summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/NN/Source/SVDFunctions/arm_svdf_s8.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/CMSIS/NN/Source/SVDFunctions/arm_svdf_s8.c')
-rw-r--r--Drivers/CMSIS/NN/Source/SVDFunctions/arm_svdf_s8.c271
1 files changed, 271 insertions, 0 deletions
diff --git a/Drivers/CMSIS/NN/Source/SVDFunctions/arm_svdf_s8.c b/Drivers/CMSIS/NN/Source/SVDFunctions/arm_svdf_s8.c
new file mode 100644
index 0000000..ea092dc
--- /dev/null
+++ b/Drivers/CMSIS/NN/Source/SVDFunctions/arm_svdf_s8.c
@@ -0,0 +1,271 @@
+/*
+ * Copyright (C) 2010-2022 Arm Limited or its affiliates.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project: CMSIS NN Library
+ * Title: arm_svdf_s8.c
+ * Description: S8 basic SVDF layer function
+ *
+ * $Date: 28 April 2022
+ * $Revision: V.3.0.1
+ *
+ * Target Processor: Cortex-M processors
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_nnfunctions.h"
+#include "arm_nnsupportfunctions.h"
+
+/**
+ * @ingroup groupNN
+ */
+
+/**
+ * @addtogroup SVDF
+ * @{
+ */
+
+/*
+ * S8 SVDF layer function for TensorFlow Lite with 8 bit state tensor
+ *
+ * Refer to header file for details.
+ *
+ */
+
+arm_status arm_svdf_s8(const cmsis_nn_context *input_ctx,
+ const cmsis_nn_context *output_ctx,
+ const cmsis_nn_svdf_params *svdf_params,
+ const cmsis_nn_per_tensor_quant_params *input_quant_params,
+ const cmsis_nn_per_tensor_quant_params *output_quant_params,
+ const cmsis_nn_dims *input_dims,
+ const q7_t *input_data,
+ const cmsis_nn_dims *state_dims,
+ q7_t *state_data,
+ const cmsis_nn_dims *weights_feature_dims,
+ const q7_t *weights_feature_data,
+ const cmsis_nn_dims *weights_time_dims,
+ const q7_t *weights_time_data,
+ const cmsis_nn_dims *bias_dims,
+ const q31_t *bias_data,
+ const cmsis_nn_dims *output_dims,
+ q7_t *output_data)
+{
+ (void)bias_dims;
+ (void)state_dims;
+ (void)output_dims;
+
+ const q31_t multiplier_in = input_quant_params->multiplier;
+ const q31_t shift_in = input_quant_params->shift;
+ const q31_t multiplier_out = output_quant_params->multiplier;
+ const q31_t shift_2 = output_quant_params->shift;
+ const int32_t zp_in = svdf_params->input_offset;
+ const int32_t zp_out = svdf_params->output_offset;
+ const int32_t in_activation_min = svdf_params->input_activation.min;
+ const int32_t in_activation_max = svdf_params->input_activation.max;
+ const int32_t out_activation_min = svdf_params->output_activation.min;
+ const int32_t out_activation_max = svdf_params->output_activation.max;
+ const int16_t rank = svdf_params->rank;
+
+ const int32_t input_batches = input_dims->n;
+ const int32_t input_height = input_dims->h;
+ const int32_t feature_batches = weights_feature_dims->n;
+ const int32_t time_batches = weights_time_dims->h;
+ const int32_t unit_count = feature_batches / rank;
+
+ if (input_ctx->buf == NULL)
+ {
+ return ARM_MATH_ARGUMENT_ERROR;
+ }
+ q31_t *buffer_a = (q31_t *)input_ctx->buf;
+
+ if (output_ctx->buf == NULL)
+ {
+ return ARM_MATH_ARGUMENT_ERROR;
+ }
+ q31_t *buffer_b = (q31_t *)output_ctx->buf;
+
+ // Left shift state
+ memmove((int8_t *)state_data,
+ (int8_t *)state_data + 1,
+ (size_t)((input_batches * feature_batches * time_batches - 1) * (int32_t)sizeof(int8_t)));
+
+ // Matrix multiplication input * feature weight
+ for (int i_batch = 0; i_batch < input_batches; i_batch++)
+ {
+ q7_t *res_ptr = state_data + (time_batches * i_batch * feature_batches) + (time_batches - 1);
+ const q7_t *weight = weights_feature_data;
+ const q7_t *input = input_data + i_batch * input_height;
+
+ arm_status res = arm_nn_vec_mat_mult_t_s8(input,
+ weight,
+ NULL,
+ res_ptr,
+ -zp_in,
+ 0,
+ 0,
+ multiplier_in,
+ shift_in,
+ input_height,
+ feature_batches,
+ in_activation_min,
+ in_activation_max,
+ time_batches);
+
+ if (res != ARM_MATH_SUCCESS)
+ {
+ return res;
+ }
+ }
+
+ // Matrix multiplicate time weight * state tensors
+ {
+ q31_t *ptr_a = buffer_a;
+ const int8_t *v2 = state_data;
+ for (int i_batch = 0; i_batch < input_batches; i_batch++)
+ {
+ const int8_t *v1 = weights_time_data;
+
+ for (int i_feature_batch = 0; i_feature_batch < feature_batches; i_feature_batch++)
+ {
+ *ptr_a = 0;
+ int32_t sum = 0;
+#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
+ // Perform matrix multiplication in blocks of four
+ int j = 0;
+ int32_t block_count = time_batches >> 2;
+ for (int i = 0; i < block_count; i++)
+ {
+ j += 4;
+
+ q31_t r1_1, r1_2, r2_1, r2_2;
+ v1 = read_and_pad_reordered(v1, &r1_1, &r1_2);
+ v2 = read_and_pad_reordered(v2, &r2_1, &r2_2);
+ sum = __SMLAD(r1_1, r2_1, sum);
+ sum = __SMLAD(r1_2, r2_2, sum);
+ }
+
+ // Process the remaining data
+ for (; j < time_batches; j++)
+ {
+ sum += *v1 * *v2;
+ v1++;
+ v2++;
+ }
+#else
+ for (int j = 0; j < time_batches; j++)
+ {
+ sum += *v1 * *v2;
+ v1++;
+ v2++;
+ }
+#endif
+
+ *ptr_a = sum;
+ ptr_a++;
+ }
+ }
+ }
+
+ if (bias_data)
+ {
+ if (unit_count == feature_batches)
+ {
+ for (int i = 0; i < input_batches; i++)
+ {
+ q31_t *output_temp = buffer_b + i * feature_batches;
+ const q31_t *ptr_a = buffer_a + i * feature_batches;
+
+ const int32_t *bi = bias_data;
+ for (int j = 0; j < feature_batches; j++)
+ {
+ output_temp[j] = ptr_a[j] + bi[j];
+ }
+ }
+ }
+ else
+ {
+ for (int i_batch = 0; i_batch < input_batches; i_batch++)
+ {
+ q31_t *output_data_temp = buffer_b + i_batch * unit_count;
+ q31_t *ptr_a = buffer_a + i_batch * feature_batches;
+
+ for (int i = 0; i < unit_count; i++)
+ {
+ int32_t sum = bias_data[i];
+ for (int j = 0; j < rank; j++)
+ {
+ sum += *ptr_a;
+ ptr_a++;
+ }
+ output_data_temp[i] = sum;
+ }
+ }
+ }
+ }
+ else
+ {
+ for (int i_batch = 0; i_batch < input_batches; i_batch++)
+ {
+ q31_t *output_data_temp = buffer_b + i_batch * unit_count;
+ q31_t *ptr_a = buffer_a + i_batch * feature_batches;
+
+ for (int i = 0; i < unit_count; i++)
+ {
+ int32_t sum = 0;
+ for (int j = 0; j < rank; j++)
+ {
+ sum += *ptr_a;
+ ptr_a++;
+ }
+ output_data_temp[i] = sum;
+ }
+ }
+ }
+
+#if defined(ARM_MATH_MVEI)
+ int32_t num_elements = input_batches * unit_count;
+ const int32_t loop_count = (num_elements + 3) / 4;
+ for (int i_op = 0; i_op < loop_count; i_op++)
+ {
+ mve_pred16_t p = vctp32q((uint32_t)num_elements);
+ int32x4_t op = vldrwq_z_s32(buffer_b, p);
+ op = arm_requantize_mve(op, multiplier_out, shift_2);
+ op = vaddq_n_s32(op, zp_out);
+ const int32x4_t min_vec = vdupq_n_s32((int8_t)out_activation_min);
+ const int32x4_t max_vec = vdupq_n_s32((int8_t)out_activation_max);
+ op = vmaxq_s32(op, min_vec);
+ op = vminq_s32(op, max_vec);
+ vstrbq_p_s32(output_data, op, p);
+ output_data += 4;
+ buffer_b += 4;
+ num_elements -= 4;
+ }
+#else
+ for (int i = 0; i < input_batches * unit_count; i++)
+ {
+ output_data[i] = (q7_t)CLAMP(
+ arm_nn_requantize(buffer_b[i], multiplier_out, shift_2) + zp_out, out_activation_max, out_activation_min);
+ }
+#endif
+
+ return (ARM_MATH_SUCCESS);
+}
+
+/**
+ * @} end of SVDF group
+ */