diff options
Diffstat (limited to 'Drivers/CMSIS/NN/Source/FullyConnectedFunctions')
9 files changed, 2057 insertions, 0 deletions
diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/CMakeLists.txt b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/CMakeLists.txt new file mode 100644 index 0000000..cccd996 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/CMakeLists.txt @@ -0,0 +1,21 @@ +# +# Copyright (c) 2019-2021 Arm Limited. +# +# SPDX-License-Identifier: Apache-2.0 +# +# Licensed under the Apache License, Version 2.0 (the License); you may +# not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an AS IS BASIS, WITHOUT +# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +file(GLOB SRC "./*_s8.c") +target_sources(cmsis-nn PRIVATE ${SRC} arm_fully_connected_s16.c) + diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c new file mode 100644 index 0000000..9eb02eb --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15.c @@ -0,0 +1,197 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_mat_q7_vec_q15.c + * Description: Mixed Q15-Q7 fully-connected layer function + * + * $Date: 20. July 2021 + * $Revision: V.1.1.1 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_nnfunctions.h" +#include "arm_nnsupportfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + +/** + * @brief Mixed Q15-Q7 fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + * @details + * + * <b>Buffer size:</b> + * + * vec_buffer size: 0 + * + * Q7_Q15 version of the fully connected layer + * + * Weights are in q7_t and Activations are in q15_t + * + */ + +arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t *pV, + const q7_t *pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t *bias, + q15_t *pOut, + q15_t *vec_buffer) +{ + (void)vec_buffer; +#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q7_t *pB = pM; + const q7_t *pB2; + q15_t *pO = pOut; + const q7_t *pBias = bias; + const q15_t *pA = pV; + + uint16_t rowCnt = num_of_rows >> 1; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + pB2 = pB + dim_vec; + + while (colCnt) + { + q31_t inV, inM11, inM12, inM21, inM22; + pB = read_and_pad(pB, &inM11, &inM12); + pB2 = read_and_pad(pB2, &inM21, &inM22); + + inV = arm_nn_read_q15x2_ia(&pA); + + sum = __SMLAD(inV, inM11, sum); + sum2 = __SMLAD(inV, inM21, sum2); + + inV = arm_nn_read_q15x2_ia(&pA); + + sum = __SMLAD(inV, inM12, sum); + sum2 = __SMLAD(inV, inM22, sum2); + + colCnt--; + } + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + q7_t inM2 = *pB2++; + + sum += inV * inM; + sum2 += inV * inM2; + colCnt--; + } /* while over colCnt */ + *pO++ = (q15_t)(__SSAT((sum >> out_shift), 16)); + *pO++ = (q15_t)(__SSAT((sum2 >> out_shift), 16)); + + /*adjust the pointers and counters */ + pB += dim_vec; + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x1; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) + { + q31_t inV1, inV2, inM11, inM12; + + pB = read_and_pad(pB, &inM11, &inM12); + + inV1 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV1, inM11, sum); + + inV2 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV2, inM12, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q15_t)(__SSAT((sum >> out_shift), 16)); + + rowCnt--; + } + +#else + int i, j; + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + for (i = 0; i < num_of_rows; i++) + { + int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + for (j = 0; j < dim_vec; j++) + { + ip_out += pV[j] * pM[i * dim_vec + j]; + } + pOut[i] = (q15_t)__SSAT((ip_out >> out_shift), 16); + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); +} + +/** + * @} end of FC group + */ diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c new file mode 100644 index 0000000..a2da772 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_mat_q7_vec_q15_opt.c @@ -0,0 +1,417 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_mat_q7_vec_q15_opt.c + * Description: Mixed Q15-Q7 opt fully-connected layer function + * + * $Date: 20. July 2021 + * $Revision: V.1.1.1 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_nnfunctions.h" +#include "arm_nnsupportfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + +/** + * @brief Mixed Q15-Q7 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + * @details + * + * <b>Buffer size:</b> + * + * vec_buffer size: 0 + * + * Q7_Q15 version of the fully connected layer + * + * Weights are in q7_t and Activations are in q15_t + * + * Limitation: x4 version requires weight reordering to work + * + * Here we use only one pointer to read 4 rows in the weight + * matrix. So if the original q7_t matrix looks like this: + * + * | a11 | a12 | a13 | a14 | a15 | a16 | a17 | + * + * | a21 | a22 | a23 | a24 | a25 | a26 | a27 | + * + * | a31 | a32 | a33 | a34 | a35 | a36 | a37 | + * + * | a41 | a42 | a43 | a44 | a45 | a46 | a47 | + * + * | a51 | a52 | a53 | a54 | a55 | a56 | a57 | + * + * | a61 | a62 | a63 | a64 | a65 | a66 | a67 | + * + * We operates on multiple-of-4 rows, so the first four rows becomes + * + * | a11 | a21 | a12 | a22 | a31 | a41 | a32 | a42 | + * + * | a13 | a23 | a14 | a24 | a33 | a43 | a34 | a44 | + * + * | a15 | a25 | a16 | a26 | a35 | a45 | a36 | a46 | + * + * The column left over will be in-order. + * which is: + * | a17 | a27 | a37 | a47 | + * + * For the left-over rows, we do 1x1 computation, so the data remains + * as its original order. + * + * So the stored weight matrix looks like this: + * + * | a11 | a21 | a12 | a22 | a31 | a41 | + * + * | a32 | a42 | a13 | a23 | a14 | a24 | + * + * | a33 | a43 | a34 | a44 | a15 | a25 | + * + * | a16 | a26 | a35 | a45 | a36 | a46 | + * + * | a17 | a27 | a37 | a47 | a51 | a52 | + * + * | a53 | a54 | a55 | a56 | a57 | a61 | + * + * | a62 | a63 | a64 | a65 | a66 | a67 | + * + */ + +arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t *pV, + const q7_t *pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t *bias, + q15_t *pOut, + q15_t *vec_buffer) +{ + + (void)vec_buffer; +#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q7_t *pB = pM; + q15_t *pO = pOut; + const q7_t *pBias = bias; + const q15_t *pA = pV; + + uint16_t rowCnt = num_of_rows >> 2; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 1; + + pA = pV; + +#ifdef USE_INTRINSIC + +#ifndef ARM_MATH_BIG_ENDIAN + + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = arm_nn_read_q15x2_ia(&pA); + inM11 = arm_nn_read_q7x4_ia(&pB); + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM11, inV, sum); + sum2 = __SMLAD(inM12, inV, sum2); + inM13 = arm_nn_read_q7x4_ia(&pB); + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM13, inV, sum3); + sum4 = __SMLAD(inM14, inV, sum4); + colCnt--; + } + +#else + + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = *__SIMD32(pA)++; + inM11 = arm_nn_read_q7x4_ia(&pB); + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM12, inV, sum); + sum2 = __SMLAD(inM11, inV, sum2); + inM13 = arm_nn_read_q7x4_ia(&pB); + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM14, inV, sum3); + sum4 = __SMLAD(inM13, inV, sum4); + colCnt--; + } + +#endif /* ARM_MATH_BIG_ENDIAN */ + +#else + + /* + * register needed: + * loop counter: colCnt + * accumulators: sum, sum2, sum3, sum4 + * pointers: pB, pA + * weight data: inM11, inM12, inM13, inM14 + * activation data: inV + */ + +#ifndef ARM_MATH_BIG_ENDIAN + asm volatile("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #4\n" + "ldr.w r1, [%[pB]], #8\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r1, %[sum]\n" + "smlad %[sum2], r4, r0, %[sum2]\n" + "ldr.w r3, [%[pB], #-4]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r3, %[sum3]\n" + "smlad %[sum4], r4, r2, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n" + : [ sum ] "+r"(sum), + [ sum2 ] "+r"(sum2), + [ sum3 ] "+r"(sum3), + [ sum4 ] "+r"(sum4), + [ pB ] "+r"(pB), + [ pA ] "+r"(pA) + : [ colCnt ] "r"(colCnt) + : "r0", "r1", "r2", "r3", "r4"); +#else + asm volatile("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #4\n" + "ldr.w r1, [%[pB]], #8\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r0, %[sum]\n" + "smlad %[sum2], r4, r1, %[sum2]\n" + "ldr.w r3, [%[pB], #-4]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r2, %[sum3]\n" + "smlad %[sum4], r4, r3, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n" + : [ sum ] "+r"(sum), + [ sum2 ] "+r"(sum2), + [ sum3 ] "+r"(sum3), + [ sum4 ] "+r"(sum4), + [ pB ] "+r"(pB), + [ pA ] "+r"(pA) + : [ colCnt ] "r"(colCnt) + : "r0", "r1", "r2", "r3", "r4"); +#endif /* ARM_MATH_BIG_ENDIAN */ + +#endif /* USE_INTRINSIC */ + + colCnt = dim_vec & 0x1; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + q7_t inM2 = *pB++; + q7_t inM3 = *pB++; + q7_t inM4 = *pB++; + + sum += inV * inM; + sum2 += inV * inM2; + sum3 += inV * inM3; + sum4 += inV * inM4; + colCnt--; + } /* while over colCnt */ + *pO++ = (q15_t)(__SSAT((sum >> out_shift), 16)); + *pO++ = (q15_t)(__SSAT((sum2 >> out_shift), 16)); + *pO++ = (q15_t)(__SSAT((sum3 >> out_shift), 16)); + *pO++ = (q15_t)(__SSAT((sum4 >> out_shift), 16)); + + /* adjust the pointers and counters */ + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) + { + q31_t inV1, inV2, inM11, inM12; + + pB = read_and_pad(pB, &inM11, &inM12); + + inV1 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV1, inM11, sum); + + inV2 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV2, inM12, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q15_t)(__SSAT((sum >> out_shift), 16)); + + rowCnt--; + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + uint16_t rowCnt = num_of_rows >> 2; + const q7_t *pB = pM; + const q15_t *pA; + q15_t *pO = pOut; + const q7_t *pBias = bias; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 1; + + pA = pV; + + while (colCnt) + { + q15_t inA1 = *pA++; + q15_t inA2 = *pA++; + + q7_t inB1 = *pB++; + q7_t inB3 = *pB++; + q7_t inB2 = *pB++; + q7_t inB4 = *pB++; + + sum += inA1 * inB1 + inA2 * inB2; + sum2 += inA1 * inB3 + inA2 * inB4; + + inB1 = *pB++; + inB3 = *pB++; + inB2 = *pB++; + inB4 = *pB++; + + sum3 += inA1 * inB1 + inA2 * inB2; + sum4 += inA1 * inB3 + inA2 * inB4; + + colCnt--; + } + + colCnt = dim_vec & 0x1; + while (colCnt) + { + q15_t inA = *pA++; + q7_t inB = *pB++; + sum += inA * inB; + inB = *pB++; + sum2 += inA * inB; + inB = *pB++; + sum3 += inA * inB; + inB = *pB++; + sum4 += inA * inB; + + colCnt--; + } + *pO++ = (q15_t)__SSAT((sum >> out_shift), 16); + *pO++ = (q15_t)__SSAT((sum2 >> out_shift), 16); + *pO++ = (q15_t)__SSAT((sum3 >> out_shift), 16); + *pO++ = (q15_t)__SSAT((sum4 >> out_shift), 16); + + rowCnt--; + } + + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + int j; + + pA = pV; + for (j = 0; j < dim_vec; j++) + { + q15_t inA = *pA++; + q7_t inB = *pB++; + ip_out += inA * inB; + } + *pO++ = (q15_t)__SSAT((ip_out >> out_shift), 16); + + rowCnt--; + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); +} + +/** + * @} end of FC group + */ diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c new file mode 100644 index 0000000..d8b6887 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15.c @@ -0,0 +1,195 @@ +/* + * Copyright (C) 2010-2020 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_q15.c + * Description: Q15 basic fully-connected layer function + * + * $Date: 20. July 2021 + * $Revision: V.1.1.1 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_nnfunctions.h" +#include "arm_nnsupportfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + +/** + * @brief Q15 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + * + * @details + * + * <b>Buffer size:</b> + * + * vec_buffer size: 0 + * + */ + +arm_status arm_fully_connected_q15(const q15_t *pV, + const q15_t *pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q15_t *bias, + q15_t *pOut, + q15_t *vec_buffer) +{ + (void)vec_buffer; +#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q15_t *pB = pM; + const q15_t *pB2 = pB + dim_vec; + q15_t *pO = pOut; + const q15_t *pA; + const q15_t *pBias = bias; + uint16_t rowCnt = num_of_rows >> 1; + + /* this loop loops over different output */ + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + pB2 = pB + dim_vec; + + while (colCnt) + { + q31_t inV1, inM1, inM2; + inV1 = arm_nn_read_q15x2_ia(&pA); + inM1 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inV1, inM1, sum); + inM2 = arm_nn_read_q15x2_ia(&pB2); + sum2 = __SMLAD(inV1, inM2, sum2); + + inV1 = arm_nn_read_q15x2_ia(&pA); + inM1 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inV1, inM1, sum); + inM2 = arm_nn_read_q15x2_ia(&pB2); + sum2 = __SMLAD(inV1, inM2, sum2); + + colCnt--; + } + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q15_t inM = *pB++; + q15_t inM2 = *pB2++; + + sum += inV * inM; + sum2 += inV * inM2; + colCnt--; + } /* while over colCnt */ + *pO++ = (q15_t)(__SSAT((sum >> out_shift), 16)); + *pO++ = (q15_t)(__SSAT((sum2 >> out_shift), 16)); + + /* adjust the pointers and counters */ + pB = pB + dim_vec; + rowCnt--; + } + + rowCnt = num_of_rows & 0x1; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) + { + q31_t inV1, inM1; + inV1 = arm_nn_read_q15x2_ia(&pA); + inM1 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inV1, inM1, sum); + + inV1 = arm_nn_read_q15x2_ia(&pA); + inM1 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inV1, inM1, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q15_t inM = *pB++; + + sum += inV * inM; + + colCnt--; + } + + *pO++ = (q15_t)(__SSAT((sum >> out_shift), 16)); + + rowCnt--; + } + +#else + int i, j; + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + for (i = 0; i < num_of_rows; i++) + { + int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + for (j = 0; j < dim_vec; j++) + { + ip_out += pV[j] * pM[i * dim_vec + j]; + } + pOut[i] = (q15_t)__SSAT((ip_out >> out_shift), 16); + } + +#endif /* ARM_MATH_DSP */ + + /* Return to application */ + return (ARM_MATH_SUCCESS); +} + +/** + * @} end of FC group + */ diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c new file mode 100644 index 0000000..f6c9b16 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q15_opt.c @@ -0,0 +1,336 @@ +/* + * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_q15_opt.c + * Description: Q15 opt fully-connected layer function + * + * $Date: 20. July 2021 + * $Revision: V.1.1.1 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_nnfunctions.h" +#include "arm_nnsupportfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + +/** + * @brief Q15 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + * + * @details + * + * <b>Buffer size:</b> + * + * vec_buffer size: 0 + * + * Here we use only one pointer to read 4 rows in the weight + * matrix. So if the original matrix looks like this: + * + * | a11 | a12 | a13 | + * + * | a21 | a22 | a23 | + * + * | a31 | a32 | a33 | + * + * | a41 | a42 | a43 | + * + * | a51 | a52 | a53 | + * + * | a61 | a62 | a63 | + * + * We operates on multiple-of-4 rows, so the first four rows becomes + * + * | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 | + * + * | a13 | a23 | a33 | a43 | + * + * Remaining rows are kept the same original order. + * + * So the stored weight matrix looks like this: + * + * + * | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 | + * + * | a13 | a23 | a33 | a43 | a51 | a52 | a53 | a61 | + * + * | a62 | a63 | + */ + +arm_status arm_fully_connected_q15_opt(const q15_t *pV, + const q15_t *pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q15_t *bias, + q15_t *pOut, + q15_t *vec_buffer) +{ + (void)vec_buffer; +#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q15_t *pB = pM; + q15_t *pO = pOut; + const q15_t *pBias = bias; + const q15_t *pA = pV; + + uint16_t rowCnt = num_of_rows >> 2; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 1; + + pA = pV; + +#ifdef USE_INTRINSIC + + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = arm_nn_read_q15x2_ia(&pA); + inM11 = arm_nn_read_q15x2_ia(&pB); + sum = __SMLAD(inV, inM11, sum); + inM12 = arm_nn_read_q15x2_ia(&pB); + sum2 = __SMLAD(inV, inM12, sum2); + inM13 = arm_nn_read_q15x2_ia(&pB); + sum3 = __SMLAD(inV, inM13, sum3); + inM14 = arm_nn_read_q15x2_ia(&pB); + sum4 = __SMLAD(inV, inM14, sum4); + colCnt--; + } + +#else + + /* + * register needed: + * loop counter: colCnt + * accumulators: sum, sum2, sum3, sum4 + * pointers: pB, pA + * weight data: inM11, inM12, inM13, inM14 + * activation data: inV + */ + + asm volatile("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #4\n" + "ldr.w r0, [%[pB]], #16\n" + "smlad %[sum], r4, r0, %[sum]\n" + "ldr.w r1, [%[pB] , #-12]\n" + "smlad %[sum2], r4, r1, %[sum2]\n" + "ldr.w r2, [%[pB] , #-8]\n" + "smlad %[sum3], r4, r2, %[sum3]\n" + "ldr.w r3, [%[pB] , #-4]\n" + "smlad %[sum4], r4, r3, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n" + : [ sum ] "+r"(sum), + [ sum2 ] "+r"(sum2), + [ sum3 ] "+r"(sum3), + [ sum4 ] "+r"(sum4), + [ pB ] "+r"(pB), + [ pA ] "+r"(pA) + : [ colCnt ] "r"(colCnt) + : "r0", "r1", "r2", "r3", "r4"); + +#endif /* USE_INTRINSIC */ + + colCnt = dim_vec & 0x1; + while (colCnt) + { + + q15_t inV = *pA++; + q15_t inM = *pB++; + q15_t inM2 = *pB++; + q15_t inM3 = *pB++; + q15_t inM4 = *pB++; + + sum += inV * inM; + sum2 += inV * inM2; + sum3 += inV * inM3; + sum4 += inV * inM4; + colCnt--; + } /* while over colCnt */ + *pO++ = (q15_t)(__SSAT((sum >> out_shift), 16)); + *pO++ = (q15_t)(__SSAT((sum2 >> out_shift), 16)); + *pO++ = (q15_t)(__SSAT((sum3 >> out_shift), 16)); + *pO++ = (q15_t)(__SSAT((sum4 >> out_shift), 16)); + + /* adjust the pointers and counters */ + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) + { + q31_t inV1, inV2, inM1, inM2; + + inM1 = arm_nn_read_q15x2_ia(&pB); + inV1 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV1, inM1, sum); + + inM2 = arm_nn_read_q15x2_ia(&pB); + inV2 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV2, inM2, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q15_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q15_t)(__SSAT((sum >> out_shift), 16)); + + rowCnt--; + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + uint16_t rowCnt = num_of_rows >> 2; + const q15_t *pB = pM; + const q15_t *pA; + q15_t *pO = pOut; + const q15_t *pBias = bias; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 1; + + pA = pV; + while (colCnt) + { + q15_t inA1 = *pA++; + q15_t inA2 = *pA++; + + q15_t inB1 = *pB++; + q15_t inB2 = *pB++; + sum += inA1 * inB1 + inA2 * inB2; + + inB1 = *pB++; + inB2 = *pB++; + sum2 += inA1 * inB1 + inA2 * inB2; + + inB1 = *pB++; + inB2 = *pB++; + sum3 += inA1 * inB1 + inA2 * inB2; + + inB1 = *pB++; + inB2 = *pB++; + sum4 += inA1 * inB1 + inA2 * inB2; + + colCnt--; + } + colCnt = dim_vec & 0x1; + while (colCnt) + { + q15_t inA = *pA++; + q15_t inB = *pB++; + sum += inA * inB; + inB = *pB++; + sum2 += inA * inB; + inB = *pB++; + sum3 += inA * inB; + inB = *pB++; + sum4 += inA * inB; + colCnt--; + } + *pO++ = (q15_t)__SSAT((sum >> out_shift), 16); + *pO++ = (q15_t)__SSAT((sum2 >> out_shift), 16); + *pO++ = (q15_t)__SSAT((sum3 >> out_shift), 16); + *pO++ = (q15_t)__SSAT((sum4 >> out_shift), 16); + + rowCnt--; + } + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + int j; + + pA = pV; + for (j = 0; j < dim_vec; j++) + { + q15_t inA = *pA++; + q15_t inB = *pB++; + ip_out += inA * inB; + } + *pO++ = (q15_t)__SSAT((ip_out >> out_shift), 16); + + rowCnt--; + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); +} + +/** + * @} end of FC group + */ diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c new file mode 100644 index 0000000..d500efe --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7.c @@ -0,0 +1,200 @@ +/* + * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_q7.c + * Description: Q7 basic fully-connected layer function + * + * $Date: July 20, 2021 + * $Revision: V.1.1.2 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_nnfunctions.h" +#include "arm_nnsupportfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + +/** + * @brief Q7 basic fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + * @details + * + * <b>Buffer size:</b> + * + * vec_buffer size: dim_vec + * + * This basic function is designed to work with regular weight + * matrix without interleaving. + * + */ + +arm_status arm_fully_connected_q7(const q7_t *pV, + const q7_t *pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t *bias, + q7_t *pOut, + q15_t *vec_buffer) +{ + +#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q7_t *pB = pM; + const q7_t *pB2; + q7_t *pO = pOut; + const q7_t *pBias = bias; + const q15_t *pA; + uint16_t rowCnt = num_of_rows >> 1; + + /* expand the vector into the buffer */ + arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec); + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 2; + + pA = vec_buffer; + pB2 = pB + dim_vec; + + while (colCnt) + { + q31_t inV, inM11, inM12, inM21, inM22; + pB = read_and_pad_reordered(pB, &inM11, &inM12); + pB2 = read_and_pad_reordered(pB2, &inM21, &inM22); + + inV = arm_nn_read_q15x2_ia(&pA); + + sum = __SMLAD(inV, inM11, sum); + sum2 = __SMLAD(inV, inM21, sum2); + + inV = arm_nn_read_q15x2_ia(&pA); + + sum = __SMLAD(inV, inM12, sum); + sum2 = __SMLAD(inV, inM22, sum2); + + colCnt--; + } + colCnt = dim_vec & 0x3; + while (colCnt) + { + q7_t inV = *pA++; + q15_t inM = *pB++; + q15_t inM2 = *pB2++; + + sum += inV * inM; + sum2 += inV * inM2; + colCnt--; + } /* while over colCnt */ + *pO++ = (q7_t)(__SSAT((sum >> out_shift), 8)); + *pO++ = (q7_t)(__SSAT((sum2 >> out_shift), 8)); + + /* adjust the pointers and counters */ + pB += dim_vec; + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x1; + + while (rowCnt) + { + uint16_t colCnt = dim_vec >> 2; + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + pA = vec_buffer; + + while (colCnt) + { + q31_t inV1, inV2, inM11, inM12; + + pB = read_and_pad_reordered(pB, &inM11, &inM12); + + inV1 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV1, inM11, sum); + + inV2 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV2, inM12, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q7_t inV = *pA++; + q15_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q7_t)(__SSAT((sum >> out_shift), 8)); + + rowCnt--; + } + +#else + (void)vec_buffer; + int i, j; + + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + for (i = 0; i < num_of_rows; i++) + { + int ip_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift); + for (j = 0; j < dim_vec; j++) + { + ip_out += pV[j] * pM[i * dim_vec + j]; + } + pOut[i] = (q7_t)__SSAT((ip_out >> out_shift), 8); + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); +} + +/** + * @} end of FC group + */ diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c new file mode 100644 index 0000000..2f3d653 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_q7_opt.c @@ -0,0 +1,495 @@ +/* + * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_q7_opt.c + * Description: Q7 basic fully-connected layer function + * + * $Date: 20. July 2021 + * $Revision: V.1.1.1 + * + * Target Processor: Cortex-M cores + * + * -------------------------------------------------------------------- */ + +#include "arm_nnfunctions.h" +#include "arm_nnsupportfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + +/** + * @brief Q7 opt fully-connected layer function + * @param[in] pV pointer to input vector + * @param[in] pM pointer to matrix weights + * @param[in] dim_vec length of the vector + * @param[in] num_of_rows number of rows in weight matrix + * @param[in] bias_shift amount of left-shift for bias + * @param[in] out_shift amount of right-shift for output + * @param[in] bias pointer to bias + * @param[in,out] pOut pointer to output vector + * @param[in,out] vec_buffer pointer to buffer space for input + * @return The function returns <code>ARM_MATH_SUCCESS</code> + * + * @details + * + * <b>Buffer size:</b> + * + * vec_buffer size: dim_vec + * + * This opt function is designed to work with interleaved weight + * matrix. The vector input is assumed in q7_t format, we call + * arm_q7_to_q15_no_shift_shuffle function to expand into + * q15_t format with certain weight re-ordering, refer to the function + * comments for more details. + * Here we use only one pointer to read 4 rows in the weight + * matrix. So if the original q7_t matrix looks like this: + * + * | a11 | a12 | a13 | a14 | a15 | a16 | a17 | + * + * | a21 | a22 | a23 | a24 | a25 | a26 | a27 | + * + * | a31 | a32 | a33 | a34 | a35 | a36 | a37 | + * + * | a41 | a42 | a43 | a44 | a45 | a46 | a47 | + * + * | a51 | a52 | a53 | a54 | a55 | a56 | a57 | + * + * | a61 | a62 | a63 | a64 | a65 | a66 | a67 | + * + * + * We operates on multiple-of-4 rows, so the first four rows becomes + * + * | a11 | a21 | a13 | a23 | a31 | a41 | a33 | a43 | + * + * | a12 | a22 | a14 | a24 | a32 | a42 | a34 | a44 | + * + * | a15 | a25 | a35 | a45 | a16 | a26 | a36 | a46 | + * + * So within the kernel, we first read the re-ordered vector in as: + * + * | b1 | b3 | and | b2 | b4 | + * + * the four q31_t weights will look like + * + * | a11 | a13 |, | a21 | a23 |, | a31 | a33 |, | a41 | a43 | + * + * | a12 | a14 |, | a22 | a24 |, | a32 | a34 |, | a42 | a44 | + * + * The column left over will be in-order. + * which is: + * + * | a17 | a27 | a37 | a47 | + * + * For the left-over rows, we do 1x1 computation, so the data remains + * as its original order. + * + * So the stored weight matrix looks like this: + * + * | a11 | a21 | a13 | a23 | a31 | a41 | + * + * | a33 | a43 | a12 | a22 | a14 | a24 | + * + * | a32 | a42 | a34 | a44 | a15 | a25 | + * + * | a35 | a45 | a16 | a26 | a36 | a46 | + * + * | a17 | a27 | a37 | a47 | a51 | a52 | + * + * | a53 | a54 | a55 | a56 | a57 | a61 | + * + * | a62 | a63 | a64 | a65 | a66 | a67 | + * + * + */ + +arm_status arm_fully_connected_q7_opt(const q7_t *pV, + const q7_t *pM, + const uint16_t dim_vec, + const uint16_t num_of_rows, + const uint16_t bias_shift, + const uint16_t out_shift, + const q7_t *bias, + q7_t *pOut, + q15_t *vec_buffer) +{ + +#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI) + /* Run the following code for Cortex-M4 and Cortex-M7 */ + + const q7_t *pB = pM; + q7_t *pO = pOut; + const q7_t *pBias = bias; + const q15_t *pA; + uint16_t rowCnt = num_of_rows >> 2; + + arm_q7_to_q15_reordered_no_shift(pV, vec_buffer, dim_vec); + + while (rowCnt) + { + + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = vec_buffer; + +#ifdef USE_INTRINSIC + +#ifndef ARM_MATH_BIG_ENDIAN + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = arm_nn_read_q15x2_ia(&pA); + inM11 = arm_nn_read_q7x4_ia(&pB); + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM11, inV, sum); + sum2 = __SMLAD(inM12, inV, sum2); + inM13 = arm_nn_read_q7x4_ia(&pB); + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM13, inV, sum3); + sum4 = __SMLAD(inM14, inV, sum4); + + inV = arm_nn_read_q15x2_ia(&pA); + inM11 = arm_nn_read_q7x4_ia(&pB); + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM11, inV, sum); + sum2 = __SMLAD(inM12, inV, sum2); + inM13 = arm_nn_read_q7x4_ia(&pB); + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM13, inV, sum3); + sum4 = __SMLAD(inM14, inV, sum4); + colCnt--; + } +#else + while (colCnt) + { + q31_t inM11, inM12, inM13, inM14; + q31_t inV; + + inV = arm_nn_read_q15x2_ia(&pA); + inM11 = arm_nn_read_q7x4_ia(&pB); + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM12, inV, sum); + sum2 = __SMLAD(inM11, inV, sum2); + inM13 = arm_nn_read_q7x4_ia(&pB); + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM14, inV, sum3); + sum4 = __SMLAD(inM13, inV, sum4); + + inV = arm_nn_read_q15x2_ia(&pA); + inM11 = arm_nn_read_q7x4_ia(&pB); + inM12 = __SXTB16(__ROR(inM11, 8)); + inM11 = __SXTB16(inM11); + sum = __SMLAD(inM12, inV, sum); + sum2 = __SMLAD(inM11, inV, sum2); + inM13 = arm_nn_read_q7x4_ia(&pB); + inM14 = __SXTB16(__ROR(inM13, 8)); + inM13 = __SXTB16(inM13); + sum3 = __SMLAD(inM14, inV, sum3); + sum4 = __SMLAD(inM13, inV, sum4); + colCnt--; + } +#endif /* ARM_MATH_BIG_ENDIAN */ + +#else + + /* + * register needed: + * loop counter: colCnt + * accumulators: sum, sum2, sum3, sum4 + * pointers: pB, pA + * weight data: inM11, inM12, inM13, inM14 + * activation data: inV + */ + +#ifndef ARM_MATH_BIG_ENDIAN + asm volatile("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #8\n" + "ldr.w r1, [%[pB]], #16\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r1, %[sum]\n" + "smlad %[sum2], r4, r0, %[sum2]\n" + "ldr.w r3, [%[pB], #-12]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r3, %[sum3]\n" + "smlad %[sum4], r4, r2, %[sum4]\n" + "ldr.w r4, [%[pA], #-4]\n" + "ldr.w r1, [%[pB], #-8]\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r1, %[sum]\n" + "smlad %[sum2], r4, r0, %[sum2]\n" + "ldr.w r3, [%[pB], #-4]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r3, %[sum3]\n" + "smlad %[sum4], r4, r2, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n" + : [ sum ] "+r"(sum), + [ sum2 ] "+r"(sum2), + [ sum3 ] "+r"(sum3), + [ sum4 ] "+r"(sum4), + [ pB ] "+r"(pB), + [ pA ] "+r"(pA) + : [ colCnt ] "r"(colCnt) + : "r0", "r1", "r2", "r3", "r4"); +#else + asm volatile("COL_LOOP_%=:\n" + "ldr.w r4, [%[pA]], #8\n" + "ldr.w r1, [%[pB]], #16\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r0, %[sum]\n" + "smlad %[sum2], r4, r1, %[sum2]\n" + "ldr.w r3, [%[pB], #-12]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r2, %[sum3]\n" + "smlad %[sum4], r4, r3, %[sum4]\n" + "ldr.w r4, [%[pA], #-4]\n" + "ldr.w r1, [%[pB], #-8]\n" + "mov.w r0, r1, ror #8\n" + "sxtb16 r0, r0\n" + "sxtb16 r1, r1\n" + "smlad %[sum], r4, r0, %[sum]\n" + "smlad %[sum2], r4, r1, %[sum2]\n" + "ldr.w r3, [%[pB], #-4]\n" + "mov.w r2, r3, ror #8\n" + "sxtb16 r2, r2\n" + "sxtb16 r3, r3\n" + "smlad %[sum3], r4, r2, %[sum3]\n" + "smlad %[sum4], r4, r3, %[sum4]\n" + "subs %[colCnt], #1\n" + "bne COL_LOOP_%=\n" + : [ sum ] "+r"(sum), + [ sum2 ] "+r"(sum2), + [ sum3 ] "+r"(sum3), + [ sum4 ] "+r"(sum4), + [ pB ] "+r"(pB), + [ pA ] "+r"(pA) + : [ colCnt ] "r"(colCnt) + : "r0", "r1", "r2", "r3", "r4"); +#endif /* ARM_MATH_BIG_ENDIAN */ + +#endif /* USE_INTRINSIC */ + + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + q7_t inM2 = *pB++; + q7_t inM3 = *pB++; + q7_t inM4 = *pB++; + + sum += inV * inM; + sum2 += inV * inM2; + sum3 += inV * inM3; + sum4 += inV * inM4; + colCnt--; + } /* while over colCnt */ + *pO++ = (q7_t)(__SSAT((sum >> out_shift), 8)); + *pO++ = (q7_t)(__SSAT((sum2 >> out_shift), 8)); + *pO++ = (q7_t)(__SSAT((sum3 >> out_shift), 8)); + *pO++ = (q7_t)(__SSAT((sum4 >> out_shift), 8)); + + /* adjust the pointers and counters */ + rowCnt--; + } + + /* left-over part of the rows */ + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + uint16_t colCnt = dim_vec >> 2; + + pA = vec_buffer; + + while (colCnt) + { + q31_t inV1, inV2, inM11, inM12; + + pB = read_and_pad_reordered(pB, &inM11, &inM12); + + inV1 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV1, inM11, sum); + + inV2 = arm_nn_read_q15x2_ia(&pA); + sum = __SMLAD(inV2, inM12, sum); + + colCnt--; + } + + /* left-over of the vector */ + colCnt = dim_vec & 0x3; + while (colCnt) + { + q15_t inV = *pA++; + q7_t inM = *pB++; + sum += inV * inM; + colCnt--; + } + + *pO++ = (q7_t)(__SSAT((sum >> out_shift), 8)); + + rowCnt--; + } + +#else + /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */ + (void)vec_buffer; + uint16_t rowCnt = num_of_rows >> 2; + const q7_t *pB = pM; + const q7_t *pA; + q7_t *pO = pOut; + const q7_t *pBias = bias; + + while (rowCnt) + { + q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + uint16_t colCnt = dim_vec >> 2; + + pA = pV; + + while (colCnt) + { + q7_t inA1 = *pA++; + q7_t inA3 = *pA++; + q7_t inA2 = *pA++; + q7_t inA4 = *pA++; + + q7_t inB1 = *pB++; + q7_t inB3 = *pB++; + q7_t inB2 = *pB++; + q7_t inB4 = *pB++; + + sum += inA1 * inB1 + inA2 * inB2; + sum2 += inA1 * inB3 + inA2 * inB4; + + inB1 = *pB++; + inB3 = *pB++; + inB2 = *pB++; + inB4 = *pB++; + + sum3 += inA1 * inB1 + inA2 * inB2; + sum4 += inA1 * inB3 + inA2 * inB4; + + inB1 = *pB++; + inB3 = *pB++; + inB2 = *pB++; + inB4 = *pB++; + + sum += inA3 * inB1 + inA4 * inB2; + sum2 += inA3 * inB3 + inA4 * inB4; + + inB1 = *pB++; + inB3 = *pB++; + inB2 = *pB++; + inB4 = *pB++; + + sum3 += inA3 * inB1 + inA4 * inB2; + sum4 += inA3 * inB3 + inA4 * inB4; + + colCnt--; + } + colCnt = dim_vec & 0x3; + while (colCnt) + { + q7_t inA = *pA++; + q7_t inB = *pB++; + sum += inA * inB; + inB = *pB++; + sum2 += inA * inB; + inB = *pB++; + sum3 += inA * inB; + inB = *pB++; + sum4 += inA * inB; + + colCnt--; + } + *pO++ = (q7_t)__SSAT((sum >> out_shift), 8); + *pO++ = (q7_t)__SSAT((sum2 >> out_shift), 8); + *pO++ = (q7_t)__SSAT((sum3 >> out_shift), 8); + *pO++ = (q7_t)__SSAT((sum4 >> out_shift), 8); + + rowCnt--; + } + + rowCnt = num_of_rows & 0x3; + + while (rowCnt) + { + int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift); + + int j; + + pA = pV; + for (j = 0; j < dim_vec; j++) + { + q7_t inA = *pA++; + q7_t inB = *pB++; + ip_out += inA * inB; + } + *pO++ = (q7_t)__SSAT((ip_out >> out_shift), 8); + + rowCnt--; + } + +#endif /* ARM_MATH_DSP */ + + /* Return to ARM_MATH_SUCCESS */ + return (ARM_MATH_SUCCESS); +} + +/** + * @} end of FC group + */ diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_s16.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_s16.c new file mode 100644 index 0000000..46df578 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_s16.c @@ -0,0 +1,97 @@ +/* + * Copyright (C) 2010-2021 Arm Limited or its affiliates. All rights reserved. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_s16 + * Description: Fully connected function compatible with TF Lite. + * + * $Date: 3. August 2021 + * $Revision: V.1.0.0 + * + * Target Processor: Cortex-M and Cortex-A cores + * + * -------------------------------------------------------------------- */ + +#include "arm_nnfunctions.h" +#include "arm_nnsupportfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + +/* + * S16 basic fully-connected and matrix multiplication layer function for TensorFlow Lite + * + * Refer header file for details. + * + */ +arm_status arm_fully_connected_s16(const cmsis_nn_context *ctx, + const cmsis_nn_fc_params *fc_params, + const cmsis_nn_per_tensor_quant_params *quant_params, + const cmsis_nn_dims *input_dims, + const q15_t *input, + const cmsis_nn_dims *filter_dims, + const q7_t *kernel, + const cmsis_nn_dims *bias_dims, + const int64_t *bias, + const cmsis_nn_dims *output_dims, + q15_t *output) +{ + (void)bias_dims; + (void)ctx; + (void)fc_params->filter_offset; + + int32_t batch_cnt = input_dims->n; + + const q31_t reduced_multiplier = REDUCE_MULTIPLIER(quant_params->multiplier); + + while (batch_cnt) + { + arm_nn_vec_mat_mult_t_s16(input, + kernel, + bias, + output, + reduced_multiplier, + quant_params->shift, + filter_dims->n, /* col_dim or accum_depth */ + output_dims->c, /* row_dim or output_depth */ + fc_params->activation.min, + fc_params->activation.max); + input += filter_dims->n; + output += output_dims->c; + batch_cnt--; + } + + return (ARM_MATH_SUCCESS); +} + +int32_t arm_fully_connected_s16_get_buffer_size(const cmsis_nn_dims *filter_dims) +{ + (void)filter_dims; + return 0; +} + +/** + * @} end of FC group + */ diff --git a/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_s8.c b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_s8.c new file mode 100644 index 0000000..9615701 --- /dev/null +++ b/Drivers/CMSIS/NN/Source/FullyConnectedFunctions/arm_fully_connected_s8.c @@ -0,0 +1,99 @@ +/* + * Copyright (C) 2010-2022 Arm Limited or its affiliates. + * + * SPDX-License-Identifier: Apache-2.0 + * + * Licensed under the Apache License, Version 2.0 (the License); you may + * not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an AS IS BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* ---------------------------------------------------------------------- + * Project: CMSIS NN Library + * Title: arm_fully_connected_s8 + * Description: Fully connected function compatible with TF Lite. + * + * $Date: 8 April 2022 + * $Revision: V.3.1.0 + * + * Target Processor: Cortex-M and Cortex-A cores + * + * -------------------------------------------------------------------- */ + +#include "arm_nnfunctions.h" +#include "arm_nnsupportfunctions.h" + +/** + * @ingroup groupNN + */ + +/** + * @addtogroup FC + * @{ + */ + +/* + * S8 basic fully-connected and matrix multiplication layer function for TensorFlow Lite + * + * Refer header file for details. + * + */ + +arm_status arm_fully_connected_s8(const cmsis_nn_context *ctx, + const cmsis_nn_fc_params *fc_params, + const cmsis_nn_per_tensor_quant_params *quant_params, + const cmsis_nn_dims *input_dims, + const q7_t *input, + const cmsis_nn_dims *filter_dims, + const q7_t *kernel, + const cmsis_nn_dims *bias_dims, + const int32_t *bias, + const cmsis_nn_dims *output_dims, + q7_t *output) +{ + (void)bias_dims; + (void)ctx; + (void)fc_params->filter_offset; + + int32_t batch_cnt = input_dims->n; + + while (batch_cnt) + { + arm_nn_vec_mat_mult_t_s8(input, + kernel, + bias, + output, + fc_params->input_offset, + 0, + fc_params->output_offset, + quant_params->multiplier, + quant_params->shift, + filter_dims->n, /* col_dim or accum_depth */ + output_dims->c, /* row_dim or output_depth */ + fc_params->activation.min, + fc_params->activation.max, + 1L); + input += filter_dims->n; + output += output_dims->c; + batch_cnt--; + } + return (ARM_MATH_SUCCESS); +} + +int32_t arm_fully_connected_s8_get_buffer_size(const cmsis_nn_dims *filter_dims) +{ + (void)filter_dims; + return 0; +} + +/** + * @} end of FC group + */ |