diff options
Diffstat (limited to 'Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h')
-rw-r--r-- | Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h | 1455 |
1 files changed, 269 insertions, 1186 deletions
diff --git a/Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h b/Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h index 4b50564..f9e06d0 100644 --- a/Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h +++ b/Drivers/CMSIS/NN/Include/arm_nnsupportfunctions.h @@ -1,1186 +1,269 @@ -/* - * Copyright (C) 2010-2022 Arm Limited or its affiliates. - * - * SPDX-License-Identifier: Apache-2.0 - * - * Licensed under the Apache License, Version 2.0 (the License); you may - * not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an AS IS BASIS, WITHOUT - * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -/* ---------------------------------------------------------------------- - * Project: CMSIS NN Library - * Title: arm_nnsupportfunctions.h - * Description: Public header file of support functions for CMSIS NN Library - * - * $Date: 19. April 2022 - * $Revision: V.7.0.1 - * - * Target Processor: Cortex-M CPUs - * -------------------------------------------------------------------- */ - -#ifndef _ARM_NNSUPPORTFUNCTIONS_H_ -#define _ARM_NNSUPPORTFUNCTIONS_H_ - -#include "arm_nn_math_types.h" -#include "arm_nn_types.h" - -#include <stdbool.h> - -#ifdef __cplusplus -extern "C" { -#endif - -#define LEFT_SHIFT(_shift) (_shift > 0 ? _shift : 0) -#define RIGHT_SHIFT(_shift) (_shift > 0 ? 0 : -_shift) -#define MASK_IF_ZERO(x) (x) == 0 ? ~0 : 0 -#define MASK_IF_NON_ZERO(x) (x) != 0 ? ~0 : 0 -#define SELECT_USING_MASK(mask, a, b) ((mask) & (a)) ^ (~(mask) & (b)) - -#define MAX(A, B) ((A) > (B) ? (A) : (B)) -#define MIN(A, B) ((A) < (B) ? (A) : (B)) -#define CLAMP(x, h, l) MAX(MIN((x), (h)), (l)) -#define REDUCE_MULTIPLIER(_mult) ((_mult < 0x7FFF0000) ? ((_mult + (1 << 15)) >> 16) : 0x7FFF) - -/** - * @brief definition to pack four 8 bit values. - */ -#define PACK_Q7x4_32x1(v0, v1, v2, v3) \ - ((((int32_t)(v0) << 0) & (int32_t)0x000000FF) | (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \ - (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | (((int32_t)(v3) << 24) & (int32_t)0xFF000000)) - -/** - * @brief Union for SIMD access of q31/q15/q7 types - */ -union arm_nnword -{ - q31_t word; - /**< q31 type */ - q15_t half_words[2]; - /**< q15 type */ - q7_t bytes[4]; - /**< q7 type */ -}; - -/** - * @brief Union for data type long long - */ -struct arm_nn_double -{ - uint32_t low; - int32_t high; -}; - -union arm_nn_long_long -{ - int64_t long_long; - struct arm_nn_double word; -}; - -/** - * @defgroup nndata_convert Neural Network Data Conversion Functions - * - * Perform data type conversion in-between neural network operations - * - */ - -/** - * @brief Converts the elements of the q7 vector to q15 vector without left-shift - * @param[in] *pSrc points to the q7 input vector - * @param[out] *pDst points to the q15 output vector - * @param[in] blockSize length of the input vector - * - */ -void arm_q7_to_q15_no_shift(const q7_t *pSrc, q15_t *pDst, uint32_t blockSize); - -/** - * @brief Non-saturating addition of elements of a q7 vector - * @param[in] *input Pointer to the q7 input vector - * @param[out] *output Pointer to the q31 output variable. - * @param[in] block_size length of the input vector - * \par Description: - * - * 2^24 samples can be added without saturating the result. - * - * The equation used for the conversion process is: - * - * <pre> - * sum = input[0] + input[1] + .. + input[block_size -1] - * </pre> - * - * */ -void arm_nn_add_q7(const q7_t *input, q31_t *output, uint32_t block_size); - -/** - * @brief Converts the elements of the q7 vector to reordered q15 vector without left-shift - * @param[in] *pSrc points to the q7 input vector - * @param[out] *pDst points to the q15 output vector - * @param[in] blockSize length of the input vector - * @return none. - * - */ -void arm_q7_to_q15_reordered_no_shift(const q7_t *pSrc, q15_t *pDst, uint32_t blockSize); - -/** - * @brief Converts the elements from a q7 vector to a q15 vector with an added offset - * @param[in] src pointer to the q7 input vector - * @param[out] dst pointer to the q15 output vector - * @param[in] block_size length of the input vector - * @param[in] offset q7 offset to be added to each input vector element. - * - * \par Description: - * - * The equation used for the conversion process is: - * - * <pre> - * dst[n] = (q15_t) src[n] + offset; 0 <= n < block_size. - * </pre> - * - */ -void arm_q7_to_q15_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset); - -/** - * @brief Converts the elements of the q7 vector to reordered q15 vector with an added offset - * @param[in] src pointer to the q7 input vector - * @param[out] dst pointer to the q15 output vector - * @param[in] block_size length of the input vector - * @param[in] offset offset to be added to each input vector element. - * @return none. - * - * @details This function does the q7 to q15 expansion with re-ordering of bytes. Re-ordering is a consequence of - * the sign extension intrinsic(DSP extension). The tail (i.e., last (N % 4) elements) retains its - * original order. - * - */ -void arm_q7_to_q15_reordered_with_offset(const q7_t *src, q15_t *dst, uint32_t block_size, q15_t offset); - -/** - * @brief Converts the elements from a q7 vector and accumulate to a q15 vector - * @param[in] *src points to the q7 input vector - * @param[out] *dst points to the q15 output vector - * @param[in] block_size length of the input vector - * - * \par Description: - * - * The equation used for the conversion process is: - * - * <pre> - * dst[n] += (q15_t) src[n] ; 0 <= n < block_size. - * </pre> - * - */ -void arm_nn_accumulate_q7_to_q15(q15_t *dst, const q7_t *src, uint32_t block_size); - -/** - * @brief Depthwise conv on an im2col buffer where the input channel equals output channel. - * @param[in] row pointer to row - * @param[in] col pointer to im2col buffer, always consists of 2 columns. - * @param[in] num_ch number of channels - * @param[in] out_shift pointer to per output channel requantization shift parameter. - * @param[in] out_mult pointer to per output channel requantization multiplier parameter. - * @param[in] out_offset output tensor offset. - * @param[in] activation_min minimum value to clamp the output to. Range : int8 - * @param[in] activation_max maximum value to clamp the output to. Range : int8 - * @param[in] kernel_size number of elements in one column. - * @param[in] output_bias per output channel bias. Range : int32 - * @param[out] out pointer to output - * @return The function returns one of the two - * 1. The incremented output pointer for a successful operation or - * 2. NULL if implementation is not available. - * - * @details Supported framework: TensorFlow Lite micro. - */ -q7_t *arm_nn_depthwise_conv_s8_core(const q7_t *row, - const q15_t *col, - const uint16_t num_ch, - const int32_t *out_shift, - const int32_t *out_mult, - const int32_t out_offset, - const int32_t activation_min, - const int32_t activation_max, - const uint16_t kernel_size, - const int32_t *const output_bias, - q7_t *out); - -/** - * @brief General Matrix-multiplication function with per-channel requantization. - * @param[in] input_row pointer to row operand - * @param[in] input_col pointer to col operand - * @param[in] output_ch number of rows of input_row - * @param[in] col_batches number of column batches. Range: 1 to 4 - * @param[in] output_shift pointer to per output channel requantization shift parameter. - * @param[in] output_mult pointer to per output channel requantization multiplier parameter. - * @param[in] out_offset output tensor offset. - * @param[in] col_offset input tensor(col) offset. - * @param[in] row_offset kernel offset(row). Not used. - * @param[in] out_activation_min minimum value to clamp the output to. Range : int8 - * @param[in] out_activation_max maximum value to clamp the output to. Range : int8 - * @param[in] row_len number of elements in each row - * @param[in] bias per output channel bias. Range : int32 - * @param[in,out] out pointer to output - * @return The function returns one of the two - * 1. The incremented output pointer for a successful operation or - * 2. NULL if implementation is not available. - * - * @details Supported framework: TensorFlow Lite - */ -q7_t *arm_nn_mat_mult_s8(const q7_t *input_row, - const q7_t *input_col, - const uint16_t output_ch, - const uint16_t col_batches, - const int32_t *output_shift, - const int32_t *output_mult, - const int32_t out_offset, - const int32_t col_offset, - const int32_t row_offset, - const int16_t out_activation_min, - const int16_t out_activation_max, - const uint16_t row_len, - const int32_t *const bias, - q7_t *out); -/** - * @brief Matrix-multiplication function for convolution with per-channel requantization for 16 bits convolution. - * @param[in] input_a pointer to operand A - * @param[in] input_b pointer to operand B, always consists of 2 vectors. - * @param[in] output_ch number of rows of A - * @param[in] out_shift pointer to per output channel requantization shift parameter. - * @param[in] out_mult pointer to per output channel requantization multiplier parameter. - * @param[in] activation_min minimum value to clamp the output to. Range : int16 - * @param[in] activation_max maximum value to clamp the output to. Range : int16 - * @param[in] num_col_a number of columns of A - * @param[in] output_bias per output channel bias. Range : int64 - * @param[in,out] out_0 pointer to output - * @return The function returns one of the two - * 1. The incremented output pointer for a successful operation or - * 2. NULL if implementation is not available. - * - * @details This function does the matrix multiplication of weight matrix for all output channels - * with 2 columns from im2col and produces two elements/output_channel. The outputs are - * clamped in the range provided by activation min and max. - * Supported framework: TensorFlow Lite micro. - */ -q15_t *arm_nn_mat_mult_kernel_s16(const q7_t *input_a, - const q15_t *input_b, - const int32_t output_ch, - const int32_t *out_shift, - const int32_t *out_mult, - const int16_t activation_min, - const int16_t activation_max, - const int32_t num_col_a, - const int64_t *const output_bias, - q15_t *out_0); -/** - * @brief General Matrix-multiplication without requantization for one row & one column - * @param[in] row_elements number of row elements - * @param[in] row_base pointer to row operand - * @param[in] col_base pointer to col operand - * @param[out] sum_col pointer to store sum of column elements - * @param[out] output pointer to store result of multiply-accumulate - * @return The function returns the multiply-accumulated result of the row by column. - * - * @details Pseudo-code - * *output = 0 - * sum_col = 0 - * for (i = 0; i < row_elements; i++) - * *output += row_base[i] * col_base[i] - * sum_col += col_base[i] - * - */ -arm_status arm_nn_mat_mul_core_1x_s8(int32_t row_elements, - const int8_t *row_base, - const int8_t *col_base, - int32_t *const sum_col, - int32_t *const output); - -/** - * @brief Matrix-multiplication with requantization & activation function for four rows and one column - * @param[in] row_elements number of row elements - * @param[in] offset offset between rows. Can be the same as row_elements. - * For e.g, in a 1x1 conv scenario with stride as 1. - * @param[in] row_base pointer to row operand - * @param[in] col_base pointer to col operand - * @param[in] out_ch Number of output channels - * @param[in] conv_params Pointer to convolution parameters like offsets and activation values - * @param[in] quant_params Pointer to per-channel quantization parameters - * @param[in] bias Pointer to per-channel bias - * @param[out] output Pointer to output where int8 results are stored. - * - * @return The function returns the updated output pointer or NULL if implementation is not available. - * - * @details Compliant to TFLM int8 specification. MVE implementation only - */ -int8_t *arm_nn_mat_mul_core_4x_s8(const int32_t row_elements, - const int32_t offset, - const int8_t *row_base, - const int8_t *col_base, - const int32_t out_ch, - const cmsis_nn_conv_params *conv_params, - const cmsis_nn_per_channel_quant_params *quant_params, - const int32_t *bias, - int8_t *output); - -/** - * @brief General Matrix-multiplication function with per-channel requantization. - * This function assumes: - * - LHS input matrix NOT transposed (nt) - * - RHS input matrix transposed (t) - * - * @note This operation also performs the broadcast bias addition before the requantization - * - * @param[in] lhs Pointer to the LHS input matrix - * @param[in] rhs Pointer to the RHS input matrix - * @param[in] bias Pointer to the bias vector. The length of this vector is equal to the number of - * output columns (or RHS input rows) - * @param[out] dst Pointer to the output matrix with "m" rows and "n" columns - * @param[in] dst_multipliers Pointer to the multipliers vector needed for the per-channel requantization. - * The length of this vector is equal to the number of output columns (or RHS input - * rows) - * @param[in] dst_shifts Pointer to the shifts vector needed for the per-channel requantization. The length - * of this vector is equal to the number of output columns (or RHS input rows) - * @param[in] lhs_rows Number of LHS input rows - * @param[in] rhs_rows Number of RHS input rows - * @param[in] rhs_cols Number of LHS/RHS input columns - * @param[in] lhs_offset Offset to be applied to the LHS input value - * @param[in] dst_offset Offset to be applied the output result - * @param[in] activation_min Minimum value to clamp down the output. Range : int8 - * @param[in] activation_max Maximum value to clamp up the output. Range : int8 - * - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - */ -arm_status arm_nn_mat_mult_nt_t_s8(const q7_t *lhs, - const q7_t *rhs, - const q31_t *bias, - q7_t *dst, - const int32_t *dst_multipliers, - const int32_t *dst_shifts, - const int32_t lhs_rows, - const int32_t rhs_rows, - const int32_t rhs_cols, - const int32_t lhs_offset, - const int32_t dst_offset, - const int32_t activation_min, - const int32_t activation_max); - -/** - * @brief s8 Vector by Matrix (transposed) multiplication - * - * @param[in] lhs Input left-hand side vector - * @param[in] rhs Input right-hand side matrix (transposed) - * @param[in] bias Input bias - * @param[out] dst Output vector - * @param[in] lhs_offset Offset to be added to the input values of the left-hand side vector. - * Range: -127 to 128 - * @param[in] rhs_offset Not used - * @param[in] dst_offset Offset to be added to the output values. Range: -127 to 128 - * @param[in] dst_multiplier Output multiplier - * @param[in] dst_shift Output shift - * @param[in] rhs_cols Number of columns in the right-hand side input matrix - * @param[in] rhs_rows Number of rows in the right-hand side input matrix - * @param[in] activation_min Minimum value to clamp the output to. Range: int8 - * @param[in] activation_max Maximum value to clamp the output to. Range: int8 - * @param[in] address_offset Memory position offset for dst. First output is stored at 'dst', the - * second at 'dst + address_offset' and so on. Default value is typically 1. - * - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - */ -arm_status arm_nn_vec_mat_mult_t_s8(const q7_t *lhs, - const q7_t *rhs, - const q31_t *bias, - q7_t *dst, - const int32_t lhs_offset, - const int32_t rhs_offset, - const int32_t dst_offset, - const int32_t dst_multiplier, - const int32_t dst_shift, - const int32_t rhs_cols, - const int32_t rhs_rows, - const int32_t activation_min, - const int32_t activation_max, - const int32_t address_offset); - -/** - * @brief s16 Vector by Matrix (transposed) multiplication - * - * @param[in] lhs Input left-hand side vector - * @param[in] rhs Input right-hand side matrix (transposed) - * @param[in] bias Input bias - * @param[out] dst Output vector - * @param[in] dst_multiplier Output multiplier - * @param[in] dst_shift Output shift - * @param[in] rhs_cols Number of columns in the right-hand side input matrix - * @param[in] rhs_rows Number of rows in the right-hand side input matrix - * @param[in] activation_min Minimum value to clamp the output to. Range: int16 - * @param[in] activation_max Maximum value to clamp the output to. Range: int16 - * - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - */ -arm_status arm_nn_vec_mat_mult_t_s16(const q15_t *lhs, - const q7_t *rhs, - const q63_t *bias, - q15_t *dst, - const int32_t dst_multiplier, - const int32_t dst_shift, - const int32_t rhs_cols, - const int32_t rhs_rows, - const int32_t activation_min, - const int32_t activation_max); - -/** - * @brief s8 Vector by Matrix (transposed) multiplication with s16 output - * - * @param[in] lhs Input left-hand side vector - * @param[in] rhs Input right-hand side matrix (transposed) - * @param[out] dst Output vector - * @param[in] lhs_offset Offset to be added to the input values of the left-hand side - * vector. Range: -127 to 128 - * @param[in] rhs_offset Not used - * @param[in] scatter_offset Address offset for dst. First output is stored at 'dst', the - * second at 'dst + scatter_offset' and so on. - * @param[in] dst_multiplier Output multiplier - * @param[in] dst_shift Output shift - * @param[in] rhs_cols Number of columns in the right-hand side input matrix - * @param[in] rhs_rows Number of rows in the right-hand side input matrix - * @param[in] activation_min Minimum value to clamp the output to. Range: int16 - * @param[in] activation_max Maximum value to clamp the output to. Range: int16 - * - * @return The function returns <code>ARM_MATH_SUCCESS</code> - * - */ -arm_status arm_nn_vec_mat_mult_t_svdf_s8(const q7_t *lhs, - const q7_t *rhs, - q15_t *dst, - const int32_t lhs_offset, - const int32_t rhs_offset, - const int32_t scatter_offset, - const int32_t dst_multiplier, - const int32_t dst_shift, - const int32_t rhs_cols, - const int32_t rhs_rows, - const int32_t activation_min, - const int32_t activation_max); - -/** - * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in padded cases where - * the padding is -lhs_offset(Range: int8). Dimensions are the same for lhs and rhs. - * - * @param[in] lhs Input left-hand side matrix - * @param[in] rhs Input right-hand side matrix (transposed) - * @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128 - * @param[in] num_ch Number of channels in LHS/RHS - * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels - * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels - * @param[in] out_offset Offset to be added to the output values. Range: -127 to 128 - * @param[in] activation_min Minimum value to clamp the output to. Range: int8 - * @param[in] activation_max Maximum value to clamp the output to. Range: int8 - * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix - * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels - * @param[in] out Output pointer - * - * @return The function returns one of the two - * - Updated output pointer if an implementation is available - * - NULL if no implementation is available. - * - * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read - * out for the following. - * - Output shift - * - Output multiplier - * - Output bias - * - rhs - */ -q7_t *arm_nn_depthwise_conv_nt_t_padded_s8(const q7_t *lhs, - const q7_t *rhs, - const int32_t lhs_offset, - const uint16_t num_ch, - const int32_t *out_shift, - const int32_t *out_mult, - const int32_t out_offset, - const int32_t activation_min, - const int32_t activation_max, - const uint16_t row_x_col, - const int32_t *const output_bias, - q7_t *out); - -/** - * @brief Depthwise convolution of transposed rhs matrix with 4 lhs matrices. To be used in non-padded cases. - * Dimensions are the same for lhs and rhs. - * - * @param[in] lhs Input left-hand side matrix - * @param[in] rhs Input right-hand side matrix (transposed) - * @param[in] lhs_offset LHS matrix offset(input offset). Range: -127 to 128 - * @param[in] num_ch Number of channels in LHS/RHS - * @param[in] out_shift Per channel output shift. Length of vector is equal to number of channels. - * @param[in] out_mult Per channel output multiplier. Length of vector is equal to number of channels. - * @param[in] out_offset Offset to be added to the output values. Range: -127 to 128 - * @param[in] activation_min Minimum value to clamp the output to. Range: int8 - * @param[in] activation_max Maximum value to clamp the output to. Range: int8 - * @param[in] row_x_col (row_dimension * col_dimension) of LHS/RHS matrix - * @param[in] output_bias Per channel output bias. Length of vector is equal to number of channels. - * @param[in] out Output pointer - * - * @return The function returns one of the two - * - Updated output pointer if an implementation is available - * - NULL if no implementation is available. - * - * @note If number of channels is not a multiple of 4, upto 3 elements outside the boundary will be read - * out for the following. - * - Output shift - * - Output multiplier - * - Output bias - * - rhs - */ -q7_t *arm_nn_depthwise_conv_nt_t_s8(const q7_t *lhs, - const q7_t *rhs, - const int32_t lhs_offset, - const uint16_t num_ch, - const int32_t *out_shift, - const int32_t *out_mult, - const int32_t out_offset, - const int32_t activation_min, - const int32_t activation_max, - const uint16_t row_x_col, - const int32_t *const output_bias, - q7_t *out); - -/** - *@brief Matrix-multiplication function for convolution with reordered columns - *@param[in] pA pointer to operand A - *@param[in] pInBuffer pointer to operand B, always conssists of 2 vectors - *@param[in] ch_im_out numRow of A - *@param[in] numCol_A numCol of A - *@param[in] bias_shift amount of left-shift for bias - *@param[in] out_shift amount of right-shift for output - *@param[in] bias the bias - *@param[in,out] pOut pointer to output - *@return The function returns the incremented output pointer - * - *@details This function assumes that data in pInBuffer are reordered - */ -q7_t *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t *pA, - const q15_t *pInBuffer, - const uint16_t ch_im_out, - const uint16_t numCol_A, - const uint16_t bias_shift, - const uint16_t out_shift, - const q7_t *bias, - q7_t *pOut); - -/** - @brief Read 2 q15 elements and post increment pointer. - @param[in] in_q15 Pointer to pointer that holds address of input. - @return q31 value - */ -__STATIC_FORCEINLINE q31_t arm_nn_read_q15x2_ia(const q15_t **in_q15) -{ - q31_t val; - - memcpy(&val, *in_q15, 4); - *in_q15 += 2; - - return (val); -} - -/** - @brief Read 4 q7 from q7 pointer and post increment pointer. - @param[in] in_q7 Pointer to pointer that holds address of input. - @return q31 value - */ -__STATIC_FORCEINLINE q31_t arm_nn_read_q7x4_ia(const q7_t **in_q7) -{ - q31_t val; - memcpy(&val, *in_q7, 4); - *in_q7 += 4; - - return (val); -} - -/** - @brief Read 2 q15 from q15 pointer. - @param[in] in_q15 pointer to address of input. - @return q31 value - */ -__STATIC_FORCEINLINE q31_t arm_nn_read_q15x2(const q15_t *in_q15) -{ - q31_t val; - memcpy(&val, in_q15, 4); - - return (val); -} - -/** - @brief Read 4 q7 values. - @param[in] in_q7 pointer to address of input. - @return q31 value - */ -__STATIC_FORCEINLINE q31_t arm_nn_read_q7x4(const q7_t *in_q7) -{ - q31_t val; - memcpy(&val, in_q7, 4); - - return (val); -} - -/** - @brief Write four q7 to q7 pointer and increment pointer afterwards. - @param[in] in Double pointer to input value - @param[in] value Four bytes to copy - */ -__STATIC_FORCEINLINE void arm_nn_write_q7x4_ia(q7_t **in, q31_t value) -{ - memcpy(*in, &value, 4); - *in += 4; -} - -/** - * @brief memset optimized for MVE - * @param[in, out] dst Destination pointer - * @param[in] val Value to set - * @param[in] block_size Number of bytes to copy. - * - */ -__STATIC_FORCEINLINE void arm_memset_q7(q7_t *dst, const q7_t val, uint32_t block_size) -{ -#if defined(ARM_MATH_MVEI) - __asm volatile(" vdup.8 q0, %[set_val] \n" - " wlstp.8 lr, %[cnt], 1f \n" - "2: \n" - " vstrb.8 q0, [%[in]], #16 \n" - " letp lr, 2b \n" - "1: \n" - : [ in ] "+r"(dst) - : [ cnt ] "r"(block_size), [ set_val ] "r"(val) - : "q0", "memory", "r14"); -#else - memset(dst, val, block_size); -#endif -} - -#if defined(ARM_MATH_DSP) - -/** - * @brief read and expand one q7 word into two q15 words - */ - -__STATIC_FORCEINLINE const q7_t *read_and_pad(const q7_t *source, q31_t *out1, q31_t *out2) -{ - q31_t inA = arm_nn_read_q7x4_ia(&source); - q31_t inAbuf1 = __SXTB16_RORn((uint32_t)inA, 8); - q31_t inAbuf2 = __SXTB16(inA); - -#ifndef ARM_MATH_BIG_ENDIAN - *out2 = (int32_t)(__PKHTB(inAbuf1, inAbuf2, 16)); - *out1 = (int32_t)(__PKHBT(inAbuf2, inAbuf1, 16)); -#else - *out1 = (int32_t)(__PKHTB(inAbuf1, inAbuf2, 16)); - *out2 = (int32_t)(__PKHBT(inAbuf2, inAbuf1, 16)); -#endif - - return source; -} - -/** - * @brief read and expand one q7 word into two q15 words with reordering - */ - -__STATIC_FORCEINLINE const q7_t *read_and_pad_reordered(const q7_t *source, q31_t *out1, q31_t *out2) -{ - q31_t inA = arm_nn_read_q7x4_ia(&source); -#ifndef ARM_MATH_BIG_ENDIAN - *out2 = __SXTB16(__ROR((uint32_t)inA, 8)); - *out1 = __SXTB16(inA); -#else - *out1 = __SXTB16(__ROR((uint32_t)inA, 8)); - *out2 = __SXTB16(inA); -#endif - - return source; -} - -/** - * @brief read and expand one q7 word into two q15 words with reordering and add an offset - */ -__STATIC_FORCEINLINE const q7_t * -read_and_pad_reordered_with_offset(const q7_t *source, q31_t *out1, q31_t *out2, q31_t offset) -{ - q31_t inA = arm_nn_read_q7x4_ia(&source); - -#ifndef ARM_MATH_BIG_ENDIAN - *out2 = __SXTB16(__ROR((uint32_t)inA, 8)); - *out1 = __SXTB16(inA); -#else - *out1 = __SXTB16(__ROR((uint32_t)inA, 8)); - *out2 = __SXTB16(inA); -#endif - *out1 = __QADD16(*out1, offset); - *out2 = __QADD16(*out2, offset); - - return source; -} - -#endif - -/** - * @defgroup NNBasicMath Basic Math Functions for Neural Network Computation - * - * Basic Math Functions for Neural Network Computation - * - */ - -/** - * @brief q7 vector multiplication with variable output shifts - * @param[in] *pSrcA pointer to the first input vector - * @param[in] *pSrcB pointer to the second input vector - * @param[out] *pDst pointer to the output vector - * @param[in] out_shift amount of right-shift for output - * @param[in] blockSize number of samples in each vector - * @return none. - * - * <b>Scaling and Overflow Behavior:</b> - * \par - * The function uses saturating arithmetic. - * Results outside of the allowable q15 range [0x8000 0x7FFF] will be saturated. - */ - -void arm_nn_mult_q15(q15_t *pSrcA, q15_t *pSrcB, q15_t *pDst, const uint16_t out_shift, uint32_t blockSize); - -/** - * @brief q7 vector multiplication with variable output shifts - * @param[in] *pSrcA pointer to the first input vector - * @param[in] *pSrcB pointer to the second input vector - * @param[out] *pDst pointer to the output vector - * @param[in] out_shift amount of right-shift for output - * @param[in] blockSize number of samples in each vector - * @return none. - * - * <b>Scaling and Overflow Behavior:</b> - * \par - * The function uses saturating arithmetic. - * Results outside of the allowable q7 range [0x80 0x7F] will be saturated. - */ - -void arm_nn_mult_q7(q7_t *pSrcA, q7_t *pSrcB, q7_t *pDst, const uint16_t out_shift, uint32_t blockSize); - -/** - * @brief Matrix-multiplication function for convolution with per-channel requantization. - * @param[in] input_a pointer to operand A - * @param[in] input_b pointer to operand B, always consists of 2 vectors. - * @param[in] output_ch number of rows of A - * @param[in] out_shift pointer to per output channel requantization shift parameter. - * @param[in] out_mult pointer to per output channel requantization multiplier parameter. - * @param[in] out_offset output tensor offset. - * @param[in] activation_min minimum value to clamp the output to. Range : int8 - * @param[in] activation_max maximum value to clamp the output to. Range : int8 - * @param[in] num_col_a number of columns of A - * @param[in] output_bias per output channel bias. Range : int32 - * @param[in,out] out_0 pointer to output - * @return The function returns one of the two - * 1. The incremented output pointer for a successful operation or - * 2. NULL if implementation is not available. - * - * @details This function does the matrix multiplication of weight matrix for all output channels - * with 2 columns from im2col and produces two elements/output_channel. The outputs are - * clamped in the range provided by activation min and max. - * Supported framework: TensorFlow Lite micro. - */ -q7_t *arm_nn_mat_mult_kernel_s8_s16(const q7_t *input_a, - const q15_t *input_b, - const uint16_t output_ch, - const int32_t *out_shift, - const int32_t *out_mult, - const int32_t out_offset, - const int16_t activation_min, - const int16_t activation_max, - const uint16_t num_col_a, - const int32_t *const output_bias, - q7_t *out_0); - -/** - * @brief Common softmax function for s8 input and s8 or s16 output - * @param[in] input Pointer to the input tensor - * @param[in] num_rows Number of rows in the input tensor - * @param[in] row_size Number of elements in each input row - * @param[in] mult Input quantization multiplier - * @param[in] shift Input quantization shift within the range [0, 31] - * @param[in] diff_min Minimum difference with max in row. Used to check if - * the quantized exponential operation can be performed - * @param[in] int16_output Indicating s8 output if 0 else s16 output - * @param[out] output Pointer to the output tensor - * - * @note Supported framework: TensorFlow Lite micro (bit-accurate) - * - */ -void arm_nn_softmax_common_s8(const int8_t *input, - const int32_t num_rows, - const int32_t row_size, - const int32_t mult, - const int32_t shift, - const int32_t diff_min, - const bool int16_output, - void *output); - -/** - * @brief macro for adding rounding offset - */ -#ifndef ARM_NN_TRUNCATE -#define NN_ROUND(out_shift) ((0x1 << out_shift) >> 1) -#else -#define NN_ROUND(out_shift) 0 -#endif - -// Macros for shortening quantization functions' names and avoid long lines -#define MUL_SAT(a, b) arm_nn_doubling_high_mult((a), (b)) -#define MUL_SAT_MVE(a, b) arm_doubling_high_mult_mve_32x4((a), (b)) -#define MUL_POW2(a, b) arm_nn_mult_by_power_of_two((a), (b)) - -#define DIV_POW2(a, b) arm_nn_divide_by_power_of_two((a), (b)) -#define DIV_POW2_MVE(a, b) arm_divide_by_power_of_two_mve((a), (b)) - -#define EXP_ON_NEG(x) arm_nn_exp_on_negative_values((x)) -#define ONE_OVER1(x) arm_nn_one_over_one_plus_x_for_x_in_0_1((x)) - -/** - * @brief Saturating doubling high multiply. Result matches - * NEON instruction VQRDMULH. - * @param[in] m1 Multiplicand. Range: {NN_Q31_MIN, NN_Q31_MAX} - * @param[in] m2 Multiplier. Range: {NN_Q31_MIN, NN_Q31_MAX} - * @return Result of multiplication. - * - */ -__STATIC_FORCEINLINE q31_t arm_nn_doubling_high_mult(const q31_t m1, const q31_t m2) -{ - q31_t result = 0; - // Rounding offset to add for a right shift of 31 - q63_t mult = 1 << 30; - - if ((m1 < 0) ^ (m2 < 0)) - { - mult = 1 - mult; - } - // Gets resolved as a SMLAL instruction - mult = mult + (q63_t)m1 * m2; - - // Utilize all of the upper 32 bits. This is the doubling step - // as well. - result = (int32_t)(mult / (1ll << 31)); - - if ((m1 == m2) && (m1 == (int32_t)NN_Q31_MIN)) - { - result = NN_Q31_MAX; - } - return result; -} - -/** - * @brief Doubling high multiply without saturation. This is intended - * for requantization where the scale is a positive integer - * - * @param[in] m1 Multiplicand. Range: {NN_Q31_MIN, NN_Q31_MAX} - * @param[in] m2 Multiplier Range: {NN_Q31_MIN, NN_Q31_MAX} - * @return Result of multiplication. - * @note The result of this matches that of neon instruction - * VQRDMULH for m1 in range {NN_Q31_MIN, NN_Q31_MAX} and m2 in - * range {NN_Q31_MIN + 1, NN_Q31_MAX}. Saturation occurs when - * m1 equals m2 equals NN_Q31_MIN and that is not handled by - * this function. - * - */ -__STATIC_FORCEINLINE q31_t arm_nn_doubling_high_mult_no_sat(const q31_t m1, const q31_t m2) -{ - q31_t result = 0; - union arm_nn_long_long mult; - - // Rounding offset to add for a right shift of 31 - mult.word.low = 1 << 30; - mult.word.high = 0; - - // Gets resolved as a SMLAL instruction - mult.long_long = mult.long_long + (q63_t)m1 * m2; - - // Utilize all of the upper 32 bits. This is the doubling step - // as well. - result = (int32_t)(mult.long_long >> 31); - - return result; -} - -/** - * @brief Rounding divide by power of two. - * @param[in] dividend - Dividend - * @param[in] exponent - Divisor = power(2, exponent) - * Range: [0, 31] - * @return Rounded result of division. Midpoint is rounded away from zero. - * - */ -__STATIC_FORCEINLINE q31_t arm_nn_divide_by_power_of_two(const q31_t dividend, const q31_t exponent) -{ - q31_t result = 0; - const q31_t remainder_mask = (1 << exponent) - 1; - int32_t remainder = remainder_mask & dividend; - - // Basic division - result = dividend >> exponent; - - // Adjust 'result' for rounding (mid point away from zero) - q31_t threshold = remainder_mask >> 1; - if (result < 0) - { - threshold++; - } - if (remainder > threshold) - { - result++; - } - - return result; -} - -/** - * @brief Requantize a given value. - * @param[in] val Value to be requantized - * @param[in] multiplier multiplier. Range {NN_Q31_MIN + 1, Q32_MAX} - * @param[in] shift left or right shift for 'val * multiplier' - * - * @return Returns (val * multiplier)/(2 ^ shift) - * - */ -__STATIC_FORCEINLINE q31_t arm_nn_requantize(const q31_t val, const q31_t multiplier, const q31_t shift) -{ -#ifdef CMSIS_NN_USE_SINGLE_ROUNDING - const int64_t total_shift = 31 - shift; - const int64_t new_val = val * (int64_t)multiplier; - - int32_t result = new_val >> (total_shift - 1); - result = (result + 1) >> 1; - - return result; -#else - return arm_nn_divide_by_power_of_two(arm_nn_doubling_high_mult_no_sat(val * (1 << LEFT_SHIFT(shift)), multiplier), - RIGHT_SHIFT(shift)); -#endif -} - -/** - * @brief Requantize a given 64 bit value. - * @param[in] val Value to be requantized in the range {-(1<<47)} to {(1<<47) - 1} - * @param[in] reduced_multiplier Reduced multiplier in the range {NN_Q31_MIN + 1, Q32_MAX} to {Q16_MIN + 1, - * Q16_MAX} - * @param[in] shift Left or right shift for 'val * multiplier' in the range {-31} to {7} - * - * @return Returns (val * multiplier)/(2 ^ shift) - * - */ -__STATIC_FORCEINLINE q31_t arm_nn_requantize_s64(const q63_t val, const q31_t reduced_multiplier, const q31_t shift) -{ - const q63_t new_val = val * reduced_multiplier; - - q31_t result = new_val >> (14 - shift); // 64->32 bit reduction - result = (result + 1) >> 1; // Last shift position and insert round - - return result; -} - -/** - * @brief memcpy optimized for MVE - * @param[in, out] dst Destination pointer - * @param[in] src Source pointer. - * @param[in] block_size Number of bytes to copy. - * - */ -__STATIC_FORCEINLINE void arm_memcpy_q7(q7_t *__RESTRICT dst, const q7_t *__RESTRICT src, uint32_t block_size) -{ -#if defined(ARM_MATH_MVEI) - __asm volatile(" wlstp.8 lr, %[cnt], 1f \n" - "2: \n" - " vldrb.8 q0, [%[in]], #16 \n" - " vstrb.8 q0, [%[out]], #16 \n" - " letp lr, 2b \n" - "1: \n" - : [ in ] "+r"(src), [ out ] "+r"(dst) - : [ cnt ] "r"(block_size) - : "q0", "memory", "r14"); -#else - memcpy(dst, src, block_size); -#endif -} - -#if defined(ARM_MATH_MVEI) -/** - * @brief Vector saturating doubling high multiply returning high half. - * @param[in] m1 Multiplicand - * @param[in] m2 Multiplier - * @return Result of multiplication. - * - */ -__STATIC_FORCEINLINE int32x4_t arm_doubling_high_mult_mve(const int32x4_t m1, const q31_t m2) -{ - return vqrdmulhq_n_s32(m1, m2); -} - -/** - * @brief Vector rounding divide by power of two. - * @param[in] dividend - Dividend vector - * @param[in] exponent - Divisor = power(2, exponent) - * Range: [0, 31] - * @return Rounded result of division. Midpoint is rounded away from zero. - * - */ -__STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve(const int32x4_t dividend, const q31_t exponent) -{ - const int32x4_t shift = vdupq_n_s32(-exponent); - const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31); - const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup); - return vrshlq_s32(fixed_up_dividend, shift); -} - -/** - * @brief Requantize a given vector. - * @param[in] val Vector to be requantized - * @param[in] multiplier multiplier - * @param[in] shift shift - * - * @return Returns (val * multiplier)/(2 ^ shift) - * - */ -__STATIC_FORCEINLINE int32x4_t arm_requantize_mve(const int32x4_t val, const q31_t multiplier, const q31_t shift) -{ -#ifdef CMSIS_NN_USE_SINGLE_ROUNDING - const int right_shift = MIN(-1, shift); - const int left_shift = shift - right_shift; - - const int32x4_t left_shift_dup = vdupq_n_s32(left_shift); - const int32x4_t right_shift_dup = vdupq_n_s32(right_shift); - - int32x4_t result = vqdmulhq_n_s32(vshlq_s32(val, left_shift_dup), multiplier); - result = vrshlq_s32(result, right_shift_dup); - - return result; -#else - return arm_divide_by_power_of_two_mve( - arm_doubling_high_mult_mve(vshlq_s32(val, vdupq_n_s32(LEFT_SHIFT(shift))), multiplier), RIGHT_SHIFT(shift)); -#endif -} - -__STATIC_FORCEINLINE int32x4_t arm_doubling_high_mult_mve_32x4(const int32x4_t m1, const int32x4_t m2) -{ - return vqrdmulhq_s32(m1, m2); -} - -__STATIC_FORCEINLINE int32x4_t arm_divide_by_power_of_two_mve_32x4(const int32x4_t dividend, const int32x4_t exponent) -{ - const int32x4_t shift = -exponent; - const int32x4_t fixup = vshrq_n_s32(vandq_s32(dividend, shift), 31); - const int32x4_t fixed_up_dividend = vqaddq_s32(dividend, fixup); - return vrshlq_s32(fixed_up_dividend, shift); -} - -__STATIC_FORCEINLINE int32x4_t arm_requantize_mve_32x4(const int32x4_t val, - const int32x4_t multiplier, - const int32x4_t shift) -{ -#ifdef CMSIS_NN_USE_SINGLE_ROUNDING - const int32x4_t right_shift = vminq_s32(vdupq_n_s32(-1), shift); - const int32x4_t left_shift = vqsubq_s32(shift, right_shift); - - int32x4_t result = vqdmulhq_s32(vshlq_s32(val, left_shift), multiplier); - result = vrshlq_s32(result, right_shift); - - return result; -#else - const int32x4_t zz = vdupq_n_s32(0); - const mve_pred16_t p = vcmpgtq_n_s32(shift, 0); - - const int32x4_t left_shift = vpselq_s32(shift, zz, p); - const int32x4_t right_shift = -vpselq_s32(zz, shift, p); - - return arm_divide_by_power_of_two_mve_32x4(arm_doubling_high_mult_mve_32x4(vshlq_s32(val, left_shift), multiplier), - right_shift); -#endif -} -#endif - -// @note The following functions are used only for softmax layer, scaled bits = 5 assumed - -__STATIC_FORCEINLINE int32_t arm_nn_exp_on_negative_values(int32_t val) -{ - int32_t mask = 0; - int32_t shift = 24; - - const int32_t val_mod_minus_quarter = (val & ((1 << shift) - 1)) - (1 << shift); - const int32_t remainder = val_mod_minus_quarter - val; - const int32_t x = (val_mod_minus_quarter << 5) + (1 << 28); - const int32_t x2 = MUL_SAT(x, x); - - int32_t result = 1895147668 + - MUL_SAT(1895147668, x + DIV_POW2(MUL_SAT(DIV_POW2(MUL_SAT(x2, x2), 2) + MUL_SAT(x2, x), 715827883) + x2, 1)); - -#define SELECT_IF_NON_ZERO(x) \ - { \ - mask = MASK_IF_NON_ZERO(remainder & (1 << shift++)); \ - result = SELECT_USING_MASK(mask, MUL_SAT(result, x), result); \ - } - - SELECT_IF_NON_ZERO(1672461947) - SELECT_IF_NON_ZERO(1302514674) - SELECT_IF_NON_ZERO(790015084) - SELECT_IF_NON_ZERO(290630308) - SELECT_IF_NON_ZERO(39332535) - SELECT_IF_NON_ZERO(720401) - SELECT_IF_NON_ZERO(242) - -#undef SELECT_IF_NON_ZERO - - mask = MASK_IF_ZERO(val); - return SELECT_USING_MASK(mask, NN_Q31_MAX, result); -} - -__STATIC_FORCEINLINE q31_t arm_nn_mult_by_power_of_two(const int32_t val, const int32_t exp) -{ - const int32_t thresh = ((1 << (31 - exp)) - 1); - int32_t result = val << exp; - result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val > thresh), NN_Q31_MAX, result); - result = SELECT_USING_MASK(MASK_IF_NON_ZERO(val < -thresh), NN_Q31_MIN, result); - return result; -} - -__STATIC_FORCEINLINE int32_t arm_nn_one_over_one_plus_x_for_x_in_0_1(int32_t val) -{ - const int64_t sum = (int64_t)val + (int64_t)NN_Q31_MAX; - const int32_t half_denominator = (int32_t)((sum + (sum >= 0 ? 1 : -1)) / 2L); - int32_t x = 1515870810 + MUL_SAT(half_denominator, -1010580540); - - const int32_t shift = (1 << 29); - x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2); - x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2); - x += MUL_POW2(MUL_SAT(x, shift - MUL_SAT(half_denominator, x)), 2); - - return MUL_POW2(x, 1); -} - -/** - @brief Write 2 q15 elements and post increment pointer. - @param[in] dest_q15 Pointer to pointer that holds address of destination. - @param[in] src_q31 Input value to be written. - */ -__STATIC_FORCEINLINE void arm_nn_write_q15x2_ia(q15_t **dest_q15, q31_t src_q31) -{ - q31_t val = src_q31; - - memcpy(*dest_q15, &val, 4); - *dest_q15 += 2; -} - -#ifdef __cplusplus -} -#endif - -#endif +/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_nnsupportfunctions.h
+ * Description: Public header file of support functions for CMSIS NN Library
+ *
+ * $Date: 13. July 2018
+ * $Revision: V.1.0.0
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+
+#ifndef _ARM_NNSUPPORTFUNCTIONS_H_
+#define _ARM_NNSUPPORTFUNCTIONS_H_
+
+#include "arm_math.h"
+#include "arm_common_tables.h"
+
+#ifdef __cplusplus
+extern "C"
+{
+#endif
+
+#define LEFT_SHIFT(_shift) (_shift > 0 ? _shift : 0)
+#define RIGHT_SHIFT(_shift) (_shift > 0 ? 0 : -_shift)
+#define Q31_MIN (0x80000000L)
+#define Q31_MAX (0x7FFFFFFFL)
+
+/**
+ * @brief Union for SIMD access of Q31/Q15/Q7 types
+ */
+union arm_nnword
+{
+ q31_t word;
+ /**< Q31 type */
+ q15_t half_words[2];
+ /**< Q15 type */
+ q7_t bytes[4];
+ /**< Q7 type */
+};
+
+/**
+ * @brief Struct for specifying activation function types
+ *
+ */
+typedef enum
+{
+ ARM_SIGMOID = 0,
+ /**< Sigmoid activation function */
+ ARM_TANH = 1,
+ /**< Tanh activation function */
+} arm_nn_activation_type;
+
+/**
+ * @defgroup nndata_convert Neural Network Data Conversion Functions
+ *
+ * Perform data type conversion in-between neural network operations
+ *
+ */
+
+/**
+ * @brief Converts the elements of the Q7 vector to Q15 vector without left-shift
+ * @param[in] *pSrc points to the Q7 input vector
+ * @param[out] *pDst points to the Q15 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none.
+ *
+ */
+
+void arm_q7_to_q15_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize);
+
+/**
+ * @brief Converts the elements of the Q7 vector to reordered Q15 vector without left-shift
+ * @param[in] *pSrc points to the Q7 input vector
+ * @param[out] *pDst points to the Q15 output vector
+ * @param[in] blockSize length of the input vector
+ * @return none.
+ *
+ */
+
+void arm_q7_to_q15_reordered_no_shift(const q7_t * pSrc, q15_t * pDst, uint32_t blockSize);
+
+#if defined (ARM_MATH_DSP)
+
+/**
+ * @brief read and expand one Q7 word into two Q15 words
+ */
+
+__STATIC_FORCEINLINE void *read_and_pad(void *source, q31_t * out1, q31_t * out2)
+{
+ q31_t inA = *__SIMD32(source)++;
+ q31_t inAbuf1 = __SXTB16(__ROR(inA, 8));
+ q31_t inAbuf2 = __SXTB16(inA);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+ *out2 = __PKHTB(inAbuf1, inAbuf2, 16);
+ *out1 = __PKHBT(inAbuf2, inAbuf1, 16);
+#else
+ *out1 = __PKHTB(inAbuf1, inAbuf2, 16);
+ *out2 = __PKHBT(inAbuf2, inAbuf1, 16);
+#endif
+
+ return source;
+}
+
+/**
+ * @brief read and expand one Q7 word into two Q15 words with reordering
+ */
+
+__STATIC_FORCEINLINE void *read_and_pad_reordered(void *source, q31_t * out1, q31_t * out2)
+{
+ q31_t inA = *__SIMD32(source)++;
+#ifndef ARM_MATH_BIG_ENDIAN
+ *out2 = __SXTB16(__ROR(inA, 8));
+ *out1 = __SXTB16(inA);
+#else
+ *out1 = __SXTB16(__ROR(inA, 8));
+ *out2 = __SXTB16(inA);
+#endif
+
+ return source;
+}
+#endif
+
+/**
+ * @defgroup NNBasicMath Basic Math Functions for Neural Network Computation
+ *
+ * Basic Math Functions for Neural Network Computation
+ *
+ */
+
+/**
+ * @brief Q7 vector multiplication with variable output shifts
+ * @param[in] *pSrcA pointer to the first input vector
+ * @param[in] *pSrcB pointer to the second input vector
+ * @param[out] *pDst pointer to the output vector
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function uses saturating arithmetic.
+ * Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated.
+ */
+
+void arm_nn_mult_q15(
+ q15_t * pSrcA,
+ q15_t * pSrcB,
+ q15_t * pDst,
+ const uint16_t out_shift,
+ uint32_t blockSize);
+
+/**
+ * @brief Q7 vector multiplication with variable output shifts
+ * @param[in] *pSrcA pointer to the first input vector
+ * @param[in] *pSrcB pointer to the second input vector
+ * @param[out] *pDst pointer to the output vector
+ * @param[in] out_shift amount of right-shift for output
+ * @param[in] blockSize number of samples in each vector
+ * @return none.
+ *
+ * <b>Scaling and Overflow Behavior:</b>
+ * \par
+ * The function uses saturating arithmetic.
+ * Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.
+ */
+
+void arm_nn_mult_q7(
+ q7_t * pSrcA,
+ q7_t * pSrcB,
+ q7_t * pDst,
+ const uint16_t out_shift,
+ uint32_t blockSize);
+
+/**
+ * @brief macro for adding rounding offset
+ */
+#ifndef ARM_NN_TRUNCATE
+ #define NN_ROUND(out_shift) ( (0x1u << out_shift) >> 1 )
+#else
+ #define NN_ROUND(out_shift) 0
+#endif
+
+/**
+ * @brief Saturating doubling high multiply. Result matches
+ * NEON instruction VQRDMULH.
+ * @param[in] m1 Multiplicand
+ * @param[in] m2 Multiplier
+ * @return Result of multiplication.
+ *
+ */
+__STATIC_FORCEINLINE q31_t arm_nn_sat_doubling_high_mult(const q31_t m1, const q31_t m2)
+{
+ q31_t result = 0;
+ // Rounding offset to add for a right shift of 31
+ q63_t mult = 1 << 30;
+
+ if ((m1 < 0) ^ (m2 < 0))
+ {
+ mult = 1 - mult;
+ }
+ // Gets resolved as a SMLAL instruction
+ mult = mult + (q63_t)m1 * m2;
+
+ // Utilize all of the upper 32 bits. This is the doubling step
+ // as well.
+ result = mult / (1UL << 31);
+
+ if ((m1 == m2) && (m1 == Q31_MIN))
+ {
+ result = Q31_MAX;
+ }
+ return result;
+}
+
+/**
+ * @brief Rounding divide by power of two.
+ * @param[in] dividend - Dividend
+ * @param[in] exponent - Divisor = power(2, exponent)
+ * Range: [0, 31]
+ * @return Rounded result of division. Midpoint is rounded away from zero.
+ *
+ */
+__STATIC_FORCEINLINE q31_t arm_nn_divide_by_power_of_two(const q31_t dividend, const q31_t exponent)
+{
+ q31_t result = 0;
+ const q31_t remainder_mask = (1l << exponent) - 1;
+ int32_t remainder = remainder_mask & dividend;
+
+ // Basic division
+ result = dividend >> exponent;
+
+ // Adjust 'result' for rounding (mid point away from zero)
+ q31_t threshold = remainder_mask >> 1;
+ if (result < 0)
+ {
+ threshold++;
+ }
+ if (remainder > threshold)
+ {
+ result++;
+ }
+
+ return result;
+}
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif
|