summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c')
-rw-r--r--Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c335
1 files changed, 335 insertions, 0 deletions
diff --git a/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c
new file mode 100644
index 0000000..e884b31
--- /dev/null
+++ b/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s8.c
@@ -0,0 +1,335 @@
+/*
+ * Copyright (C) 2010-2021 Arm Limited or its affiliates.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_convolve_s8.c
+ * Description: s8 version of convolution using symmetric quantization.
+ *
+ * $Date: December 14, 2021
+ * $Revision: V.2.1.0
+ *
+ * Target Processor: Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_nnfunctions.h"
+#include "arm_nnsupportfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+/*
+ * Basic s8 convolution function.
+ *
+ * Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
+ * are multiples of 4 or atleast greater than 4.
+ *
+ */
+
+arm_status arm_convolve_s8(const cmsis_nn_context *ctx,
+ const cmsis_nn_conv_params *conv_params,
+ const cmsis_nn_per_channel_quant_params *quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *filter_dims,
+ const q7_t *filter_data,
+ const cmsis_nn_dims *bias_dims,
+ const int32_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data)
+{
+ (void)bias_dims;
+
+ if (ctx->buf == NULL && arm_convolve_s8_get_buffer_size(input_dims, filter_dims) > 0)
+ {
+ return ARM_MATH_ARGUMENT_ERROR;
+ }
+ q15_t *buffer_a = (q15_t *)ctx->buf;
+
+ const int32_t input_batches = input_dims->n;
+ const uint16_t input_x = input_dims->w;
+ const uint16_t input_y = input_dims->h;
+ const uint16_t input_ch = input_dims->c;
+ const uint16_t kernel_x = filter_dims->w;
+ const uint16_t kernel_y = filter_dims->h;
+ const uint16_t output_x = output_dims->w;
+ const uint16_t output_y = output_dims->h;
+ const uint16_t output_ch = output_dims->c;
+
+ const uint16_t pad_x = conv_params->padding.w;
+ const uint16_t pad_y = conv_params->padding.h;
+ const uint16_t stride_x = conv_params->stride.w;
+ const uint16_t stride_y = conv_params->stride.h;
+
+ const int32_t input_offset = conv_params->input_offset;
+ const int32_t out_offset = conv_params->output_offset;
+ const int32_t out_activation_min = conv_params->activation.min;
+ const int32_t out_activation_max = conv_params->activation.max;
+ int32_t *output_mult = quant_params->multiplier;
+ int32_t *output_shift = quant_params->shift;
+
+ int i_batch;
+ for (i_batch = 0; i_batch < input_batches; i_batch++)
+ {
+#if defined(ARM_MATH_MVEI)
+ /* Generate upto four columns from the input tensor a GEMM computation */
+ q7_t *im2col_buf = (q7_t *)buffer_a;
+ q7_t *out = output_data;
+ int32_t buffer_fill_cnt = 0;
+ int32_t padded = 0;
+ const int32_t num_elem = kernel_x * kernel_y * input_ch;
+ const int32_t dilation_x = conv_params->dilation.w;
+ const int32_t dilation_y = conv_params->dilation.h;
+
+ /* This part implements the im2col function */
+ for (int i_out_y = 0; i_out_y < output_y; i_out_y++)
+ {
+ for (int i_out_x = 0; i_out_x < output_x; i_out_x++)
+ {
+ const int32_t base_idx_x = stride_x * i_out_x - pad_x;
+ const int32_t base_idx_y = stride_y * i_out_y - pad_y;
+
+ for (int32_t i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
+ {
+ for (int32_t i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
+ {
+ const int32_t k_y = base_idx_y + dilation_y * i_ker_y;
+ const int32_t k_x = base_idx_x + dilation_x * i_ker_x;
+
+ if (k_y < 0 || k_y >= input_y || k_x < 0 || k_x >= input_x)
+ {
+ memset(im2col_buf, (int8_t)-input_offset, sizeof(q7_t) * input_ch);
+ padded = 1;
+ }
+ else
+ {
+ arm_memcpy_q7(im2col_buf, input_data + (k_y * input_x + k_x) * input_ch, input_ch);
+ }
+ im2col_buf += input_ch;
+ }
+ }
+
+ buffer_fill_cnt++;
+
+ /* Computation is filed for every 4 columns */
+ if (buffer_fill_cnt == 4 && (padded == 0))
+ {
+ buffer_fill_cnt = 0;
+ out = arm_nn_mat_mul_core_4x_s8(num_elem,
+ num_elem,
+ (q7_t *)buffer_a,
+ filter_data,
+ output_ch,
+ conv_params,
+ quant_params,
+ bias_data,
+ out);
+ im2col_buf = (q7_t *)buffer_a;
+ }
+ else if (buffer_fill_cnt == 4 && (padded != 0))
+ {
+ buffer_fill_cnt = 0;
+ out = arm_nn_mat_mult_s8(filter_data,
+ (q7_t *)buffer_a,
+ output_ch,
+ 4,
+ output_shift,
+ output_mult,
+ out_offset,
+ input_offset,
+ 0,
+ out_activation_min,
+ out_activation_max,
+ num_elem,
+ bias_data,
+ out);
+
+ im2col_buf = (q7_t *)buffer_a;
+ padded = 0;
+ }
+ }
+ }
+ /* Handle left over columns */
+ if (buffer_fill_cnt != 0)
+ {
+ out = arm_nn_mat_mult_s8(filter_data,
+ (q7_t *)buffer_a,
+ output_ch,
+ buffer_fill_cnt,
+ output_shift,
+ output_mult,
+ out_offset,
+ input_offset,
+ 0,
+ out_activation_min,
+ out_activation_max,
+ num_elem,
+ bias_data,
+ out);
+ }
+#else // #if defined(ARM_MATH_MVEI)
+ const uint16_t dilation_x = conv_params->dilation.w;
+ const uint16_t dilation_y = conv_params->dilation.h;
+
+ int32_t i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+ /* Generate two columns from the input tensor a GEMM computation */
+ q15_t *two_column_buf = buffer_a;
+ q7_t *out = output_data;
+
+ /* This part implements the im2col function */
+ for (i_out_y = 0; i_out_y < output_y; i_out_y++)
+ {
+ for (i_out_x = 0; i_out_x < output_x; i_out_x++)
+ {
+ const int32_t base_idx_y = stride_y * i_out_y - pad_y;
+ const int32_t base_idx_x = stride_x * i_out_x - pad_x;
+
+ for (i_ker_y = 0; i_ker_y < kernel_y; i_ker_y++)
+ {
+ for (i_ker_x = 0; i_ker_x < kernel_x; i_ker_x++)
+ {
+ const int32_t k_y = base_idx_y + dilation_y * i_ker_y;
+ const int32_t k_x = base_idx_x + dilation_x * i_ker_x;
+
+ if (k_y < 0 || k_y >= input_y || k_x < 0 || k_x >= input_x)
+ {
+ /* Filling 0 for out-of-bound paddings */
+ memset(two_column_buf, 0, sizeof(q15_t) * input_ch);
+ }
+ else
+ {
+ /* Copying the pixel data to column */
+ arm_q7_to_q15_with_offset(
+ input_data + (k_y * input_x + k_x) * input_ch, two_column_buf, input_ch, input_offset);
+ }
+ two_column_buf += input_ch;
+ }
+ }
+
+ /* Computation is filed for every 2 columns */
+ if (two_column_buf == buffer_a + 2 * input_ch * kernel_y * kernel_x)
+ {
+ out = arm_nn_mat_mult_kernel_s8_s16(filter_data,
+ buffer_a,
+ output_ch,
+ output_shift,
+ output_mult,
+ out_offset,
+ out_activation_min,
+ out_activation_max,
+ input_ch * kernel_y * kernel_x,
+ bias_data,
+ out);
+
+ /* counter reset */
+ two_column_buf = buffer_a;
+ }
+ }
+ }
+
+ /* left-over because odd number of output pixels */
+ if (two_column_buf != buffer_a)
+ {
+ const q7_t *ker_a = filter_data;
+ int i;
+
+ for (i = 0; i < output_ch; i++)
+ {
+ /* Load the accumulator with bias first */
+ q31_t sum = 0;
+ if (bias_data)
+ {
+ sum = bias_data[i];
+ }
+
+ /* Point to the beginning of the im2col buffer where the input is available as a rearranged column */
+ const q15_t *ip_as_col = buffer_a;
+
+ /* 4 multiply and accumulates are done in one loop. */
+#if defined(ARM_MATH_DSP)
+ uint16_t col_count = (input_ch * kernel_y * kernel_x) >> 2;
+
+ while (col_count)
+ {
+ q31_t ker_a1, ker_a2;
+ q31_t ip_b1, ip_b2;
+
+ ker_a = read_and_pad(ker_a, &ker_a1, &ker_a2);
+
+ ip_b1 = arm_nn_read_q15x2_ia(&ip_as_col);
+ sum = __SMLAD(ker_a1, ip_b1, sum);
+ ip_b2 = arm_nn_read_q15x2_ia(&ip_as_col);
+ sum = __SMLAD(ker_a2, ip_b2, sum);
+
+ col_count--;
+ }
+ /* Handle left over mac */
+ col_count = input_ch * kernel_y * kernel_x & 0x3;
+#else
+ uint16_t col_count = input_ch * kernel_y * kernel_x;
+#endif
+ while (col_count)
+ {
+ q7_t ker_a1 = *ker_a++;
+ q15_t ip_b1 = *ip_as_col++;
+ sum += ker_a1 * ip_b1;
+ col_count--;
+ }
+
+ sum = arm_nn_requantize(sum, output_mult[i], output_shift[i]);
+ sum += out_offset;
+ sum = MAX(sum, out_activation_min);
+ sum = MIN(sum, out_activation_max);
+ *out++ = (q7_t)sum;
+ }
+ }
+#endif // #if defined(ARM_MATH_MVEI)
+ /* Advance to the next batch */
+ input_data += (input_x * input_y * input_ch);
+ output_data += (output_x * output_y * output_ch);
+ }
+
+ /* Return to application */
+ return ARM_MATH_SUCCESS;
+}
+
+int32_t arm_convolve_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
+{
+#if defined(ARM_MATH_MVEI)
+ int32_t col_length = input_dims->c * filter_dims->w * filter_dims->h;
+ // Get number of complete int16 lanes(multiple of 8) for given col_length. This is dependent on
+ // implementation of arm_nn_mat_mult_s8
+ col_length = (col_length + 7) / 8;
+ // 4 -> number of im2col buffers, 8 -> 8 elements per Q register
+ return 4 * col_length * 8 * (int32_t)sizeof(int8_t);
+#else
+ return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t);
+#endif
+}
+
+/**
+ * @} end of NNConv group
+ */