset : [-128, 127]
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the horizontal
- * spatial filter dimension
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Optional bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[out] output_data Output data pointer. Data type: int8
- *
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> if argument constraints fail. or,
- * <code>ARM_MATH_SUCCESS</code> on successful completion.
- *
- * @details
- * - Supported framework : TensorFlow Lite Micro
- * - The following constrains on the arguments apply
- * -# input_dims->n equals 1
- * -# ouput_dims->w is a multiple of 4
- * -# Explicit constraints(since it is for 1xN convolution)
- * -## input_dims->h equals 1
- * -## output_dims->h equals 1
- * -## filter_dims->h equals 1
- *@todo Remove constraint on output_dims->w to make the function generic.
- *
- */
-arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_conv_params *conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
-
-/**
- * @brief Get the required additional buffer size for 1xn convolution
- *
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * @param[in] filter_dims Filter tensor dimensions. Format: [C_OUT, 1, WK, C_IN] where WK is the
- * horizontal spatial filter dimension
- * @return The function returns required buffer size(bytes)
- *
- */
-int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
-
-/**
- * @brief Q7 version of convolution for RGB image
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This kernel is written exclusively for convolution with ch_im_in
- * equals 3. This applies on the first layer of CNNs which has input
- * image with RGB format.
- */
-
-arm_status arm_convolve_HWC_q7_RGB(const q7_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out,
- q15_t *bufferA,
- q7_t *bufferB);
-
-/**
- * @brief Fast Q15 convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 2
- * ch_im_out is multiple of 2
- * dim_im_out is a multiple of 2
- */
-
-arm_status arm_convolve_HWC_q15_fast(const q15_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q15_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q15_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q15_t *Im_out,
- const uint16_t dim_im_out,
- q15_t *bufferA,
- q7_t *bufferB);
-
-/**
- * @brief Fast Q15 convolution function (non-sqaure shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimension x
- * @param[in] dim_im_in_y input tensor dimension y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding size x
- * @param[in] padding_y padding size y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * @details
- *
- * <b>Buffer size:</b>
- *
- * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
- *
- * bufferB size: 0
- *
- * <b>Input dimension constraints:</b>
- *
- * ch_im_in is multiple of 2
- *
- * ch_im_out is multipe of 2
- *
- */
-
-arm_status arm_convolve_HWC_q15_fast_nonsquare(const q15_t *Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q15_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q15_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q15_t *Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t *bufferA,
- q7_t *bufferB);
-
-/**
- * @brief Q7 depthwise separable convolution function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 2
- * ch_im_out is multiple of 2
- */
-
-arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out,
- q15_t *bufferA,
- q7_t *bufferB);
-
-/**
- * @brief Q7 depthwise separable convolution function (non-square shape)
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in_x input tensor dimension x
- * @param[in] dim_im_in_y input tensor dimension y
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] wt pointer to kernel weights
- * @param[in] ch_im_out number of filters, i.e., output tensor channels
- * @param[in] dim_kernel_x filter kernel size x
- * @param[in] dim_kernel_y filter kernel size y
- * @param[in] padding_x padding sizes x
- * @param[in] padding_y padding sizes y
- * @param[in] stride_x convolution stride x
- * @param[in] stride_y convolution stride y
- * @param[in] bias pointer to bias
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in,out] Im_out pointer to output tensor
- * @param[in] dim_im_out_x output tensor dimension x
- * @param[in] dim_im_out_y output tensor dimension y
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] bufferB pointer to buffer space for output
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- *
- * This function is the version with full list of optimization tricks, but with
- * some contraints:
- * ch_im_in is multiple of 2
- * ch_im_out is multiple of 2
- */
-arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t *Im_in,
- const uint16_t dim_im_in_x,
- const uint16_t dim_im_in_y,
- const uint16_t ch_im_in,
- const q7_t *wt,
- const uint16_t ch_im_out,
- const uint16_t dim_kernel_x,
- const uint16_t dim_kernel_y,
- const uint16_t padding_x,
- const uint16_t padding_y,
- const uint16_t stride_x,
- const uint16_t stride_y,
- const q7_t *bias,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- q7_t *Im_out,
- const uint16_t dim_im_out_x,
- const uint16_t dim_im_out_y,
- q15_t *bufferA,
- q7_t *bufferB);
-
-/**
- * @brief Wrapper function to pick the right optimized s8 depthwise convolution function
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if required.
- * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
- * dw_conv_params->dilation is not used.
- * Range of dw_conv_params->input_offset : [-127, 128]
- * Range of dw_conv_params->output_offset : [-128, 127]
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each
- * output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
- * Batch argument N is not used and assumed to be 1.
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT]
- * @param[in, out] output_data Output data pointer. Data type: int8
- * @return The function returns
- * <code>ARM_MATH_SUCCESS</code> - Successful completion.
- *
- * @details
- * - Supported framework: TensorFlow Lite
- * - Picks one of the the following functions
- * -# arm_depthwise_conv_s8()
- * -# arm_depthwise_conv_3x3_s8() - Cortex-M CPUs with DSP extension only
- * -# arm_depthwise_conv_s8_opt()
- * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- * - Check details of arm_depthwise_conv_s8_opt() for potential data that can be accessed outside of the
- * boundary.
- */
-arm_status arm_depthwise_conv_wrapper_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_dw_conv_params *dw_conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
-
-/**
- * @brief Get size of additional buffer required by arm_depthwise_conv_wrapper_s8()
- *
- * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
- * dw_conv_params->dilation is not used.
- * Range of dw_conv_params->input_offset : [-127, 128]
- * Range of dw_conv_params->input_offset : [-128, 127]
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
- * Batch argument N is not used and assumed to be 1.
- * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
- * @param[in] output_dims Output tensor dimensions. Format: [1, H, W, C_OUT]
- * @return Size of additional memory required for optimizations in bytes.
- *
- */
-int32_t arm_depthwise_conv_wrapper_s8_get_buffer_size(const cmsis_nn_dw_conv_params *dw_conv_params,
- const cmsis_nn_dims *input_dims,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims);
-
-/**
- * @brief Basic s8 depthwise convolution function that doesn't have any constraints on the input dimensions.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * exists if additional memory is.
- * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
- * dw_conv_params->dilation is not used.
- * Range of dw_conv_params->input_offset : [-127, 128]
- * Range of dw_conv_params->input_offset : [-128, 127]
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each
- * output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * Batch argument N is not used.
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[in, out] output_data Output data pointer. Data type: int8
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * - Supported framework: TensorFlow Lite
- * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- */
-arm_status arm_depthwise_conv_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_dw_conv_params *dw_conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
-
-/**
- * @brief Basic s16 depthwise convolution function that doesn't have any constraints on the input dimensions.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * exists if additional memory is.
- * @param[in] dw_conv_params Depthwise convolution parameters (e.g. strides, dilations, pads,...)
- * conv_params->input_offset : Not used
- * conv_params->output_offset : Not used
- * @param[in] quant_params Per-channel quantization info.
- * It contains the multiplier and shift values to be applied to each
- * output channel
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * Batch argument N is not used.
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * @param[in] bias_data Bias data pointer. Data type: int64
- * @param[in] output_dims Output tensor dimensions. Format: [N, H, W, C_OUT]
- * @param[in, out] output_data Output data pointer. Data type: int16
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * - Supported framework: TensorFlow Lite
- * - q15 is used as data type eventhough it is s16 data. It is done so to be consistent with existing APIs.
- */
-arm_status arm_depthwise_conv_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_dw_conv_params *dw_conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q15_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int64_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q15_t *output_data);
-
-/**
- * @brief Optimized s8 depthwise convolution function for 3x3 kernel size with some constraints on
- * the input arguments(documented below). Refer arm_depthwise_conv_s8() for function
- * argument details.
- *
- * @return The function returns one of the following
- * <code>ARM_MATH_SIZE_MISMATCH</code> - Unsupported dimension of tensors
- * <code>ARM_MATH_ARGUMENT_ERROR</code> - Unsupported pad size along the x axis
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @details
- * - Supported framework : TensorFlow Lite Micro
- * - The following constrains on the arguments apply
- * -# Number of input channel equals number of output channels
- * -# Filter height and width equals 3
- * -# Padding along x is either 0 or 1.
- *
- */
-arm_status arm_depthwise_conv_3x3_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_dw_conv_params *dw_conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
-
-/**
- * @brief Optimized s8 depthwise convolution function with constraint that in_channel equals out_channel.
- * Refer arm_depthwise_conv_s8() for function argument details.
- *
- * @return The function returns one of the following
- * <code>ARM_MATH_SIZE_MISMATCH</code> - input channel != output channel or
- * ch_mult != 1
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read out
- * for the following if MVE optimizations(Arm Helium Technology) are used.
- * - Output shift
- * - Output multiplier
- * - Output bias
- * - kernel
- * @details
- * - Supported framework: TensorFlow Lite
- * - The following constrains on the arguments apply
- * -# Number of input channel equals number of output channels or ch_mult equals 1
- * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- * - Reccomended when number of channels is 4 or greater.
- *
- */
-arm_status arm_depthwise_conv_s8_opt(const cmsis_nn_context *ctx,
- const cmsis_nn_dw_conv_params *dw_conv_params,
- const cmsis_nn_per_channel_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
-
-/**
- * @brief Get the required buffer size for optimized s8 depthwise convolution
- * function with constraint that in_channel equals out_channel.
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [1, H, W, C_IN]
- * Batch argument N is not used.
- * @param[in] filter_dims Filter tensor dimensions. Format: [1, H, W, C_OUT]
- * @return The function returns required buffer size in bytes
- *
- */
-int32_t arm_depthwise_conv_s8_opt_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims);
-
-/**
- * @defgroup FC Fully-connected Layer Functions
- *
- * Collection of fully-connected and matrix multiplication functions.
- *
- * Fully-connected layer is basically a matrix-vector multiplication
- * with bias. The matrix is the weights and the input/output vectors
- * are the activation values. Supported {weight, activation} precisions
- * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
- *
- * Here we have two types of kernel functions. The basic function
- * implements the function using regular GEMV approach. The opt functions
- * operates with weights in interleaved formats.
- *
- */
-
-/**
- *@brief Q7 basic fully-connected layer function
- *@param[in] pV pointer to input vector
- *@param[in] pM pointer to matrix weights
- *@param[in] dim_vec length of the vector
- *@param[in] num_of_rows number of rows in weight matrix
- *@param[in] bias_shift amount of left-shift for bias
- *@param[in] out_shift amount of right-shift for output
- *@param[in] bias pointer to bias
- *@param[in,out] pOut pointer to output vector
- *@param[in,out] vec_buffer pointer to buffer space for input
- *@return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
-
-arm_status arm_fully_connected_q7(const q7_t *pV,
- const q7_t *pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t *bias,
- q7_t *pOut,
- q15_t *vec_buffer);
-
-/**
- * @brief Basic s8 Fully Connected function.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * @param[in] fc_params Fully Connected layer parameters.
- * Range of fc_params->input_offset : [-127, 128]
- * fc_params->filter_offset : 0
- * Range of fc_params->output_offset : [-128, 127]
- * @param[in] quant_params Per-tensor quantization info.
- * It contains the multiplier and shift values to be applied to the output tensor.
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * Input dimension is taken as Nx(H * W * C_IN)
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Two dimensional filter dimensions. Format: [N, C]
- * N : accumulation depth and equals (H * W * C_IN) from input_dims
- * C : output depth and equals C_OUT in output_dims
- * H & W : Not used
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * N, H, W : Not used
- * @param[in] bias_data Bias data pointer. Data type: int32
- * @param[in] output_dims Output tensor dimensions. Format: [N, C_OUT]
- * N : Batches
- * C_OUT : Output depth
- * H & W : Not used.
- * @param[in, out] output_data Output data pointer. Data type: int8
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * - Supported framework: TensorFlow Lite
- * - q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- */
-arm_status arm_fully_connected_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_fc_params *fc_params,
- const cmsis_nn_per_tensor_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int32_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
-
-/**
- * @brief Get the required buffer size for S8 basic fully-connected and
- * matrix multiplication layer function for TF Lite
- * @param[in] filter_dims dimension of filter
- * @return The function returns required buffer size in bytes
- *
- */
-int32_t arm_fully_connected_s8_get_buffer_size(const cmsis_nn_dims *filter_dims);
-
-/**
- * @brief Basic s16 Fully Connected function.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * @param[in] fc_params Fully Connected layer parameters.
- * fc_params->input_offset : 0
- * fc_params->filter_offset : 0
- * fc_params->output_offset : 0
- * @param[in] quant_params Per-tensor quantization info.
- * It contains the multiplier and shift values to be applied to the output tensor.
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [N, H, W, C_IN]
- * Input dimension is taken as Nx(H * W * C_IN)
- * @param[in] input_data Input (activation) data pointer. Data type: int16
- * @param[in] filter_dims Two dimensional filter dimensions. Format: [N, C]
- * N : accumulation depth and equals (H * W * C_IN) from input_dims
- * C : output depth and equals C_OUT in output_dims
- * H & W : Not used
- * @param[in] filter_data Filter data pointer. Data type: int8
- * @param[in] bias_dims Bias tensor dimensions. Format: [C_OUT]
- * N, H, W : Not used
- * @param[in] bias_data Bias data pointer. Data type: int64
- * @param[in] output_dims Output tensor dimensions. Format: [N, C_OUT]
- * N : Batches
- * C_OUT : Output depth
- * H & W : Not used.
- * @param[in, out] output_data Output data pointer. Data type: int16
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * - Supported framework: TensorFlow Lite
- * - q15 is used as data type eventhough it is s16 data. It is done so to be consistent with existing APIs.
- */
-arm_status arm_fully_connected_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_fc_params *fc_params,
- const cmsis_nn_per_tensor_quant_params *quant_params,
- const cmsis_nn_dims *input_dims,
- const q15_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const q7_t *filter_data,
- const cmsis_nn_dims *bias_dims,
- const int64_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q15_t *output_data);
-
-/**
- * @brief Get the required buffer size for S16 basic fully-connected and
- * matrix multiplication layer function for TF Lite
- * @param[in] filter_dims dimension of filter
- * @return The function returns required buffer size in bytes
- *
- */
-int32_t arm_fully_connected_s16_get_buffer_size(const cmsis_nn_dims *filter_dims);
-
-/**
- * @brief Q7 opt fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
-
-arm_status arm_fully_connected_q7_opt(const q7_t *pV,
- const q7_t *pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t *bias,
- q7_t *pOut,
- q15_t *vec_buffer);
-
-/**
- * @brief Q15 basic fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
-
-arm_status arm_fully_connected_q15(const q15_t *pV,
- const q15_t *pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q15_t *bias,
- q15_t *pOut,
- q15_t *vec_buffer);
-
-/**
- * @brief Q15 opt fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
-
-arm_status arm_fully_connected_q15_opt(const q15_t *pV,
- const q15_t *pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q15_t *bias,
- q15_t *pOut,
- q15_t *vec_buffer);
-
-/**
- * @brief Mixed Q15-Q7 fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
-
-arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t *pV,
- const q7_t *pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t *bias,
- q15_t *pOut,
- q15_t *vec_buffer);
-
-/**
- * @brief Mixed Q15-Q7 opt fully-connected layer function
- * @param[in] pV pointer to input vector
- * @param[in] pM pointer to matrix weights
- * @param[in] dim_vec length of the vector
- * @param[in] num_of_rows number of rows in weight matrix
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias pointer to bias
- * @param[in,out] pOut pointer to output vector
- * @param[in,out] vec_buffer pointer to buffer space for input
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- */
-
-arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t *pV,
- const q7_t *pM,
- const uint16_t dim_vec,
- const uint16_t num_of_rows,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t *bias,
- q15_t *pOut,
- q15_t *vec_buffer);
-
-/**
- * @brief Matrix-Multiplication Kernels for Convolution
- *
- * These functions are used within convolution layer functions for
- * matrix multiplication.
- *
- * The implementation is similar to CMSIS-DSP arm_mat_mult functions
- * with one Q7 and one Q15 operands. The Q15 operand is the im2col
- * output which is always with 2 columns.
- *
- */
-
-/**
- * @brief Matrix-multiplication function for convolution
- * @param[in] pA pointer to operand A
- * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
- * @param[in] ch_im_out numRow of A
- * @param[in] numCol_A numCol of A
- * @param[in] bias_shift amount of left-shift for bias
- * @param[in] out_shift amount of right-shift for output
- * @param[in] bias the bias
- * @param[in,out] pOut pointer to output
- * @return The function returns the incremented output pointer
- */
-
-q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t *pA,
- const q15_t *pInBuffer,
- const uint16_t ch_im_out,
- const uint16_t numCol_A,
- const uint16_t bias_shift,
- const uint16_t out_shift,
- const q7_t *bias,
- q7_t *pOut);
-
-#ifdef __cplusplus
-}
-#endif
-
-/*
- * Other functions
- * These layers are typically not timing critical
- * Basic implementation is supported here
- */
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/**
- * @defgroup BasicMath Basic math functions
- *
- * Elementwise add and multiplication functions.
- *
- */
-
-/**
- * @brief s8 elementwise add of two vectors
- * @param[in] input_1_vect pointer to input vector 1
- * @param[in] input_2_vect pointer to input vector 2
- * @param[in] input_1_offset offset for input 1. Range: -127 to 128
- * @param[in] input_1_mult multiplier for input 1
- * @param[in] input_1_shift shift for input 1
- * @param[in] input_2_offset offset for input 2. Range: -127 to 128
- * @param[in] input_2_mult multiplier for input 2
- * @param[in] input_2_shift shift for input 2
- * @param[in] left_shift input left shift
- * @param[in,out] output pointer to output vector
- * @param[in] out_offset output offset. Range: -128 to 127
- * @param[in] out_mult output multiplier
- * @param[in] out_shift output shift
- * @param[in] out_activation_min minimum value to clamp output to. Min: -128
- * @param[in] out_activation_max maximum value to clamp output to. Max: 127
- * @param[in] block_size number of samples
- * @return The function returns ARM_MATH_SUCCESS
- */
-arm_status arm_elementwise_add_s8(const int8_t *input_1_vect,
- const int8_t *input_2_vect,
- const int32_t input_1_offset,
- const int32_t input_1_mult,
- const int32_t input_1_shift,
- const int32_t input_2_offset,
- const int32_t input_2_mult,
- const int32_t input_2_shift,
- const int32_t left_shift,
- int8_t *output,
- const int32_t out_offset,
- const int32_t out_mult,
- const int32_t out_shift,
- const int32_t out_activation_min,
- const int32_t out_activation_max,
- const int32_t block_size);
-
-/**
- * @brief s16 elementwise add of two vectors
- * @param[in] input_1_vect pointer to input vector 1
- * @param[in] input_2_vect pointer to input vector 2
- * @param[in] input_1_offset offset for input 1. Not used.
- * @param[in] input_1_mult multiplier for input 1
- * @param[in] input_1_shift shift for input 1
- * @param[in] input_2_offset offset for input 2. Not used.
- * @param[in] input_2_mult multiplier for input 2
- * @param[in] input_2_shift shift for input 2
- * @param[in] left_shift input left shift
- * @param[in,out] output pointer to output vector
- * @param[in] out_offset output offset. Not used.
- * @param[in] out_mult output multiplier
- * @param[in] out_shift output shift
- * @param[in] out_activation_min minimum value to clamp output to. Min: -32768
- * @param[in] out_activation_max maximum value to clamp output to. Max: 32767
- * @param[in] block_size number of samples
- * @return The function returns ARM_MATH_SUCCESS
- */
-arm_status arm_elementwise_add_s16(const int16_t *input_1_vect,
- const int16_t *input_2_vect,
- const int32_t input_1_offset,
- const int32_t input_1_mult,
- const int32_t input_1_shift,
- const int32_t input_2_offset,
- const int32_t input_2_mult,
- const int32_t input_2_shift,
- const int32_t left_shift,
- int16_t *output,
- const int32_t out_offset,
- const int32_t out_mult,
- const int32_t out_shift,
- const int32_t out_activation_min,
- const int32_t out_activation_max,
- const int32_t block_size);
-
-/**
- * @brief s8 elementwise multiplication
- * @param[in] input_1_vect pointer to input vector 1
- * @param[in] input_2_vect pointer to input vector 2
- * @param[in] input_1_offset offset for input 1. Range: -127 to 128
- * @param[in] input_2_offset offset for input 2. Range: -127 to 128
- * @param[in,out] output pointer to output vector
- * @param[in] out_offset output offset. Range: -128 to 127
- * @param[in] out_mult output multiplier
- * @param[in] out_shift output shift
- * @param[in] out_activation_min minimum value to clamp output to. Min: -128
- * @param[in] out_activation_max maximum value to clamp output to. Max: 127
- * @param[in] block_size number of samples
- * @return The function returns ARM_MATH_SUCCESS
- *
- * @details Supported framework: TensorFlow Lite micro
- */
-arm_status arm_elementwise_mul_s8(const int8_t *input_1_vect,
- const int8_t *input_2_vect,
- const int32_t input_1_offset,
- const int32_t input_2_offset,
- int8_t *output,
- const int32_t out_offset,
- const int32_t out_mult,
- const int32_t out_shift,
- const int32_t out_activation_min,
- const int32_t out_activation_max,
- const int32_t block_size);
-
-/**
- * @brief s16 elementwise multiplication
- * @param[in] input_1_vect pointer to input vector 1
- * @param[in] input_2_vect pointer to input vector 2
- * @param[in] input_1_offset offset for input 1. Not used.
- * @param[in] input_2_offset offset for input 2. Not used.
- * @param[in,out] output pointer to output vector
- * @param[in] out_offset output offset. Not used.
- * @param[in] out_mult output multiplier
- * @param[in] out_shift output shift
- * @param[in] out_activation_min minimum value to clamp output to. Min: -32768
- * @param[in] out_activation_max maximum value to clamp output to. Max: 32767
- * @param[in] block_size number of samples
- * @return The function returns ARM_MATH_SUCCESS
- *
- * @details Supported framework: TensorFlow Lite micro
- */
-arm_status arm_elementwise_mul_s16(const int16_t *input_1_vect,
- const int16_t *input_2_vect,
- const int32_t input_1_offset,
- const int32_t input_2_offset,
- int16_t *output,
- const int32_t out_offset,
- const int32_t out_mult,
- const int32_t out_shift,
- const int32_t out_activation_min,
- const int32_t out_activation_max,
- const int32_t block_size);
-
-/**
- * @defgroup Acti Activation Functions
- *
- * Perform activation layers, including ReLU (Rectified Linear Unit),
- * sigmoid and tanh
- *
- */
-
-/**
- * @brief Q7 RELU function
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- * @return none.
- */
-
-void arm_relu_q7(q7_t *data, uint16_t size);
-
-/**
- * @brief s8 ReLU6 function
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- */
-
-void arm_relu6_s8(q7_t *data, uint16_t size);
-
-/**
- * @brief Q15 RELU function
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- * @return none.
- */
-
-void arm_relu_q15(q15_t *data, uint16_t size);
-
-/**
- * @brief Q7 neural network activation function using direct table look-up
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
- * @param[in] type type of activation functions
- * @return none.
- */
-
-void arm_nn_activations_direct_q7(q7_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type);
-
-/**
- * @brief Q15 neural network activation function using direct table look-up
- * @param[in,out] data pointer to input
- * @param[in] size number of elements
- * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
- * @param[in] type type of activation functions
- * @return none.
- *
- * @details
- *
- * This is the direct table look-up approach.
- *
- * Assume here the integer part of the fixed-point is <= 3.
- * More than 3 just not making much sense, makes no difference with
- * saturation followed by any of these activation functions.
- */
-
-void arm_nn_activations_direct_q15(q15_t *data, uint16_t size, uint16_t int_width, arm_nn_activation_type type);
-
-/**
- * @defgroup Pooling Pooling Functions
- *
- * Perform pooling functions, including max pooling and average pooling
- *
- */
-
-/**
- * @brief Q7 max pooling function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] Im_out pointer to output tensor
- * @return none.
- *
- */
-
-void arm_maxpool_q7_HWC(q7_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const uint16_t dim_im_out,
- q7_t *bufferA,
- q7_t *Im_out);
-
-/**
- * @brief Q7 average pooling function
- * @param[in] Im_in pointer to input tensor
- * @param[in] dim_im_in input tensor dimension
- * @param[in] ch_im_in number of input tensor channels
- * @param[in] dim_kernel filter kernel size
- * @param[in] padding padding sizes
- * @param[in] stride convolution stride
- * @param[in] dim_im_out output tensor dimension
- * @param[in,out] bufferA pointer to buffer space for input
- * @param[in,out] Im_out pointer to output tensor
- * @return none.
- *
- */
-
-void arm_avepool_q7_HWC(q7_t *Im_in,
- const uint16_t dim_im_in,
- const uint16_t ch_im_in,
- const uint16_t dim_kernel,
- const uint16_t padding,
- const uint16_t stride,
- const uint16_t dim_im_out,
- q7_t *bufferA,
- q7_t *Im_out);
-
-/**
- * @brief s8 average pooling function.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * @param[in] pool_params Pooling parameters
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
- * Argument 'N' is not used.
- * @param[in] input_data Input (activation) data pointer. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
- * Argument N and C are not used.
- * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
- * Argument N is not used.
- * C_OUT equals C_IN.
- * @param[in, out] output_data Output data pointer. Data type: int8
- * @return The function returns
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @details
- * - Supported Framework: TensorFlow Lite
- *
- */
-arm_status arm_avgpool_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_pool_params *pool_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
-
-/**
- * @brief Get the required buffer size for S8 average pooling function
- * @param[in] dim_dst_width output tensor dimension
- * @param[in] ch_src number of input tensor channels
- * @return The function returns required buffer size in bytes
- *
- */
-int32_t arm_avgpool_s8_get_buffer_size(const int dim_dst_width, const int ch_src);
-
-/**
- * @brief s16 average pooling function.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * @param[in] pool_params Pooling parameters
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
- * Argument 'N' is not used.
- * @param[in] input_data Input (activation) data pointer. Data type: int16
- * @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
- * Argument N and C are not used.
- * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
- * Argument N is not used.
- * C_OUT equals C_IN.
- * @param[in, out] output_data Output data pointer. Data type: int16
- * @return The function returns
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @details
- * - Supported Framework: TensorFlow Lite
- *
- */
-arm_status arm_avgpool_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_pool_params *pool_params,
- const cmsis_nn_dims *input_dims,
- const int16_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims,
- int16_t *output_data);
-
-/**
- * @brief Get the required buffer size for S16 average pooling function
- * @param[in] dim_dst_width output tensor dimension
- * @param[in] ch_src number of input tensor channels
- * @return The function returns required buffer size in bytes
- *
- */
-int32_t arm_avgpool_s16_get_buffer_size(const int dim_dst_width, const int ch_src);
-
-/**
- * @brief s8 max pooling function.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * @param[in] pool_params Pooling parameters
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
- * Argument 'N' is not used.
- * @param[in] input_data Input (activation) data pointer. The input tensor must not
- * overlap with the output tensor. Data type: int8
- * @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
- * Argument N and C are not used.
- * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
- * Argument N is not used.
- * C_OUT equals C_IN.
- * @param[in, out] output_data Output data pointer. Data type: int8
- * @return The function returns
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @details
- * - Supported Framework: TensorFlow Lite
- *
- */
-arm_status arm_max_pool_s8(const cmsis_nn_context *ctx,
- const cmsis_nn_pool_params *pool_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
-
-/**
- * @brief s16 max pooling function.
- *
- * @param[in, out] ctx Function context (e.g. temporary buffer). Check the function
- * definition file to see if an additional buffer is required.
- * Optional function {API}_get_buffer_size() provides the buffer
- * size if an additional buffer is required.
- * @param[in] pool_params Pooling parameters
- * @param[in] input_dims Input (activation) tensor dimensions. Format: [H, W, C_IN]
- * Argument 'N' is not used.
- * @param[in] src Input (activation) data pointer. The input tensor must not
- * overlap with the output tensor. Data type: int16
- * @param[in] filter_dims Filter tensor dimensions. Format: [H, W]
- * Argument N and C are not used.
- * @param[in] output_dims Output tensor dimensions. Format: [H, W, C_OUT]
- * Argument N is not used.
- * C_OUT equals C_IN.
- * @param[in, out] dst Output data pointer. Data type: int16
- * @return The function returns
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @details
- * - Supported Framework: TensorFlow Lite
- *
- */
-arm_status arm_max_pool_s16(const cmsis_nn_context *ctx,
- const cmsis_nn_pool_params *pool_params,
- const cmsis_nn_dims *input_dims,
- const int16_t *src,
- const cmsis_nn_dims *filter_dims,
- const cmsis_nn_dims *output_dims,
- int16_t *dst);
-
-/**
- * @defgroup Softmax Softmax Functions
- *
- * EXP(2) based softmax functions.
- *
- */
-
-/**
- * @brief Q7 softmax function
- * @param[in] vec_in pointer to input vector
- * @param[in] dim_vec input vector dimension
- * @param[out] p_out pointer to output vector
- *
- * @note This function is an optimized version which is not bit-accurate with
- * TensorFlow Lite's kernel
- *
- */
-
-void arm_softmax_q7(const q7_t *vec_in, const uint16_t dim_vec, q7_t *p_out);
-
-/**
- * @brief Q7 softmax function with batch parameter
- * @param[in] vec_in pointer to input vector
- * @param[in] nb_batches number of batches
- * @param[in] dim_vec input vector dimension
- * @param[out] p_out pointer to output vector
- * @return none.
- *
- * @note This function is an optimized version which is not bit-accurate with
- * TensorFlow Lite's kernel
- *
- */
-
-void arm_softmax_with_batch_q7(const q7_t *vec_in, const uint16_t nb_batches, const uint16_t dim_vec, q7_t *p_out);
-/**
- * @brief Q15 softmax function
- * @param[in] vec_in pointer to input vector
- * @param[in] dim_vec input vector dimension
- * @param[out] p_out pointer to output vector
- * @return none.
- *
- * @note This function is an optimized version which is not bit-accurate with
- * TensorFlow Lite's kernel
- *
- */
-
-void arm_softmax_q15(const q15_t *vec_in, const uint16_t dim_vec, q15_t *p_out);
-
-/**
- * @brief S8 softmax function
- * @param[in] input Pointer to the input tensor
- * @param[in] num_rows Number of rows in the input tensor
- * @param[in] row_size Number of elements in each input row
- * @param[in] mult Input quantization multiplier
- * @param[in] shift Input quantization shift within the range [0, 31]
- * @param[in] diff_min Minimum difference with max in row. Used to check if
- * the quantized exponential operation can be performed
- * @param[out] output Pointer to the output tensor
- *
- * @note Supported framework: TensorFlow Lite micro (bit-accurate)
- *
- */
-void arm_softmax_s8(const int8_t *input,
- const int32_t num_rows,
- const int32_t row_size,
- const int32_t mult,
- const int32_t shift,
- const int32_t diff_min,
- int8_t *output);
-
-/**
- * @brief S8 to s16 softmax function
- * @param[in] input Pointer to the input tensor
- * @param[in] num_rows Number of rows in the input tensor
- * @param[in] row_size Number of elements in each input row
- * @param[in] mult Input quantization multiplier
- * @param[in] shift Input quantization shift within the range [0, 31]
- * @param[in] diff_min Minimum difference with max in row. Used to check if
- * the quantized exponential operation can be performed
- * @param[out] output Pointer to the output tensor
- *
- * @note Supported framework: TensorFlow Lite micro (bit-accurate)
- *
- */
-void arm_softmax_s8_s16(const int8_t *input,
- const int32_t num_rows,
- const int32_t row_size,
- const int32_t mult,
- const int32_t shift,
- const int32_t diff_min,
- int16_t *output);
-
-/**
- * @brief S16 softmax function
- * @param[in] input Pointer to the input tensor
- * @param[in] num_rows Number of rows in the input tensor
- * @param[in] row_size Number of elements in each input row
- * @param[in] mult Input quantization multiplier
- * @param[in] shift Input quantization shift within the range [0, 31]
- * @param[in] softmax_params Softmax s16 layer parameters with two pointers to LUTs speficied below.
- * For indexing the high 9 bits are used and 7 remaining for interpolation.
- * That means 512 entries for the 9-bit indexing and 1 extra for interpolation, i.e. 513
- * values for each LUT.
- * - Lookup table for exp(x), where x uniform distributed between [-10.0 , 0.0]
- * - Lookup table for 1 / (1 + x), where x uniform distributed between [0.0 , 1.0]
- * @param[out] output Pointer to the output tensor
- * @return The function returns
- * <code>ARM_MATH_ARGUMENT_ERROR</code> if LUTs are NULL
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- * @note Supported framework: TensorFlow Lite micro (bit-accurate)
- *
- */
-arm_status arm_softmax_s16(const int16_t *input,
- const int32_t num_rows,
- const int32_t row_size,
- const int32_t mult,
- const int32_t shift,
- const cmsis_nn_softmax_lut_s16 *softmax_params,
- int16_t *output);
-
-/**
- * @brief U8 softmax function
- * @param[in] input Pointer to the input tensor
- * @param[in] num_rows Number of rows in the input tensor
- * @param[in] row_size Number of elements in each input row
- * @param[in] mult Input quantization multiplier
- * @param[in] shift Input quantization shift within the range [0, 31]
- * @param[in] diff_min Minimum difference with max in row. Used to check if
- * the quantized exponential operation can be performed
- * @param[out] output Pointer to the output tensor
- *
- * @note Supported framework: TensorFlow Lite micro (bit-accurate)
- *
- */
-
-void arm_softmax_u8(const uint8_t *input,
- const int32_t num_rows,
- const int32_t row_size,
- const int32_t mult,
- const int32_t shift,
- const int32_t diff_min,
- uint8_t *output);
-
-/**
- * @brief uint8 depthwise convolution function with asymmetric quantization
- * Unless specified otherwise, arguments are mandatory.
- *
- * @param[in] input Pointer to input tensor
- * @param[in] input_x Width of input tensor
- * @param[in] input_y Height of input tensor
- * @param[in] input_ch Channels in input tensor
- * @param[in] kernel Pointer to kernel weights
- * @param[in] kernel_x Width of kernel
- * @param[in] kernel_y Height of kernel
- * @param[in] ch_mult Number of channel multiplier
- * @param[in] pad_x Padding sizes x
- * @param[in] pad_y Padding sizes y
- * @param[in] stride_x stride along the width
- * @param[in] stride_y stride along the height
- * @param[in] dilation_x Dilation along width. Not used and intended for future enhancement.
- * @param[in] dilation_y Dilation along height. Not used and intended for future enhancement.
- * @param[in] bias Pointer to optional bias values. If no bias is
- * availble, NULL is expected
- * @param[in] input_offset Input tensor zero offset
- * @param[in] filter_offset Kernel tensor zero offset
- * @param[in] output_offset Output tensor zero offset
- * @param[in,out] output Pointer to output tensor
- * @param[in] output_x Width of output tensor
- * @param[in] output_y Height of output tensor
- * @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255}
- * @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255}
- * @param[in] out_shift Amount of right-shift for output
- * @param[in] out_mult Output multiplier for requantization
- * @return The function returns the following
- * <code>ARM_MATH_SUCCESS</code> - Successful operation
- *
- */
-arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
- const uint16_t input_x,
- const uint16_t input_y,
- const uint16_t input_ch,
- const uint8_t *kernel,
- const uint16_t kernel_x,
- const uint16_t kernel_y,
- const int16_t ch_mult,
- const int16_t pad_x,
- const int16_t pad_y,
- const int16_t stride_x,
- const int16_t stride_y,
- const int16_t dilation_x,
- const int16_t dilation_y,
- const int32_t *bias,
- const int32_t input_offset,
- const int32_t filter_offset,
- const int32_t output_offset,
- uint8_t *output,
- const uint16_t output_x,
- const uint16_t output_y,
- const int32_t output_activation_min,
- const int32_t output_activation_max,
- const int32_t out_shift,
- const int32_t out_mult);
-
-/**
- * @defgroup Reshape Reshape Functions
- *
- */
-
-/**
- * @brief Reshape a s8 vector into another with different shape
- * @param[in] input points to the s8 input vector
- * @param[out] output points to the s8 output vector
- * @param[in] total_size total size of the input and output vectors in bytes
- *
- * @note The output is expected to be in a memory area that does not overlap with the input's
- *
- */
-void arm_reshape_s8(const int8_t *input, int8_t *output, const uint32_t total_size);
-
-/**
- * @defgroup Concatenation Concatenation Functions
- *
- */
-
-/**
- * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the X axis
- * This function should be called for each input tensor to concatenate. The argument offset_x
- * will be used to store the input tensor in the correct position in the output tensor
- *
- * i.e. offset_x = 0
- * for(i = 0 i < num_input_tensors; ++i)
- * {
- * arm_concatenation_s8_x(&input[i], ..., &output, ..., ..., offset_x)
- * offset_x += input_x[i]
- * }
- *
- * This function assumes that the output tensor has:
- * -# The same height of the input tensor
- * -# The same number of channels of the input tensor
- * -# The same batch size of the input tensor
- *
- * Unless specified otherwise, arguments are mandatory.
- *
- * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
- * does not involve any arithmetic operation
- *
- * @param[in] input Pointer to input tensor. Input tensor must not overlap with the output tensor.
- * @param[in] input_x Width of input tensor
- * @param[in] input_y Height of input tensor
- * @param[in] input_z Channels in input tensor
- * @param[in] input_w Batch size in input tensor
- * @param[out] output Pointer to output tensor. Expected to be at least
- * (input_x * input_y * input_z * input_w) + offset_x
- * bytes.
- * @param[in] output_x Width of output tensor
- * @param[in] offset_x The offset (in number of elements) on the X axis to start concatenating the input tensor
- * It is user responsibility to provide the correct value
- *
- * <b> Input constraints</b>
- * offset_x is less than output_x
- *
- */
-void arm_concatenation_s8_x(const int8_t *input,
- const uint16_t input_x,
- const uint16_t input_y,
- const uint16_t input_z,
- const uint16_t input_w,
- int8_t *output,
- const uint16_t output_x,
- const uint32_t offset_x);
-
-/**
- * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Y axis
- * This function should be called for each input tensor to concatenate. The argument offset_y
- * will be used to store the input tensor in the correct position in the output tensor
- *
- * i.e. offset_y = 0
- * for(i = 0 i < num_input_tensors; ++i)
- * {
- * arm_concatenation_s8_y(&input[i], ..., &output, ..., ..., offset_y)
- * offset_y += input_y[i]
- * }
- *
- * This function assumes that the output tensor has:
- * -# The same width of the input tensor
- * -# The same number of channels of the input tensor
- * -# The same batch size of the input tensor
- *
- * Unless specified otherwise, arguments are mandatory.
- *
- * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
- * does not involve any arithmetic operation
- *
- * @param[in] input Pointer to input tensor. Input tensor must not overlap with the output tensor.
- * @param[in] input_x Width of input tensor
- * @param[in] input_y Height of input tensor
- * @param[in] input_z Channels in input tensor
- * @param[in] input_w Batch size in input tensor
- * @param[out] output Pointer to output tensor. Expected to be at least
- * (input_z * input_w * input_x * input_y) + offset_y
- * bytes.
- * @param[in] output_y Height of output tensor
- * @param[in] offset_y The offset on the Y axis to start concatenating the input tensor
- * It is user responsibility to provide the correct value
- *
- * <b> Input constraints</b>
- * offset_y is less than output_y
- *
- */
-void arm_concatenation_s8_y(const int8_t *input,
- const uint16_t input_x,
- const uint16_t input_y,
- const uint16_t input_z,
- const uint16_t input_w,
- int8_t *output,
- const uint16_t output_y,
- const uint32_t offset_y);
-
-/**
- * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the Z axis
- * This function should be called for each input tensor to concatenate. The argument offset_z
- * will be used to store the input tensor in the correct position in the output tensor
- *
- * i.e. offset_z = 0
- * for(i = 0 i < num_input_tensors; ++i)
- * {
- * arm_concatenation_s8_z(&input[i], ..., &output, ..., ..., offset_z)
- * offset_z += input_z[i]
- * }
- *
- * This function assumes that the output tensor has:
- * -# The same width of the input tensor
- * -# The same height of the input tensor
- * -# The same batch size of the input tensor
- *
- * Unless specified otherwise, arguments are mandatory.
- *
- * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
- * does not involve any arithmetic operation
- *
- * @param[in] input Pointer to input tensor. Input tensor must not overlap with output tensor.
- * @param[in] input_x Width of input tensor
- * @param[in] input_y Height of input tensor
- * @param[in] input_z Channels in input tensor
- * @param[in] input_w Batch size in input tensor
- * @param[out] output Pointer to output tensor. Expected to be at least
- * (input_x * input_y * input_z * input_w) + offset_z
- * bytes.
- * @param[in] output_z Channels in output tensor
- * @param[in] offset_z The offset on the Z axis to start concatenating the input tensor
- * It is user responsibility to provide the correct value
- *
- * <b> Input constraints</b>
- * offset_z is less than output_z
- *
- */
-void arm_concatenation_s8_z(const int8_t *input,
- const uint16_t input_x,
- const uint16_t input_y,
- const uint16_t input_z,
- const uint16_t input_w,
- int8_t *output,
- const uint16_t output_z,
- const uint32_t offset_z);
-
-/**
- * @brief int8/uint8 concatenation function to be used for concatenating N-tensors along the W axis (Batch size)
- * This function should be called for each input tensor to concatenate. The argument offset_w
- * will be used to store the input tensor in the correct position in the output tensor
- *
- * i.e. offset_w = 0
- * for(i = 0 i < num_input_tensors; ++i)
- * {
- * arm_concatenation_s8_w(&input[i], ..., &output, ..., ..., offset_w)
- * offset_w += input_w[i]
- * }
- *
- * This function assumes that the output tensor has:
- * -# The same width of the input tensor
- * -# The same height of the input tensor
- * -# The same number o channels of the input tensor
- *
- * Unless specified otherwise, arguments are mandatory.
- *
- * @note This function, data layout independent, can be used to concatenate either int8 or uint8 tensors because it
- * does not involve any arithmetic operation
- *
- * @param[in] input Pointer to input tensor
- * @param[in] input_x Width of input tensor
- * @param[in] input_y Height of input tensor
- * @param[in] input_z Channels in input tensor
- * @param[in] input_w Batch size in input tensor
- * @param[out] output Pointer to output tensor. Expected to be at least
- * input_x * input_y * input_z * input_w
- * bytes.
- * @param[in] offset_w The offset on the W axis to start concatenating the input tensor
- * It is user responsibility to provide the correct value
- *
- */
-void arm_concatenation_s8_w(const int8_t *input,
- const uint16_t input_x,
- const uint16_t input_y,
- const uint16_t input_z,
- const uint16_t input_w,
- int8_t *output,
- const uint32_t offset_w);
-/**
- * @defgroup SVDF SVDF Layer Functions
- *
- */
-
-/**
- * @brief s8 SVDF function with 8 bit state tensor and 8 bit time weights
- *
- * @param[in] input_ctx Temporary scratch buffer
- * @param[in] output_ctx Temporary output scratch buffer
- * @param[in] svdf_params SVDF Parameters
- * Range of svdf_params->input_offset : [-128, 127]
- * Range of svdf_params->output_offset : [-128, 127]
- * @param[in] input_quant_params Input quantization parameters
- * @param[in] output_quant_params Output quantization parameters
- * @param[in] input_dims Input tensor dimensions
- * @param[in] input_data Pointer to input tensor
- * @param[in] state_dims State tensor dimensions
- * @param[in] state_data Pointer to state tensor
- * @param[in] weights_feature_dims Weights (feature) tensor dimensions
- * @param[in] weights_feature_data Pointer to the weights (feature) tensor
- * @param[in] weights_time_dims Weights (time) tensor dimensions
- * @param[in] weights_time_data Pointer to the weights (time) tensor
- * @param[in] bias_dims Bias tensor dimensions
- * @param[in] bias_data Pointer to bias tensor
- * @param[in] output_dims Output tensor dimensions
- * @param[out] output_data Pointer to the output tensor
- *
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * 1. Supported framework: TensorFlow Lite micro
- * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- *
- */
-arm_status arm_svdf_s8(const cmsis_nn_context *input_ctx,
- const cmsis_nn_context *output_ctx,
- const cmsis_nn_svdf_params *svdf_params,
- const cmsis_nn_per_tensor_quant_params *input_quant_params,
- const cmsis_nn_per_tensor_quant_params *output_quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *state_dims,
- q7_t *state_data,
- const cmsis_nn_dims *weights_feature_dims,
- const q7_t *weights_feature_data,
- const cmsis_nn_dims *weights_time_dims,
- const q7_t *weights_time_data,
- const cmsis_nn_dims *bias_dims,
- const q31_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
-
-/**
- * @brief s8 SVDF function with 16 bit state tensor and 16 bit time weights
- *
- * @param[in] input_ctx Temporary scratch buffer
- * @param[in] output_ctx Temporary output scratch buffer
- * @param[in] svdf_params SVDF Parameters
- * Range of svdf_params->input_offset : [-128, 127]
- * Range of svdf_params->output_offset : [-128, 127]
- * @param[in] input_quant_params Input quantization parameters
- * @param[in] output_quant_params Output quantization parameters
- * @param[in] input_dims Input tensor dimensions
- * @param[in] input_data Pointer to input tensor
- * @param[in] state_dims State tensor dimensions
- * @param[in] state_data Pointer to state tensor
- * @param[in] weights_feature_dims Weights (feature) tensor dimensions
- * @param[in] weights_feature_data Pointer to the weights (feature) tensor
- * @param[in] weights_time_dims Weights (time) tensor dimensions
- * @param[in] weights_time_data Pointer to the weights (time) tensor
- * @param[in] bias_dims Bias tensor dimensions
- * @param[in] bias_data Pointer to bias tensor
- * @param[in] output_dims Output tensor dimensions
- * @param[out] output_data Pointer to the output tensor
- *
- * @return The function returns <code>ARM_MATH_SUCCESS</code>
- *
- * @details
- * 1. Supported framework: TensorFlow Lite micro
- * 2. q7 is used as data type eventhough it is s8 data. It is done so to be consistent with existing APIs.
- *
- */
-arm_status arm_svdf_state_s16_s8(const cmsis_nn_context *input_ctx,
- const cmsis_nn_context *output_ctx,
- const cmsis_nn_svdf_params *svdf_params,
- const cmsis_nn_per_tensor_quant_params *input_quant_params,
- const cmsis_nn_per_tensor_quant_params *output_quant_params,
- const cmsis_nn_dims *input_dims,
- const q7_t *input_data,
- const cmsis_nn_dims *state_dims,
- q15_t *state_data,
- const cmsis_nn_dims *weights_feature_dims,
- const q7_t *weights_feature_data,
- const cmsis_nn_dims *weights_time_dims,
- const q15_t *weights_time_data,
- const cmsis_nn_dims *bias_dims,
- const q31_t *bias_data,
- const cmsis_nn_dims *output_dims,
- q7_t *output_data);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_nnfunctions.h
+ * Description: Public header file for CMSIS NN Library
+ *
+ * $Date: 13. July 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+
+/**
+ \mainpage CMSIS NN Software Library
+ *
+ * Introduction
+ * ------------
+ *
+ * This user manual describes the CMSIS NN software library,
+ * a collection of efficient neural network kernels developed to maximize the
+ * performance and minimize the memory footprint of neural networks on Cortex-M processor cores.
+ *
+ * The library is divided into a number of functions each covering a specific category:
+ * - Neural Network Convolution Functions
+ * - Neural Network Activation Functions
+ * - Fully-connected Layer Functions
+ * - Neural Network Pooling Functions
+ * - Softmax Functions
+ * - Neural Network Support Functions
+ *
+ * The library has separate functions for operating on different weight and activation data
+ * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the
+ * kernels are included in the function description. The implementation details are also
+ * described in this paper [1].
+ *
+ * Block Diagram
+ * --------
+ * \image html CMSIS-NN-OVERVIEW.PNG
+ *
+ * Examples
+ * --------
+ *
+ * The library ships with a number of examples which demonstrate how to use the library functions.
+ *
+ * Pre-processor Macros
+ * ------------
+ *
+ * Each library project have differant pre-processor macros.
+ *
+ * - ARM_MATH_DSP:
+ *
+ * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions.
+ *
+ * - ARM_MATH_BIG_ENDIAN:
+ *
+ * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
+ *
+ * - ARM_NN_TRUNCATE:
+ *
+ * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation.
+ *
+ * Copyright Notice
+ * ------------
+ *
+ * Copyright (C) 2010-2018 Arm Limited. All rights reserved.
+ *
+ * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601
+ */
+
+/**
+ * @defgroup groupNN Neural Network Functions
+ * These functions perform basic operations for neural network layers.
+ */
+
+#ifndef _ARM_NNFUNCTIONS_H
+#define _ARM_NNFUNCTIONS_H
+
+#include "arm_nnsupportfunctions.h"
+#include "arm_nn_tables.h"
+
+#define USE_INTRINSIC
+
+//#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup NNConv Neural Network Convolution Functions
+ *
+ * Perform convolution layer
+ *
+ * The convolution is implemented in 2 steps: im2col and GEMM
+ *
+ * im2col is a process of converting each patch of image data into
+ * a column. After im2col, the convolution is computed as matrix-matrix
+ * multiplication.
+ *
+ * To reduce the memory footprint, the im2col is performed partially.
+ * Each iteration, only a few column (i.e., patches) are generated and
+ * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
+ *
+ */
+
+ /**
+ * @brief Basic Q7 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_convolve_HWC_q7_basic(const q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Basic Q7 convolution function (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ */
+
+ arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Basic Q15 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_convolve_HWC_q15_basic(const q15_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q15_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q15_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q15_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Fast Q7 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 4
+ * ch_im_out is multiple of 2
+ */
+
+ arm_status arm_convolve_HWC_q7_fast(const q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Fast Q7 convolution function (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 4
+ * ch_im_out is multiple of 2
+ */
+
+ arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1
+ * and dim_kernel_y=1). It can be used for
+ * second half of MobileNets after depthwise separable convolution.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 4
+ * ch_im_out is multiple of 2
+ */
+ arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Q7 version of convolution for RGB image
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This kernel is written exclusively for convolution with ch_im_in
+ * equals 3. This applies on the first layer of CNNs which has input
+ * image with RGB format.
+ */
+
+ arm_status arm_convolve_HWC_q7_RGB(const q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Fast Q15 convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 2
+ * ch_im_out is multiple of 2
+ */
+
+ arm_status arm_convolve_HWC_q15_fast(const q15_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q15_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q15_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q15_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Fast Q15 convolution function (non-sqaure shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding size x
+ * @param[in] padding_y padding size y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * @details
+ *
+ * <b>Buffer size:</b>
+ *
+ * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+ *
+ * bufferB size: 0
+ *
+ * <b>Input dimension constraints:</b>
+ *
+ * ch_im_in is multiple of 2
+ *
+ * ch_im_out is multipe of 2
+ *
+ */
+
+ arm_status
+ arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q15_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q15_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q15_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Q7 depthwise separable convolution function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 2
+ * ch_im_out is multiple of 2
+ */
+
+ arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+ /**
+ * @brief Q7 depthwise separable convolution function (non-square shape)
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in_x input tensor dimention x
+ * @param[in] dim_im_in_y input tensor dimention y
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] wt pointer to kernel weights
+ * @param[in] ch_im_out number of filters, i.e., output tensor channels
+ * @param[in] dim_kernel_x filter kernel size x
+ * @param[in] dim_kernel_y filter kernel size y
+ * @param[in] padding_x padding sizes x
+ * @param[in] padding_y padding sizes y
+ * @param[in] stride_x convolution stride x
+ * @param[in] stride_y convolution stride y
+ * @param[in] bias pointer to bias
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in,out] Im_out pointer to output tensor
+ * @param[in] dim_im_out_x output tensor dimension x
+ * @param[in] dim_im_out_y output tensor dimension y
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] bufferB pointer to buffer space for output
+ * @return The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ * ch_im_in is multiple of 2
+ * ch_im_out is multiple of 2
+ */
+ arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in,
+ const uint16_t dim_im_in_x,
+ const uint16_t dim_im_in_y,
+ const uint16_t ch_im_in,
+ const q7_t * wt,
+ const uint16_t ch_im_out,
+ const uint16_t dim_kernel_x,
+ const uint16_t dim_kernel_y,
+ const uint16_t padding_x,
+ const uint16_t padding_y,
+ const uint16_t stride_x,
+ const uint16_t stride_y,
+ const q7_t * bias,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ q7_t * Im_out,
+ const uint16_t dim_im_out_x,
+ const uint16_t dim_im_out_y,
+ q15_t * bufferA,
+ q7_t * bufferB);
+
+
+/**
+ * @defgroup FC Fully-connected Layer Functions
+ *
+ * Perform fully-connected layer
+ *
+ * Fully-connected layer is basically a matrix-vector multiplication
+ * with bias. The matrix is the weights and the input/output vectors
+ * are the activation values. Supported {weight, activation} precisions
+ * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
+ *
+ * Here we have two types of kernel functions. The basic function
+ * implements the function using regular GEMV approach. The opt functions
+ * operates with weights in interleaved formats.
+ *
+ */
+
+ /**
+ * @brief Q7 basic fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_fully_connected_q7(const q7_t * pV,
+ const q7_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q7_t * pOut,
+ q15_t * vec_buffer);
+
+ /**
+ * @brief Q7 opt fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_fully_connected_q7_opt(const q7_t * pV,
+ const q7_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q7_t * pOut,
+ q15_t * vec_buffer);
+
+ /**
+ * @brief Q15 basic fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_fully_connected_q15(const q15_t * pV,
+ const q15_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q15_t * bias,
+ q15_t * pOut,
+ q15_t * vec_buffer);
+
+ /**
+ * @brief Q15 opt fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_fully_connected_q15_opt(const q15_t * pV,
+ const q15_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q15_t * bias,
+ q15_t * pOut,
+ q15_t * vec_buffer);
+
+ /**
+ * @brief Mixed Q15-Q7 fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t * pV,
+ const q7_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q15_t * pOut,
+ q15_t * vec_buffer);
+
+ /**
+ * @brief Mixed Q15-Q7 opt fully-connected layer function
+ * @param[in] pV pointer to input vector
+ * @param[in] pM pointer to matrix weights
+ * @param[in] dim_vec length of the vector
+ * @param[in] num_of_rows number of rows in weight matrix
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias pointer to bias
+ * @param[in,out] pOut pointer to output vector
+ * @param[in,out] vec_buffer pointer to buffer space for input
+ * @return The function returns <code>ARM_MATH_SUCCESS</code>
+ *
+ */
+
+ arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV,
+ const q7_t * pM,
+ const uint16_t dim_vec,
+ const uint16_t num_of_rows,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q15_t * pOut,
+ q15_t * vec_buffer);
+
+/**
+ * @brief Matrix-Multiplication Kernels for Convolution
+ *
+ * These functions are used within convolution layer functions for
+ * matrix multiplication.
+ *
+ * The implementation is similar to CMSIS-DSP arm_mat_mult functions
+ * with one Q7 and one Q15 operands. The Q15 operand is the im2col
+ * output which is always with 2 columns.
+ *
+ */
+
+ /**
+ * @brief Matrix-multiplication function for convolution
+ * @param[in] pA pointer to operand A
+ * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
+ * @param[in] ch_im_out numRow of A
+ * @param[in] numCol_A numCol of A
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias the bias
+ * @param[in,out] pOut pointer to output
+ * @return The function returns the incremented output pointer
+ */
+
+ q7_t *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA,
+ const q15_t * pInBuffer,
+ const uint16_t ch_im_out,
+ const uint16_t numCol_A,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q7_t * pOut);
+
+ /**
+ * @brief Matrix-multiplication function for convolution with reordered columns
+ * @param[in] pA pointer to operand A
+ * @param[in] pInBuffer pointer to operand B, always conssists of 2 vectors
+ * @param[in] ch_im_out numRow of A
+ * @param[in] numCol_A numCol of A
+ * @param[in] bias_shift amount of left-shift for bias
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] bias the bias
+ * @param[in,out] pOut pointer to output
+ * @return The function returns the incremented output pointer
+ */
+
+ q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA,
+ const q15_t * pInBuffer,
+ const uint16_t ch_im_out,
+ const uint16_t numCol_A,
+ const uint16_t bias_shift,
+ const uint16_t out_shift,
+ const q7_t * bias,
+ q7_t * pOut);
+
+#ifdef __cplusplus
+}
+#endif
+
+/*
+ * Other functions
+ * These layers are typically not timing critical
+ * Basic implementation is supported here
+ */
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+/**
+ * @defgroup Acti Neural Network Activation Functions
+ *
+ * Perform activation layers, including ReLU (Rectified Linear Unit),
+ * sigmoid and tanh
+ *
+ */
+
+ /**
+ * @brief Q7 RELU function
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @return none.
+ */
+
+ void arm_relu_q7(q7_t * data, uint16_t size);
+
+ /**
+ * @brief Q15 RELU function
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @return none.
+ */
+
+ void arm_relu_q15(q15_t * data, uint16_t size);
+
+ /**
+ * @brief Q7 neural network activation function using direct table look-up
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
+ * @param[in] type type of activation functions
+ * @return none.
+ */
+
+ void arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width,
+ arm_nn_activation_type type);
+
+ /**
+ * @brief Q15 neural network activation function using direct table look-up
+ * @param[in,out] data pointer to input
+ * @param[in] size number of elements
+ * @param[in] int_width bit-width of the integer part, assume to be smaller than 3
+ * @param[in] type type of activation functions
+ * @return none.
+ */
+
+ void arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width,
+ arm_nn_activation_type type);
+
+/**
+ * @defgroup Pooling Neural Network Pooling Functions
+ *
+ * Perform pooling functions, including max pooling and average pooling
+ *
+ */
+
+ /**
+ * @brief Q7 max pooling function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] Im_out pointer to output tensor
+ * @return none.
+ *
+ */
+
+ void arm_maxpool_q7_HWC(q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const uint16_t dim_im_out,
+ q7_t * bufferA,
+ q7_t * Im_out);
+
+ /**
+ * @brief Q7 average pooling function
+ * @param[in] Im_in pointer to input tensor
+ * @param[in] dim_im_in input tensor dimention
+ * @param[in] ch_im_in number of input tensor channels
+ * @param[in] dim_kernel filter kernel size
+ * @param[in] padding padding sizes
+ * @param[in] stride convolution stride
+ * @param[in] dim_im_out output tensor dimension
+ * @param[in,out] bufferA pointer to buffer space for input
+ * @param[in,out] Im_out pointer to output tensor
+ * @return none.
+ *
+ */
+
+ void arm_avepool_q7_HWC(q7_t * Im_in,
+ const uint16_t dim_im_in,
+ const uint16_t ch_im_in,
+ const uint16_t dim_kernel,
+ const uint16_t padding,
+ const uint16_t stride,
+ const uint16_t dim_im_out,
+ q7_t * bufferA,
+ q7_t * Im_out);
+
+/**
+ * @defgroup Softmax Softmax Functions
+ *
+ * EXP(2) based softmax function
+ *
+ */
+
+ /**
+ * @brief Q7 softmax function
+ * @param[in] vec_in pointer to input vector
+ * @param[in] dim_vec input vector dimention
+ * @param[out] p_out pointer to output vector
+ * @return none.
+ *
+ */
+
+ void arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out);
+
+ /**
+ * @brief Q15 softmax function
+ * @param[in] vec_in pointer to input vector
+ * @param[in] dim_vec input vector dimention
+ * @param[out] p_out pointer to output vector
+ * @return none.
+ *
+ */
+
+ void arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out);
+
+ /**
+ * @brief uint8 depthwise convolution function with asymmetric quantization for even number of channel multiplier
+ * and input channels. Unless specified otherwise, arguments are mandatory.
+ *
+ * @param[in] input Pointer to input tensor
+ * @param[in] input_x Width of input tensor
+ * @param[in] input_y Height of input tensor
+ * @param[in] input_ch Channels in input tensor
+ * @param[in] kernel Pointer to kernel weights
+ * @param[in] kernel_x Width of kernel
+ * @param[in] kernel_y Height of kernel
+ * @param[in] ch_mult Number of channel multiplier
+ * @param[in] pad_x Padding sizes x
+ * @param[in] pad_y Padding sizes y
+ * @param[in] stride_x Convolution stride along the width
+ * @param[in] stride_y Convolution stride along the height
+ * @param[in] dilation_x Dilation along width. Not used and intended for future enhancement.
+ * @param[in] dilation_y Dilation along height. Not used and intended for future enhancement.
+ * @param[in] bias Pointer to optional bias values. If no bias is
+ * availble, NULL is expected
+ * @param[in] input_offset Input tensor zero offset
+ * @param[in] filter_offset Kernel tensor zero offset
+ * @param[in] output_offset Output tensor zero offset
+ * @param[in,out] output Pointer to output tensor
+ * @param[in] output_x Width of output tensor
+ * @param[in] output_y Height of output tensor
+ * @param[in] output_activation_min Minimum value to clamp the output to. Range : {0, 255}
+ * @param[in] output_activation_max Minimum value to clamp the output to. Range : {0, 255}
+ * @param[in] out_shift Amount of right-shift for output
+ * @param[in] out_mult Output multiplier for requantization
+ * @return The function returns one of the following
+ * <code>ARM_MATH_SIZE_MISMATCH</code> - Not supported dimension of tensors
+ * <code>ARM_MATH_SUCCESS</code> - Successful operation
+ * <code>ARM_MATH_ARGUMENT_ERROR</code> - Implementation not available
+ *
+ * <b> Input constraints</b>
+ * ch_mult is multiple of 2
+ * kernel_x is multiple of 2
+ *
+ */
+ arm_status arm_depthwise_conv_u8_basic_ver1(const uint8_t *input,
+ const uint16_t input_x,
+ const uint16_t input_y,
+ const uint16_t input_ch,
+ const uint8_t *kernel,
+ const uint16_t kernel_x,
+ const uint16_t kernel_y,
+ const int16_t ch_mult,
+ const int16_t pad_x,
+ const int16_t pad_y,
+ const int16_t stride_x,
+ const int16_t stride_y,
+ const int16_t dilation_x,
+ const int16_t dilation_y,
+ const int32_t *bias,
+ const int32_t input_offset,
+ const int32_t filter_offset,
+ const int32_t output_offset,
+ uint8_t *output,
+ const uint16_t output_x,
+ const uint16_t output_y,
+ const int32_t output_activation_min,
+ const int32_t output_activation_max,
+ const int32_t out_shift,
+ const int32_t out_mult);
+#ifdef __cplusplus
+}
+#endif
+
+#endif