summaryrefslogtreecommitdiffstats
path: root/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc.c
diff options
context:
space:
mode:
Diffstat (limited to 'Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc.c')
-rw-r--r--Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc.c2038
1 files changed, 2038 insertions, 0 deletions
diff --git a/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc.c b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc.c
new file mode 100644
index 0000000..aea6b9f
--- /dev/null
+++ b/Drivers/STM32U0xx_HAL_Driver/Src/stm32u0xx_hal_rtc.c
@@ -0,0 +1,2038 @@
+/**
+ ******************************************************************************
+ * @file stm32u0xx_hal_rtc.c
+ * @author GPM Application Team
+ * @brief RTC HAL module driver.
+ * This file provides firmware functions to manage the following
+ * functionalities of the Real-Time Clock (RTC) peripheral:
+ * + Initialization/de-initialization functions
+ * + Calendar (Time and Date) configuration
+ * + Alarms (Alarm A and Alarm B) configuration
+ * + WakeUp Timer configuration
+ * + TimeStamp configuration
+ * + Tampers configuration
+ * + Backup Data Registers configuration
+ * + RTC Tamper and TimeStamp Pins Selection
+ * + Interrupts and flags management
+ *
+ ******************************************************************************
+ * @attention
+ *
+ * Copyright (c) 2023 STMicroelectronics.
+ * All rights reserved.
+ *
+ * This software is licensed under terms that can be found in the LICENSE file
+ * in the root directory of this software component.
+ * If no LICENSE file comes with this software, it is provided AS-IS.
+ *
+ ******************************************************************************
+ @verbatim
+ ===============================================================================
+ ##### RTC Operating Condition #####
+ ===============================================================================
+ [..] The real-time clock (RTC) and the RTC backup registers can be powered
+ from the VBAT voltage when the main VDD supply is powered off.
+ To retain the content of the RTC backup registers and supply the RTC
+ when VDD is turned off, VBAT pin can be connected to an optional
+ standby voltage supplied by a battery or by another source.
+
+ ##### Backup Domain Reset #####
+ ===============================================================================
+ [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
+ to their reset values.
+ A backup domain reset is generated when one of the following events occurs:
+ (#) Software reset, triggered by setting the BDRST bit in the
+ RCC Backup domain control register (RCC_BDCR).
+ (#) VDD or VBAT power on, if both supplies have previously been powered off.
+ (#) Tamper detection event resets all data backup registers.
+
+ ##### Backup Domain Access #####
+ ==================================================================
+ [..] After reset, the backup domain (RTC registers and RTC backup data registers)
+ is protected against possible unwanted write accesses.
+ [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
+ (+) Enable the Power Controller (PWR) APB1 interface clock using the
+ __HAL_RCC_PWR_CLK_ENABLE() function.
+ (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
+ (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
+ (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
+
+ [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
+ (#) Call the function HAL_RCCEx_PeriphCLKConfig with RCC_PERIPHCLK_RTC for
+ PeriphClockSelection and select RTCClockSelection (LSE, LSI or HSEdiv32)
+ (#) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() macro.
+
+ ##### How to use RTC Driver #####
+ ===================================================================
+ [..]
+ (+) Enable the RTC domain access (see description in the section above).
+ (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
+ format using the HAL_RTC_Init() function.
+
+ *** Time and Date configuration ***
+ ===================================
+ [..]
+ (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
+ and HAL_RTC_SetDate() functions.
+ (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.
+
+ *** Alarm configuration ***
+ ===========================
+ [..]
+ (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
+ You can also configure the RTC Alarm with interrupt mode using the
+ HAL_RTC_SetAlarm_IT() function.
+ (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
+
+ ##### RTC and low power modes #####
+ ==================================================================
+ [..] The MCU can be woken up from a low power mode by an RTC alternate
+ function.
+ [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
+ RTC wakeup, RTC tamper event detection and RTC time stamp event detection.
+ These RTC alternate functions can wake up the system from the Stop and
+ Standby low power modes.
+ [..] The system can also wake up from low power modes without depending
+ on an external interrupt (Auto-wakeup mode), by using the RTC alarm
+ or the RTC wakeup events.
+ [..] The RTC provides a programmable time base for waking up from the
+ Stop or Standby mode at regular intervals.
+ Wakeup from STOP and STANDBY modes is possible only when the RTC clock source
+ is LSE or LSI.
+
+ *** Callback registration ***
+ =============================================
+ When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
+ not defined, the callback registration feature is not available and all callbacks
+ are set to the corresponding weak functions. This is the recommended configuration
+ in order to optimize memory/code consumption footprint/performances.
+
+ The compilation define USE_RTC_REGISTER_CALLBACKS when set to 1
+ allows the user to configure dynamically the driver callbacks.
+ Use Function @ref HAL_RTC_RegisterCallback() to register an interrupt callback.
+
+ Function @ref HAL_RTC_RegisterCallback() allows to register following callbacks:
+ (+) AlarmAEventCallback : RTC Alarm A Event callback.
+ (+) AlarmBEventCallback : RTC Alarm B Event callback.
+ (+) TimeStampEventCallback : RTC TimeStamp Event callback.
+ (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
+ (+) SSRUEventCallback : RTC SSRU Event callback.
+ (+) Tamper1EventCallback : RTC Tamper 1 Event callback.
+ (+) Tamper2EventCallback : RTC Tamper 2 Event callback.
+ (+) Tamper3EventCallback : RTC Tamper 3 Event callback.
+ (+) Tamper4EventCallback : RTC Tamper 4 Event callback.
+ (+) Tamper5EventCallback : RTC Tamper 5 Event callback.
+ (+) InternalTamper3EventCallback : RTC InternalTamper 3 Event callback.
+ (+) InternalTamper4EventCallback : RTC InternalTamper 4 Event callback.
+ (+) InternalTamper5EventCallback : RTC InternalTamper 5 Event callback.
+ (+) InternalTamper6EventCallback : RTC InternalTamper 6 Event callback.
+ (+) MspInitCallback : RTC MspInit callback.
+ (+) MspDeInitCallback : RTC MspDeInit callback.
+ This function takes as parameters the HAL peripheral handle, the Callback ID
+ and a pointer to the user callback function.
+
+ Use function @ref HAL_RTC_UnRegisterCallback() to reset a callback to the default
+ weak function.
+ @ref HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
+ and the Callback ID.
+ This function allows to reset following callbacks:
+ (+) AlarmAEventCallback : RTC Alarm A Event callback.
+ (+) AlarmBEventCallback : RTC Alarm B Event callback.
+ (+) TimeStampEventCallback : RTC TimeStamp Event callback.
+ (+) WakeUpTimerEventCallback : RTC WakeUpTimer Event callback.
+ (+) SSRUEventCallback : RTC SSRU Event callback.
+ (+) Tamper1EventCallback : RTC Tamper 1 Event callback.
+ (+) Tamper2EventCallback : RTC Tamper 2 Event callback.
+ (+) Tamper3EventCallback : RTC Tamper 3 Event callback.
+ (+) Tamper4EventCallback : RTC Tamper 4 Event callback.
+ (+) Tamper5EventCallback : RTC Tamper 5 Event callback.
+ (+) InternalTamper3EventCallback : RTC Internal Tamper 3 Event callback.
+ (+) InternalTamper4EventCallback : RTC Internal Tamper 4 Event callback.
+ (+) InternalTamper5EventCallback : RTC Internal Tamper 5 Event callback.
+ (+) InternalTamper6EventCallback : RTC Internal Tamper 6 Event callback.
+ (+) MspInitCallback : RTC MspInit callback.
+ (+) MspDeInitCallback : RTC MspDeInit callback.
+
+ By default, after the @ref HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
+ all callbacks are set to the corresponding weak functions :
+ examples @ref AlarmAEventCallback(), @ref TimeStampEventCallback().
+ Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
+ in the @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit() only when these callbacks are null
+ (not registered beforehand).
+ If not, MspInit or MspDeInit are not null, @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit()
+ keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
+
+ Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
+ Exception done MspInit/MspDeInit that can be registered/unregistered
+ in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
+ thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
+ In that case first register the MspInit/MspDeInit user callbacks
+ using @ref HAL_RTC_RegisterCallback() before calling @ref HAL_RTC_DeInit()
+ or @ref HAL_RTC_Init() function.
+
+ When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
+ not defined, the callback registration feature is not available and all callbacks
+ are set to the corresponding weak functions.
+
+ @endverbatim
+ */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32u0xx_hal.h"
+
+/** @addtogroup STM32U0xx_HAL_Driver
+ * @{
+ */
+
+
+/** @addtogroup RTC
+ * @brief RTC HAL module driver
+ * @{
+ */
+
+#ifdef HAL_RTC_MODULE_ENABLED
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private define ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Exported functions --------------------------------------------------------*/
+
+/** @addtogroup RTC_Exported_Functions
+ * @{
+ */
+
+/** @addtogroup RTC_Exported_Functions_Group1
+ * @brief Initialization and Configuration functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Initialization and de-initialization functions #####
+ ===============================================================================
+ [..] This section provides functions allowing to initialize and configure the
+ RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
+ RTC registers Write protection, enter and exit the RTC initialization mode,
+ RTC registers synchronization check and reference clock detection enable.
+ (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
+ It is split into 2 programmable prescalers to minimize power consumption.
+ (++) A 7-bit asynchronous prescaler and a 15-bit synchronous prescaler.
+ (++) When both prescalers are used, it is recommended to configure the
+ asynchronous prescaler to a high value to minimize power consumption.
+ (#) All RTC registers are Write protected. Writing to the RTC registers
+ is enabled by writing a key into the Write Protection register, RTC_WPR.
+ (#) To configure the RTC Calendar, user application should enter
+ initialization mode. In this mode, the calendar counter is stopped
+ and its value can be updated. When the initialization sequence is
+ complete, the calendar restarts counting after 4 RTCCLK cycles.
+ (#) To read the calendar through the shadow registers after Calendar
+ initialization, calendar update or after wakeup from low power modes
+ the software must first clear the RSF flag. The software must then
+ wait until it is set again before reading the calendar, which means
+ that the calendar registers have been correctly copied into the
+ RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function
+ implements the above software sequence (RSF clear and RSF check).
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Initialize the RTC peripheral
+ * @param hrtc RTC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
+{
+ HAL_StatusTypeDef status = HAL_ERROR;
+
+ /* Check the RTC peripheral state */
+ if (hrtc != NULL)
+ {
+ status = HAL_OK;
+ /* Check the parameters */
+ assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
+ assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
+ assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
+ assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
+ assert_param(IS_RTC_OUTPUT(hrtc->Init.OutPut));
+ assert_param(IS_RTC_OUTPUT_REMAP(hrtc->Init.OutPutRemap));
+ assert_param(IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
+ assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
+ assert_param(IS_RTC_OUTPUT_PULLUP(hrtc->Init.OutPutPullUp));
+ assert_param(IS_RTC_BINARY_MODE(hrtc->Init.BinMode));
+ assert_param(IS_RTC_BINARY_MIX_BCDU(hrtc->Init.BinMixBcdU));
+
+#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
+ if (hrtc->State == HAL_RTC_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ hrtc->Lock = HAL_UNLOCKED;
+
+ hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
+ hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */
+ hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */
+ hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak
+ WakeUpTimerEventCallback */
+ hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback; /* Legacy weak SSRUEventCallback */
+ hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
+ hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */
+ hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */
+ hrtc->Tamper4EventCallback = HAL_RTCEx_Tamper4EventCallback; /* Legacy weak Tamper4EventCallback */
+ hrtc->Tamper5EventCallback = HAL_RTCEx_Tamper5EventCallback; /* Legacy weak Tamper5EventCallback */
+ hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback; /* Legacy weak
+ InternalTamper1EventCallback */
+ hrtc->InternalTamper4EventCallback = HAL_RTCEx_InternalTamper4EventCallback; /* Legacy weak
+ InternalTamper2EventCallback */
+ hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback; /* Legacy weak
+ InternalTamper3EventCallback */
+ hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback; /* Legacy weak
+ InternalTamper5EventCallback */
+
+ if (hrtc->MspInitCallback == NULL)
+ {
+ hrtc->MspInitCallback = HAL_RTC_MspInit;
+ }
+ /* Init the low level hardware */
+ hrtc->MspInitCallback(hrtc);
+
+ if (hrtc->MspDeInitCallback == NULL)
+ {
+ hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
+ }
+ }
+#else
+ if (hrtc->State == HAL_RTC_STATE_RESET)
+ {
+ /* Allocate lock resource and initialize it */
+ hrtc->Lock = HAL_UNLOCKED;
+
+ /* Initialize RTC MSP */
+ HAL_RTC_MspInit(hrtc);
+ }
+#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
+
+ /* Set RTC state */
+ hrtc->State = HAL_RTC_STATE_BUSY;
+
+ /* Disable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
+
+ /* Set Initialization mode */
+ if (RTC_EnterInitMode(hrtc) != HAL_OK)
+ {
+ /* Enable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
+
+ /* Set RTC state */
+ hrtc->State = HAL_RTC_STATE_ERROR;
+
+ status = HAL_ERROR;
+ }
+ else
+ {
+ /* Clear RTC_CR FMT, OSEL and POL Bits */
+ CLEAR_BIT(RTC->CR, (RTC_CR_FMT | RTC_CR_POL | RTC_CR_OSEL | RTC_CR_TAMPOE));
+ /* Set RTC_CR register */
+ SET_BIT(RTC->CR, (hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity));
+
+ /* Configure the RTC PRER */
+ WRITE_REG(RTC->PRER, ((hrtc->Init.SynchPrediv) | (hrtc->Init.AsynchPrediv << RTC_PRER_PREDIV_A_Pos)));
+
+ /* Configure the Binary mode */
+ MODIFY_REG(RTC->ICSR, RTC_ICSR_BIN | RTC_ICSR_BCDU, hrtc->Init.BinMode | hrtc->Init.BinMixBcdU);
+
+ /* Exit Initialization mode */
+ CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
+
+ /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
+ if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
+ {
+ if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
+ {
+ /* Enable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
+
+ hrtc->State = HAL_RTC_STATE_ERROR;
+ status = HAL_ERROR;
+ }
+ }
+
+ if (status == HAL_OK)
+ {
+ MODIFY_REG(RTC->CR, \
+ RTC_CR_TAMPALRM_PU | RTC_CR_TAMPALRM_TYPE | RTC_CR_OUT2EN, \
+ hrtc->Init.OutPutPullUp | hrtc->Init.OutPutType | hrtc->Init.OutPutRemap);
+
+ /* Enable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
+
+ /* Set RTC state */
+ hrtc->State = HAL_RTC_STATE_READY;
+ }
+ }
+ }
+
+ return status;
+}
+
+/**
+ * @brief DeInitialize the RTC peripheral.
+ * @note This function does not reset the RTC Backup Data registers.
+ * @param hrtc RTC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
+{
+ HAL_StatusTypeDef status;
+
+ /* Set RTC state */
+ hrtc->State = HAL_RTC_STATE_BUSY;
+
+ /* Disable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
+
+ status = RTC_EnterInitMode(hrtc);
+
+ /* Set Initialization mode */
+ if (status != HAL_OK)
+ {
+ /* Set RTC state */
+ hrtc->State = HAL_RTC_STATE_ERROR;
+ }
+ else
+ {
+ /* Reset all RTC CR register bits */
+ CLEAR_REG(RTC->CR);
+ WRITE_REG(RTC->DR, (uint32_t)(RTC_DR_WDU_0 | RTC_DR_MU_0 | RTC_DR_DU_0));
+ CLEAR_REG(RTC->TR);
+ WRITE_REG(RTC->WUTR, RTC_WUTR_WUT);
+ WRITE_REG(RTC->PRER, ((uint32_t)(RTC_PRER_PREDIV_A | 0xFFU)));
+ CLEAR_REG(RTC->ALRMAR);
+ CLEAR_REG(RTC->ALRMBR);
+ CLEAR_REG(RTC->SHIFTR);
+ CLEAR_REG(RTC->CALR);
+ CLEAR_REG(RTC->ALRMASSR);
+ CLEAR_REG(RTC->ALRMBSSR);
+ WRITE_REG(RTC->SCR, RTC_SCR_CITSF | RTC_SCR_CTSOVF | RTC_SCR_CTSF | RTC_SCR_CWUTF | RTC_SCR_CALRBF | \
+ RTC_SCR_CALRAF);
+
+ /* Exit initialization mode */
+ CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
+
+ status = HAL_RTC_WaitForSynchro(hrtc);
+
+ if (status != HAL_OK)
+ {
+ hrtc->State = HAL_RTC_STATE_ERROR;
+ }
+ else
+ {
+ /* Reset TAMP registers */
+ CLEAR_REG(TAMP->CR1);
+ CLEAR_REG(TAMP->CR2);
+ CLEAR_REG(TAMP->CR3);
+ CLEAR_REG(TAMP->FLTCR);
+ }
+ }
+
+ /* Enable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
+
+ if (status == HAL_OK)
+ {
+#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
+ if (hrtc->MspDeInitCallback == NULL)
+ {
+ hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
+ }
+
+ /* DeInit the low level hardware: CLOCK, NVIC.*/
+ hrtc->MspDeInitCallback(hrtc);
+
+#else
+ /* De-Initialize RTC MSP */
+ HAL_RTC_MspDeInit(hrtc);
+#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */
+
+ hrtc->State = HAL_RTC_STATE_RESET;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(hrtc);
+
+ return status;
+}
+
+#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
+/**
+ * @brief Register a User RTC Callback
+ * To be used instead of the weak predefined callback
+ * @param hrtc RTC handle
+ * @param CallbackID ID of the callback to be registered
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
+ * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
+ * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID
+ * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID
+ * @arg @ref HAL_RTC_SSRU_EVENT_CB_ID SSRU Event Callback ID
+ * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
+ * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
+ * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
+ * @arg @ref HAL_RTC_TAMPER4_EVENT_CB_ID Tamper 4 Callback ID
+ * @arg @ref HAL_RTC_TAMPER5_EVENT_CB_ID Tamper 5 Callback ID
+ * @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID
+ * @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID
+ * @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID
+ * @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID
+ * @param pCallback pointer to the Callback function
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID,
+ pRTC_CallbackTypeDef pCallback)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ if (pCallback == NULL)
+ {
+ return HAL_ERROR;
+ }
+
+ /* Process locked */
+ __HAL_LOCK(hrtc);
+
+ if (HAL_RTC_STATE_READY == hrtc->State)
+ {
+ switch (CallbackID)
+ {
+ case HAL_RTC_ALARM_A_EVENT_CB_ID :
+ hrtc->AlarmAEventCallback = pCallback;
+ break;
+
+ case HAL_RTC_ALARM_B_EVENT_CB_ID :
+ hrtc->AlarmBEventCallback = pCallback;
+ break;
+
+ case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
+ hrtc->TimeStampEventCallback = pCallback;
+ break;
+
+ case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
+ hrtc->WakeUpTimerEventCallback = pCallback;
+ break;
+
+ case HAL_RTC_SSRU_EVENT_CB_ID :
+ hrtc->SSRUEventCallback = pCallback;
+ break;
+
+ case HAL_RTC_TAMPER1_EVENT_CB_ID :
+ hrtc->Tamper1EventCallback = pCallback;
+ break;
+
+ case HAL_RTC_TAMPER2_EVENT_CB_ID :
+ hrtc->Tamper2EventCallback = pCallback;
+ break;
+
+ case HAL_RTC_TAMPER3_EVENT_CB_ID :
+ hrtc->Tamper3EventCallback = pCallback;
+ break;
+
+ case HAL_RTC_TAMPER4_EVENT_CB_ID :
+ hrtc->Tamper4EventCallback = pCallback;
+ break;
+
+ case HAL_RTC_TAMPER5_EVENT_CB_ID :
+ hrtc->Tamper5EventCallback = pCallback;
+ break;
+
+ case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
+ hrtc->InternalTamper3EventCallback = pCallback;
+ break;
+
+ case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID :
+ hrtc->InternalTamper4EventCallback = pCallback;
+ break;
+
+ case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
+ hrtc->InternalTamper5EventCallback = pCallback;
+ break;
+
+ case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID :
+ hrtc->InternalTamper6EventCallback = pCallback;
+ break;
+
+ case HAL_RTC_MSPINIT_CB_ID :
+ hrtc->MspInitCallback = pCallback;
+ break;
+
+ case HAL_RTC_MSPDEINIT_CB_ID :
+ hrtc->MspDeInitCallback = pCallback;
+ break;
+
+ default :
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (HAL_RTC_STATE_RESET == hrtc->State)
+ {
+ switch (CallbackID)
+ {
+ case HAL_RTC_MSPINIT_CB_ID :
+ hrtc->MspInitCallback = pCallback;
+ break;
+
+ case HAL_RTC_MSPDEINIT_CB_ID :
+ hrtc->MspDeInitCallback = pCallback;
+ break;
+
+ default :
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(hrtc);
+
+ return status;
+}
+
+/**
+ * @brief Unregister an RTC Callback
+ * RTC callback is redirected to the weak predefined callback
+ * @param hrtc RTC handle
+ * @param CallbackID ID of the callback to be unregistered
+ * This parameter can be one of the following values:
+ * This parameter can be one of the following values:
+ * @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID Alarm A Event Callback ID
+ * @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID Alarm B Event Callback ID
+ * @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID TimeStamp Event Callback ID
+ * @arg @ref HAL_RTC_SSRU_EVENT_CB_ID SSRU Callback ID
+ * @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID WakeUp Timer Event Callback ID
+ * @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID Tamper 1 Callback ID
+ * @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID Tamper 2 Callback ID
+ * @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID Tamper 3 Callback ID
+ * @arg @ref HAL_RTC_TAMPER4_EVENT_CB_ID Tamper 4 Callback ID
+ * @arg @ref HAL_RTC_TAMPER5_EVENT_CB_ID Tamper 5 Callback ID
+ * @arg @ref HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID Internal Tamper 3 Callback ID
+ * @arg @ref HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID Internal Tamper 4 Callback ID
+ * @arg @ref HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID Internal Tamper 5 Callback ID
+ * @arg @ref HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID Internal Tamper 6 Callback ID
+ * @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
+ * @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Process locked */
+ __HAL_LOCK(hrtc);
+
+ if (HAL_RTC_STATE_READY == hrtc->State)
+ {
+ switch (CallbackID)
+ {
+ case HAL_RTC_ALARM_A_EVENT_CB_ID :
+ hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback; /* Legacy weak AlarmAEventCallback */
+ break;
+
+ case HAL_RTC_ALARM_B_EVENT_CB_ID :
+ hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback; /* Legacy weak AlarmBEventCallback */
+ break;
+
+ case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
+ hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback; /* Legacy weak TimeStampEventCallback */
+ break;
+
+ case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
+ hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
+ break;
+
+ case HAL_RTC_SSRU_EVENT_CB_ID :
+ hrtc->SSRUEventCallback = HAL_RTCEx_SSRUEventCallback; /* Legacy weak SSRUEventCallback */
+ break;
+
+ case HAL_RTC_TAMPER1_EVENT_CB_ID :
+ hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback; /* Legacy weak Tamper1EventCallback */
+ break;
+
+ case HAL_RTC_TAMPER2_EVENT_CB_ID :
+ hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback; /* Legacy weak Tamper2EventCallback */
+ break;
+
+ case HAL_RTC_TAMPER3_EVENT_CB_ID :
+ hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback; /* Legacy weak Tamper3EventCallback */
+ break;
+
+ case HAL_RTC_TAMPER4_EVENT_CB_ID :
+ hrtc->Tamper4EventCallback = HAL_RTCEx_Tamper4EventCallback; /* Legacy weak Tamper4EventCallback */
+ break;
+
+ case HAL_RTC_TAMPER5_EVENT_CB_ID :
+ hrtc->Tamper5EventCallback = HAL_RTCEx_Tamper5EventCallback; /* Legacy weak Tamper5EventCallback */
+ break;
+
+ case HAL_RTC_INTERNAL_TAMPER3_EVENT_CB_ID :
+ hrtc->InternalTamper3EventCallback = HAL_RTCEx_InternalTamper3EventCallback; /* Legacy weak
+ InternalTamper3EventCallback */
+ break;
+
+ case HAL_RTC_INTERNAL_TAMPER4_EVENT_CB_ID :
+ hrtc->InternalTamper4EventCallback = HAL_RTCEx_InternalTamper4EventCallback; /* Legacy weak
+ InternalTamper3EventCallback */
+ break;
+
+ case HAL_RTC_INTERNAL_TAMPER5_EVENT_CB_ID :
+ hrtc->InternalTamper5EventCallback = HAL_RTCEx_InternalTamper5EventCallback; /* Legacy weak
+ InternalTamper5EventCallback */
+ break;
+
+ case HAL_RTC_INTERNAL_TAMPER6_EVENT_CB_ID :
+ hrtc->InternalTamper6EventCallback = HAL_RTCEx_InternalTamper6EventCallback; /* Legacy weak
+ InternalTamper8EventCallback */
+ break;
+
+ case HAL_RTC_MSPINIT_CB_ID :
+ hrtc->MspInitCallback = HAL_RTC_MspInit;
+ break;
+
+ case HAL_RTC_MSPDEINIT_CB_ID :
+ hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
+ break;
+
+ default :
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else if (HAL_RTC_STATE_RESET == hrtc->State)
+ {
+ switch (CallbackID)
+ {
+ case HAL_RTC_MSPINIT_CB_ID :
+ hrtc->MspInitCallback = HAL_RTC_MspInit;
+ break;
+
+ case HAL_RTC_MSPDEINIT_CB_ID :
+ hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
+ break;
+
+ default :
+ /* Return error status */
+ status = HAL_ERROR;
+ break;
+ }
+ }
+ else
+ {
+ /* Return error status */
+ status = HAL_ERROR;
+ }
+
+ /* Release Lock */
+ __HAL_UNLOCK(hrtc);
+
+ return status;
+}
+#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
+
+/**
+ * @brief Initialize the RTC MSP.
+ * @param hrtc RTC handle
+ * @retval None
+ */
+__weak void HAL_RTC_MspInit(RTC_HandleTypeDef *hrtc)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hrtc);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_RTC_MspInit could be implemented in the user file
+ */
+}
+
+/**
+ * @brief DeInitialize the RTC MSP.
+ * @param hrtc RTC handle
+ * @retval None
+ */
+__weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef *hrtc)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hrtc);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_RTC_MspDeInit could be implemented in the user file
+ */
+}
+
+/**
+ * @}
+ */
+
+/** @addtogroup RTC_Exported_Functions_Group2
+ * @brief RTC Time and Date functions
+ *
+@verbatim
+ ===============================================================================
+ ##### RTC Time and Date functions #####
+ ===============================================================================
+
+ [..] This section provides functions allowing to configure Time and Date features
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Set RTC current time.
+ * @param hrtc RTC handle
+ * @param sTime Pointer to Time structure
+ * if Binary mode is RTC_BINARY_ONLY, this parameter is not used and RTC_SSR will be automatically
+ reset to 0xFFFFFFFF. else sTime->SubSeconds is not used and RTC_SSR will be automatically reset to
+ the A 7-bit async prescaler (RTC_PRER_PREDIV_A)
+ * @note DayLightSaving and StoreOperation interfaces are deprecated.
+ * To manage Daylight Saving Time, please use HAL_RTC_DST_xxx functions.
+ * @param Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
+ * if Binary mode is RTC_BINARY_ONLY, this parameter is not used
+ * else this parameter can be one of the following values
+ * @arg RTC_FORMAT_BIN: Binary format
+ * @arg RTC_FORMAT_BCD: BCD format
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
+{
+ uint32_t tmpreg;
+
+#ifdef USE_FULL_ASSERT
+ /* Check the parameters depending of the Binary mode with 32-bit free-running counter configuration. */
+ if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
+ {
+ /* Check the parameters */
+ assert_param(IS_RTC_FORMAT(Format));
+ }
+#endif /* USE_FULL_ASSERT */
+
+ /* Process Locked */
+ __HAL_LOCK(hrtc);
+
+ hrtc->State = HAL_RTC_STATE_BUSY;
+
+ /* Disable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
+
+ /* Set Initialization mode */
+ if (RTC_EnterInitMode(hrtc) != HAL_OK)
+ {
+ /* Enable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
+
+ /* Set RTC state */
+ hrtc->State = HAL_RTC_STATE_ERROR;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hrtc);
+
+ return HAL_ERROR;
+ }
+ else
+ {
+ /* Check Binary mode ((32-bit free-running counter) */
+ if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
+ {
+ if (Format == RTC_FORMAT_BIN)
+ {
+ if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
+ {
+ assert_param(IS_RTC_HOUR12(sTime->Hours));
+ assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
+ }
+ else
+ {
+ sTime->TimeFormat = 0x00U;
+ assert_param(IS_RTC_HOUR24(sTime->Hours));
+ }
+ assert_param(IS_RTC_MINUTES(sTime->Minutes));
+ assert_param(IS_RTC_SECONDS(sTime->Seconds));
+
+ tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << RTC_TR_HU_Pos) | \
+ ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << RTC_TR_MNU_Pos) | \
+ ((uint32_t)RTC_ByteToBcd2(sTime->Seconds) << RTC_TR_SU_Pos) | \
+ (((uint32_t)sTime->TimeFormat) << RTC_TR_PM_Pos));
+
+ }
+ else
+ {
+ if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
+ {
+ assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
+ assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
+ }
+ else
+ {
+ sTime->TimeFormat = 0x00U;
+ assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
+ }
+ assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
+ assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
+ tmpreg = (((uint32_t)(sTime->Hours) << RTC_TR_HU_Pos) | \
+ ((uint32_t)(sTime->Minutes) << RTC_TR_MNU_Pos) | \
+ ((uint32_t)(sTime->Seconds) << RTC_TR_SU_Pos) | \
+ ((uint32_t)(sTime->TimeFormat) << RTC_TR_PM_Pos));
+ }
+
+ /* Set the RTC_TR register */
+ WRITE_REG(RTC->TR, (tmpreg & RTC_TR_RESERVED_MASK));
+
+ /* Clear the bits to be configured (Deprecated. Use HAL_RTC_DST_xxx functions instead) */
+ CLEAR_BIT(RTC->CR, RTC_CR_BKP);
+
+ /* Configure the RTC_CR register (Deprecated. Use HAL_RTC_DST_xxx functions instead) */
+ SET_BIT(RTC->CR, (sTime->DayLightSaving | sTime->StoreOperation));
+ }
+
+ /* Exit Initialization mode */
+ CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
+
+ /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
+ if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
+ {
+ if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
+ {
+ /* Enable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
+
+ hrtc->State = HAL_RTC_STATE_ERROR;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hrtc);
+
+ return HAL_ERROR;
+ }
+ }
+
+ /* Enable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
+
+ hrtc->State = HAL_RTC_STATE_READY;
+
+ __HAL_UNLOCK(hrtc);
+
+ return HAL_OK;
+ }
+}
+
+/**
+ * @brief Get RTC current time.
+ * @note You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
+ * value in second fraction ratio with time unit following generic formula:
+ * Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
+ * This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
+ * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
+ * in the higher-order calendar shadow registers to ensure consistency between the time and date values.
+ * Reading RTC current time locks the values in calendar shadow registers until Current date is read
+ * to ensure consistency between the time and date values.
+ * @param hrtc RTC handle
+ * @param sTime
+ * if Binary mode is RTC_BINARY_ONLY, sTime->SubSeconds only is updated
+ * else
+ * Pointer to Time structure with Hours, Minutes and Seconds fields returned
+ * with input format (BIN or BCD), also SubSeconds field returning the
+ * RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
+ * factor to be used for second fraction ratio computation.
+ * @param Format Format of sTime->Hours, sTime->Minutes and sTime->Seconds.
+ * if Binary mode is RTC_BINARY_ONLY, this parameter is not used
+ * else this parameter can be one of the following values:
+ * @arg RTC_FORMAT_BIN: Binary format
+ * @arg RTC_FORMAT_BCD: BCD format
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_GetTime(const RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
+{
+ uint32_t tmpreg;
+
+ UNUSED(hrtc);
+ /* Get subseconds structure field from the corresponding register */
+ sTime->SubSeconds = READ_REG(RTC->SSR);
+
+ if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) != RTC_BINARY_ONLY)
+ {
+ /* Check the parameters */
+ assert_param(IS_RTC_FORMAT(Format));
+
+ /* Get SecondFraction structure field from the corresponding register field */
+ sTime->SecondFraction = (uint32_t)(READ_REG(RTC->PRER) & RTC_PRER_PREDIV_S);
+
+ /* Get the TR register */
+ tmpreg = (uint32_t)(READ_REG(RTC->TR) & RTC_TR_RESERVED_MASK);
+
+ /* Fill the structure fields with the read parameters */
+ sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> RTC_TR_HU_Pos);
+ sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >> RTC_TR_MNU_Pos);
+ sTime->Seconds = (uint8_t)((tmpreg & (RTC_TR_ST | RTC_TR_SU)) >> RTC_TR_SU_Pos);
+ sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> RTC_TR_PM_Pos);
+
+ /* Check the input parameters format */
+ if (Format == RTC_FORMAT_BIN)
+ {
+ /* Convert the time structure parameters to Binary format */
+ sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
+ sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
+ sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
+ }
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Set RTC current date.
+ * @param hrtc RTC handle
+ * @param sDate Pointer to date structure
+ * @param Format Format of sDate->Year, sDate->Month and sDate->Weekday.
+ * This parameter can be one of the following values:
+ * @arg RTC_FORMAT_BIN: Binary format
+ * @arg RTC_FORMAT_BCD: BCD format
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
+{
+ uint32_t datetmpreg;
+
+ /* Check the parameters */
+ assert_param(IS_RTC_FORMAT(Format));
+
+ /* Process Locked */
+ __HAL_LOCK(hrtc);
+
+ hrtc->State = HAL_RTC_STATE_BUSY;
+
+ if ((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
+ {
+ sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
+ }
+
+ assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
+
+ if (Format == RTC_FORMAT_BIN)
+ {
+ assert_param(IS_RTC_YEAR(sDate->Year));
+ assert_param(IS_RTC_MONTH(sDate->Month));
+ assert_param(IS_RTC_DATE(sDate->Date));
+
+ datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << RTC_DR_YU_Pos) | \
+ ((uint32_t)RTC_ByteToBcd2(sDate->Month) << RTC_DR_MU_Pos) | \
+ ((uint32_t)RTC_ByteToBcd2(sDate->Date) << RTC_DR_DU_Pos) | \
+ ((uint32_t)sDate->WeekDay << RTC_DR_WDU_Pos));
+ }
+ else
+ {
+ assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
+ assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
+ assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));
+
+ datetmpreg = ((((uint32_t)sDate->Year) << RTC_DR_YU_Pos) | \
+ (((uint32_t)sDate->Month) << RTC_DR_MU_Pos) | \
+ (((uint32_t)sDate->Date) << RTC_DR_DU_Pos) | \
+ (((uint32_t)sDate->WeekDay) << RTC_DR_WDU_Pos));
+ }
+
+ /* Disable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
+
+ /* Set Initialization mode */
+ if (RTC_EnterInitMode(hrtc) != HAL_OK)
+ {
+ /* Enable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
+
+ /* Set RTC state*/
+ hrtc->State = HAL_RTC_STATE_ERROR;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hrtc);
+
+ return HAL_ERROR;
+ }
+ else
+ {
+ /* Set the RTC_DR register */
+ WRITE_REG(RTC->DR, (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK));
+
+ /* Exit Initialization mode */
+ CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
+
+ /* If CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
+ if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
+ {
+ if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
+ {
+ /* Enable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
+
+ hrtc->State = HAL_RTC_STATE_ERROR;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hrtc);
+
+ return HAL_ERROR;
+ }
+ }
+
+ /* Enable the write protection for RTC registers */
+ __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
+
+ hrtc->State = HAL_RTC_STATE_READY ;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hrtc);
+
+ return HAL_OK;
+ }
+}
+
+/**
+ * @brief Get RTC current date.
+ * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
+ * in the higher-order calendar shadow registers to ensure consistency between the time and date values.
+ * Reading RTC current time locks the values in calendar shadow registers until Current date is read.
+ * @param hrtc RTC handle
+ * @param sDate Pointer to Date structure
+ * @param Format Format of sDate->Year, sDate->Month and sDate->Weekday.
+ * This parameter can be one of the following values:
+ * @arg RTC_FORMAT_BIN: Binary format
+ * @arg RTC_FORMAT_BCD: BCD format
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_GetDate(const RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
+{
+ uint32_t datetmpreg;
+
+ UNUSED(hrtc);
+ /* Check the parameters */
+ assert_param(IS_RTC_FORMAT(Format));
+
+ /* Get the DR register */
+ datetmpreg = (uint32_t)(READ_REG(RTC->DR) & RTC_DR_RESERVED_MASK);
+
+ /* Fill the structure fields with the read parameters */
+ sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> RTC_DR_YU_Pos);
+ sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> RTC_DR_MU_Pos);
+ sDate->Date = (uint8_t)((datetmpreg & (RTC_DR_DT | RTC_DR_DU)) >> RTC_DR_DU_Pos);
+ sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> RTC_DR_WDU_Pos);
+
+ /* Check the input parameters format */
+ if (Format == RTC_FORMAT_BIN)
+ {
+ /* Convert the date structure parameters to Binary format */
+ sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
+ sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
+ sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
+ }
+ return HAL_OK;
+}
+
+/**
+ * @brief Daylight Saving Time, add one hour to the calendar in one
+ * single operation without going through the initialization procedure.
+ * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
+ * the configuration information for RTC.
+ * @retval None
+ */
+void HAL_RTC_DST_Add1Hour(const RTC_HandleTypeDef *hrtc)
+{
+ UNUSED(hrtc);
+ __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
+ SET_BIT(RTC->CR, RTC_CR_ADD1H);
+ __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
+}
+
+/**
+ * @brief Daylight Saving Time, subtracts one hour from the calendar in one
+ * single operation without going through the initialization procedure.
+ * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
+ * the configuration information for RTC.
+ * @retval None
+ */
+void HAL_RTC_DST_Sub1Hour(const RTC_HandleTypeDef *hrtc)
+{
+ UNUSED(hrtc);
+ __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
+ SET_BIT(RTC->CR, RTC_CR_SUB1H);
+ __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
+}
+
+/**
+ * @brief Daylight Saving Time, sets the store operation bit.
+ * @note It can be used by the software in order to memorize the DST status.
+ * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
+ * the configuration information for RTC.
+ * @retval None
+ */
+void HAL_RTC_DST_SetStoreOperation(const RTC_HandleTypeDef *hrtc)
+{
+ UNUSED(hrtc);
+ SET_BIT(RTC->CR, RTC_CR_BKP);
+}
+
+/**
+ * @brief Daylight Saving Time, clears the store operation bit.
+ * @param hrtc pointer to a RTC_HandleTypeDef structure that contains
+ * the configuration information for RTC.
+ * @retval None
+ */
+void HAL_RTC_DST_ClearStoreOperation(const RTC_HandleTypeDef *hrtc)
+{
+ UNUSED(hrtc);
+ CLEAR_BIT(RTC->CR, RTC_CR_BKP);
+}
+
+/**
+ * @brief Daylight Saving Time, reads the store operation bit.
+ * @param hrtc RTC handle
+ * @retval operation see RTC_StoreOperation_Definitions
+ */
+uint32_t HAL_RTC_DST_ReadStoreOperation(const RTC_HandleTypeDef *hrtc)
+{
+ UNUSED(hrtc);
+ return READ_BIT(RTC->CR, RTC_CR_BKP);
+}
+
+/**
+ * @}
+ */
+
+/** @addtogroup RTC_Exported_Functions_Group3
+ * @brief RTC Alarm functions
+ *
+@verbatim
+ ===============================================================================
+ ##### RTC Alarm functions #####
+ ===============================================================================
+
+ [..] This section provides functions allowing to configure Alarm feature
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Set the specified RTC Alarm.
+ * @param hrtc RTC handle
+ * @param sAlarm Pointer to Alarm structure
+ * if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
+ * sAlarm->AlarmTime.SubSeconds
+ * sAlarm->AlarmSubSecondMask
+ * sAlarm->BinaryAutoClr
+ * @param Format of the entered parameters.
+ * if Binary mode is RTC_BINARY_ONLY, this parameter is not used
+ * else this parameter can be one of the following values
+ * @arg RTC_FORMAT_BIN: Binary format
+ * @arg RTC_FORMAT_BCD: BCD format
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
+{
+ uint32_t tmpreg = 0;
+ uint32_t binaryMode;
+
+ /* Process Locked */
+ __HAL_LOCK(hrtc);
+
+ hrtc->State = HAL_RTC_STATE_BUSY;
+
+#ifdef USE_FULL_ASSERT
+ /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */
+ if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
+ {
+ assert_param(IS_RTC_FORMAT(Format));
+ assert_param(IS_RTC_ALARM(sAlarm->Alarm));
+ assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
+ assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
+ assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
+ assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
+ }
+ else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
+ {
+ assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
+ assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
+ }
+ else /* RTC_BINARY_MIX */
+ {
+ assert_param(IS_RTC_FORMAT(Format));
+ assert_param(IS_RTC_ALARM(sAlarm->Alarm));
+ assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
+ assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
+ /* In Binary Mix Mode, the RTC can not generate an alarm on a match involving all calendar items +
+ the upper SSR bits */
+ assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <= \
+ (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
+ }
+#endif /* USE_FULL_ASSERT */
+
+ /* Get Binary mode (32-bit free-running counter configuration) */
+ binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
+
+ if (binaryMode != RTC_BINARY_ONLY)
+ {
+ if (Format == RTC_FORMAT_BIN)
+ {
+ if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
+ {
+ assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
+ assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
+ }
+ else
+ {
+ sAlarm->AlarmTime.TimeFormat = 0x00U;
+ assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
+ }
+ assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
+ assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
+
+ if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
+ {
+ assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
+ }
+ else
+ {
+ assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
+ }
+ tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
+ ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
+ ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
+ ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
+ ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
+ ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
+ ((uint32_t)sAlarm->AlarmMask));
+ }
+ else /* format BCD */
+ {
+ if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
+ {
+ assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
+ assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
+ }
+ else
+ {
+ sAlarm->AlarmTime.TimeFormat = 0x00U;
+ assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
+ }
+
+ assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
+ assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
+
+#ifdef USE_FULL_ASSERT
+ if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
+ {
+ assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
+ }
+ else
+ {
+ assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
+ }
+
+#endif /* USE_FULL_ASSERT */
+ tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
+ ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
+ ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
+ ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
+ ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
+ ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
+ ((uint32_t)sAlarm->AlarmMask));
+ }
+ }
+
+ /* Configure the Alarm register */
+ if (sAlarm->Alarm == RTC_ALARM_A)
+ {
+ /* Disable the Alarm A interrupt */
+ /* In case of interrupt mode is used, the interrupt source must disabled */
+ CLEAR_BIT(RTC->CR, (RTC_CR_ALRAE | RTC_CR_ALRAIE));
+ /* Clear flag alarm A */
+ WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
+
+ if (binaryMode == RTC_BINARY_ONLY)
+ {
+ WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
+ }
+ else
+ {
+ WRITE_REG(RTC->ALRMAR, tmpreg);
+ WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
+ }
+
+ WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
+
+ if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
+ {
+ /* Configure the Alarm A output clear */
+ SET_BIT(RTC->CR, RTC_CR_ALRAFCLR);
+ }
+ else
+ {
+ /* Disable the Alarm A output clear */
+ CLEAR_BIT(RTC->CR, RTC_CR_ALRAFCLR);
+ }
+ /* Configure the Alarm state: Enable Alarm */
+ SET_BIT(RTC->CR, RTC_CR_ALRAE);
+ }
+ else
+ {
+ /* Disable the Alarm B interrupt */
+ /* In case of interrupt mode is used, the interrupt source must disabled */
+ CLEAR_BIT(RTC->CR, (RTC_CR_ALRBE | RTC_CR_ALRBIE));
+ /* Clear flag alarm B */
+ WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
+
+ if (binaryMode == RTC_BINARY_ONLY)
+ {
+ WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
+ }
+ else
+ {
+ WRITE_REG(RTC->ALRMBR, tmpreg);
+ WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask);
+ }
+
+ WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
+ if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
+ {
+ /* Configure the Alarm B output clear */
+ SET_BIT(RTC->CR, RTC_CR_ALRBFCLR);
+ }
+ else
+ {
+ /* Disable the Alarm B output clear */
+ CLEAR_BIT(RTC->CR, RTC_CR_ALRBFCLR);
+ }
+ /* Configure the Alarm state: Enable Alarm */
+ SET_BIT(RTC->CR, RTC_CR_ALRBE);
+ }
+
+ /* Change RTC state */
+ hrtc->State = HAL_RTC_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hrtc);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Set the specified RTC Alarm with Interrupt.
+ * @param hrtc RTC handle
+ * @param sAlarm Pointer to Alarm structure
+ * if Binary mode is RTC_BINARY_ONLY, 3 fields only are used
+ * sAlarm->AlarmTime.SubSeconds
+ * sAlarm->AlarmSubSecondMask
+ * sAlarm->BinaryAutoClr
+ * @param Format Specifies the format of the entered parameters.
+ * if Binary mode is RTC_BINARY_ONLY, this parameter is not used
+ * else this parameter can be one of the following values
+ * @arg RTC_FORMAT_BIN: Binary format
+ * @arg RTC_FORMAT_BCD: BCD format
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
+{
+ uint32_t tmpreg = 0;
+ uint32_t binaryMode;
+
+ /* Process Locked */
+ __HAL_LOCK(hrtc);
+
+ hrtc->State = HAL_RTC_STATE_BUSY;
+
+#ifdef USE_FULL_ASSERT
+ /* Check the parameters depending of the Binary mode (32-bit free-running counter configuration). */
+ if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_NONE)
+ {
+ assert_param(IS_RTC_FORMAT(Format));
+ assert_param(IS_RTC_ALARM(sAlarm->Alarm));
+ assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
+ assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
+ assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
+ assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
+ }
+ else if (READ_BIT(RTC->ICSR, RTC_ICSR_BIN) == RTC_BINARY_ONLY)
+ {
+ assert_param(IS_RTC_ALARM_SUB_SECOND_BINARY_MASK(sAlarm->AlarmSubSecondMask));
+ assert_param(IS_RTC_ALARMSUBSECONDBIN_AUTOCLR(sAlarm->BinaryAutoClr));
+ }
+ else /* RTC_BINARY_MIX */
+ {
+ assert_param(IS_RTC_FORMAT(Format));
+ assert_param(IS_RTC_ALARM(sAlarm->Alarm));
+ assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
+ assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
+ /* In Binary Mix Mode, the RTC can not generate an alarm on a match involving all calendar items +
+ the upper SSR bits */
+ assert_param((sAlarm->AlarmSubSecondMask >> RTC_ALRMASSR_MASKSS_Pos) <= \
+ (8U + (READ_BIT(RTC->ICSR, RTC_ICSR_BCDU) >> RTC_ICSR_BCDU_Pos)));
+ }
+#endif /* USE_FULL_ASSERT */
+
+ /* Get Binary mode (32-bit free-running counter configuration) */
+ binaryMode = READ_BIT(RTC->ICSR, RTC_ICSR_BIN);
+
+ if (binaryMode != RTC_BINARY_ONLY)
+ {
+ if (Format == RTC_FORMAT_BIN)
+ {
+ if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
+ {
+ assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
+ assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
+ }
+ else
+ {
+ sAlarm->AlarmTime.TimeFormat = 0x00U;
+ assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
+ }
+ assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
+ assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
+
+ if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
+ {
+ assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
+ }
+ else
+ {
+ assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
+ }
+ tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
+ ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
+ ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
+ ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
+ ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
+ ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
+ ((uint32_t)sAlarm->AlarmMask));
+ }
+ else /* Format BCD */
+ {
+ if (READ_BIT(RTC->CR, RTC_CR_FMT) != 0U)
+ {
+ assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
+ assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
+ }
+ else
+ {
+ sAlarm->AlarmTime.TimeFormat = 0x00U;
+ assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
+ }
+
+ assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
+ assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
+
+#ifdef USE_FULL_ASSERT
+ if (sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
+ {
+ assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
+ }
+ else
+ {
+ assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
+ }
+
+#endif /* USE_FULL_ASSERT */
+ tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << RTC_ALRMAR_HU_Pos) | \
+ ((uint32_t)(sAlarm->AlarmTime.Minutes) << RTC_ALRMAR_MNU_Pos) | \
+ ((uint32_t)(sAlarm->AlarmTime.Seconds) << RTC_ALRMAR_SU_Pos) | \
+ ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << RTC_ALRMAR_PM_Pos) | \
+ ((uint32_t)(sAlarm->AlarmDateWeekDay) << RTC_ALRMAR_DU_Pos) | \
+ ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
+ ((uint32_t)sAlarm->AlarmMask));
+
+ }
+ }
+
+ /* Configure the Alarm registers */
+ if (sAlarm->Alarm == RTC_ALARM_A)
+ {
+ /* Disable the Alarm A interrupt */
+ CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
+ /* Clear flag alarm A */
+ WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
+
+ if (binaryMode == RTC_BINARY_ONLY)
+ {
+ RTC->ALRMASSR = sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr;
+ }
+ else
+ {
+ WRITE_REG(RTC->ALRMAR, tmpreg);
+ WRITE_REG(RTC->ALRMASSR, sAlarm->AlarmSubSecondMask);
+ }
+
+ WRITE_REG(RTC->ALRABINR, sAlarm->AlarmTime.SubSeconds);
+
+ if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
+ {
+ /* Configure the Alarm A output clear */
+ SET_BIT(RTC->CR, RTC_CR_ALRAFCLR);
+ }
+ else
+ {
+ /* Disable the Alarm A output clear*/
+ CLEAR_BIT(RTC->CR, RTC_CR_ALRAFCLR);
+ }
+
+ /* Configure the Alarm interrupt */
+ SET_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
+ }
+ else
+ {
+ /* Disable the Alarm B interrupt */
+ CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
+ /* Clear flag alarm B */
+ WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
+
+ if (binaryMode == RTC_BINARY_ONLY)
+ {
+ WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask | sAlarm->BinaryAutoClr);
+ }
+ else
+ {
+ WRITE_REG(RTC->ALRMBR, tmpreg);
+ WRITE_REG(RTC->ALRMBSSR, sAlarm->AlarmSubSecondMask);
+ }
+
+ WRITE_REG(RTC->ALRBBINR, sAlarm->AlarmTime.SubSeconds);
+
+ if (sAlarm->FlagAutoClr == ALARM_FLAG_AUTOCLR_ENABLE)
+ {
+ /* Configure the Alarm B Output clear */
+ SET_BIT(RTC->CR, RTC_CR_ALRBFCLR);
+
+ }
+ else
+ {
+ /* Disable the Alarm B Output clear */
+ CLEAR_BIT(RTC->CR, RTC_CR_ALRBFCLR);
+ }
+
+ /* Configure the Alarm interrupt */
+ SET_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
+ }
+
+ hrtc->State = HAL_RTC_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hrtc);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Deactivate the specified RTC Alarm.
+ * @param hrtc RTC handle
+ * @param Alarm Specifies the Alarm.
+ * This parameter can be one of the following values:
+ * @arg RTC_ALARM_A: AlarmA
+ * @arg RTC_ALARM_B: AlarmB
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
+{
+ /* Check the parameters */
+ assert_param(IS_RTC_ALARM(Alarm));
+
+ /* Process Locked */
+ __HAL_LOCK(hrtc);
+
+ hrtc->State = HAL_RTC_STATE_BUSY;
+
+ /* In case of interrupt mode is used, the interrupt source must disabled */
+ if (Alarm == RTC_ALARM_A)
+ {
+ CLEAR_BIT(RTC->CR, RTC_CR_ALRAE | RTC_CR_ALRAIE);
+ CLEAR_BIT(RTC->ALRMASSR, RTC_ALRMASSR_SSCLR);
+ }
+ else
+ {
+ CLEAR_BIT(RTC->CR, RTC_CR_ALRBE | RTC_CR_ALRBIE);
+ CLEAR_BIT(RTC->ALRMBSSR, RTC_ALRMBSSR_SSCLR);
+ }
+
+ hrtc->State = HAL_RTC_STATE_READY;
+
+ /* Process Unlocked */
+ __HAL_UNLOCK(hrtc);
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Get the RTC Alarm value and masks.
+ * @param hrtc RTC handle
+ * @param sAlarm Pointer to Date structure
+ * @param Alarm Specifies the Alarm.
+ * This parameter can be one of the following values:
+ * @arg RTC_ALARM_A: AlarmA
+ * @arg RTC_ALARM_B: AlarmB
+ * @param Format Specifies the format of the entered parameters.
+ * This parameter can be one of the following values:
+ * @arg RTC_FORMAT_BIN: Binary format
+ * @arg RTC_FORMAT_BCD: BCD format
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_GetAlarm(const RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm,
+ uint32_t Format)
+{
+ uint32_t tmpreg;
+ uint32_t subsecondtmpreg;
+
+ UNUSED(hrtc);
+ /* Check the parameters */
+ assert_param(IS_RTC_FORMAT(Format));
+ assert_param(IS_RTC_ALARM(Alarm));
+
+ if (Alarm == RTC_ALARM_A)
+ {
+ /* AlarmA */
+ sAlarm->Alarm = RTC_ALARM_A;
+
+ tmpreg = READ_REG(RTC->ALRMAR);
+ subsecondtmpreg = (uint32_t)(READ_REG(RTC->ALRMASSR) & RTC_ALRMASSR_SS);
+
+ /* Fill the structure with the read parameters */
+ sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> RTC_ALRMAR_HU_Pos);
+ sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> RTC_ALRMAR_MNU_Pos);
+ sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU)) >> RTC_ALRMAR_SU_Pos);
+ sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMAR_PM) >> RTC_ALRMAR_PM_Pos);
+ sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
+ sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> RTC_ALRMAR_DU_Pos);
+ sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
+ sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
+ }
+ else
+ {
+ sAlarm->Alarm = RTC_ALARM_B;
+
+ tmpreg = READ_REG(RTC->ALRMBR);
+ subsecondtmpreg = (uint32_t)(READ_REG(RTC->ALRMBSSR) & RTC_ALRMBSSR_SS);
+
+ /* Fill the structure with the read parameters */
+ sAlarm->AlarmTime.Hours = (uint8_t)((tmpreg & (RTC_ALRMBR_HT | RTC_ALRMBR_HU)) >> RTC_ALRMBR_HU_Pos);
+ sAlarm->AlarmTime.Minutes = (uint8_t)((tmpreg & (RTC_ALRMBR_MNT | RTC_ALRMBR_MNU)) >> RTC_ALRMBR_MNU_Pos);
+ sAlarm->AlarmTime.Seconds = (uint8_t)((tmpreg & (RTC_ALRMBR_ST | RTC_ALRMBR_SU)) >> RTC_ALRMBR_SU_Pos);
+ sAlarm->AlarmTime.TimeFormat = (uint8_t)((tmpreg & RTC_ALRMBR_PM) >> RTC_ALRMBR_PM_Pos);
+ sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
+ sAlarm->AlarmDateWeekDay = (uint8_t)((tmpreg & (RTC_ALRMBR_DT | RTC_ALRMBR_DU)) >> RTC_ALRMBR_DU_Pos);
+ sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMBR_WDSEL);
+ sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
+ }
+
+ if (Format == RTC_FORMAT_BIN)
+ {
+ sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
+ sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
+ sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
+ sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Handle Alarm interrupt request.
+ * @param hrtc RTC handle
+ * @retval None
+ */
+void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef *hrtc)
+{
+ /* Get interrupt status */
+ uint32_t tmp = READ_REG(RTC->MISR);
+
+ if ((tmp & RTC_MISR_ALRAMF) != 0U)
+ {
+ /* Clear the AlarmA interrupt pending bit */
+ WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
+
+#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
+ /* Call Compare Match registered Callback */
+ hrtc->AlarmAEventCallback(hrtc);
+#else
+ HAL_RTC_AlarmAEventCallback(hrtc);
+#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
+ }
+
+ if ((tmp & RTC_MISR_ALRBMF) != 0U)
+ {
+ /* Clear the AlarmB interrupt pending bit */
+ WRITE_REG(RTC->SCR, RTC_SCR_CALRBF);
+
+#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
+ /* Call Compare Match registered Callback */
+ hrtc->AlarmBEventCallback(hrtc);
+#else
+ HAL_RTCEx_AlarmBEventCallback(hrtc);
+#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */
+ }
+
+ /* Change RTC state */
+ hrtc->State = HAL_RTC_STATE_READY;
+}
+
+/**
+ * @brief Alarm A callback.
+ * @param hrtc RTC handle
+ * @retval None
+ */
+__weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
+{
+ /* Prevent unused argument(s) compilation warning */
+ UNUSED(hrtc);
+
+ /* NOTE : This function should not be modified, when the callback is needed,
+ the HAL_RTC_AlarmAEventCallback could be implemented in the user file
+ */
+}
+
+/**
+ * @brief Handle AlarmA Polling request.
+ * @param hrtc RTC handle
+ * @param Timeout Timeout duration
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
+{
+ uint32_t tickstart = HAL_GetTick();
+
+ while (READ_BIT(RTC->SR, RTC_SR_ALRAF) == 0U)
+ {
+ if (Timeout != HAL_MAX_DELAY)
+ {
+ if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
+ {
+ hrtc->State = HAL_RTC_STATE_TIMEOUT;
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ /* Clear the Alarm interrupt pending bit */
+ WRITE_REG(RTC->SCR, RTC_SCR_CALRAF);
+
+ /* Change RTC state */
+ hrtc->State = HAL_RTC_STATE_READY;
+
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @addtogroup RTC_Exported_Functions_Group4
+ * @brief Peripheral Control functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral Control functions #####
+ ===============================================================================
+ [..]
+ This subsection provides functions allowing to
+ (+) Wait for RTC Time and Date Synchronization
+
+@endverbatim
+ * @{
+ */
+
+/**
+ * @brief Wait until the RTC Time and Date registers (RTC_TR and RTC_DR) are
+ * synchronized with RTC APB clock.
+ * @note The RTC Resynchronization mode is write protected, use the
+ * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
+ * @note To read the calendar through the shadow registers after Calendar
+ * initialization, calendar update or after wakeup from low power modes
+ * the software must first clear the RSF flag.
+ * The software must then wait until it is set again before reading
+ * the calendar, which means that the calendar registers have been
+ * correctly copied into the RTC_TR and RTC_DR shadow registers.
+ * @param hrtc RTC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef HAL_RTC_WaitForSynchro(const RTC_HandleTypeDef *hrtc)
+{
+ uint32_t tickstart;
+
+ UNUSED(hrtc);
+ /* Clear RSF flag */
+ CLEAR_BIT(RTC->ICSR, RTC_ICSR_RSF);
+
+ tickstart = HAL_GetTick();
+
+ /* Wait the registers to be synchronised */
+ while (READ_BIT(RTC->ICSR, RTC_ICSR_RSF) == 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @}
+ */
+
+/** @addtogroup RTC_Exported_Functions_Group5
+ * @brief Peripheral State functions
+ *
+@verbatim
+ ===============================================================================
+ ##### Peripheral State functions #####
+ ===============================================================================
+ [..]
+ This subsection provides functions allowing to
+ (+) Get RTC state
+
+@endverbatim
+ * @{
+ */
+/**
+ * @brief Return the RTC handle state.
+ * @param hrtc RTC handle
+ * @retval HAL state
+ */
+HAL_RTCStateTypeDef HAL_RTC_GetState(const RTC_HandleTypeDef *hrtc)
+{
+ /* Return RTC handle state */
+ return hrtc->State;
+}
+
+/**
+ * @}
+ */
+/**
+ * @}
+ */
+
+/** @addtogroup RTC_Private_Functions
+ * @{
+ */
+/**
+ * @brief Enter the RTC Initialization mode.
+ * @note The RTC Initialization mode is write protected, use the
+ * __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
+ * @param hrtc RTC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef RTC_EnterInitMode(const RTC_HandleTypeDef *hrtc)
+{
+ uint32_t tickstart;
+
+ UNUSED(hrtc);
+ /* Check if the Initialization mode is set */
+ if (READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U)
+ {
+ /* Set the Initialization mode */
+ SET_BIT(RTC->ICSR, RTC_ICSR_INIT);
+
+ tickstart = HAL_GetTick();
+ /* Wait till RTC is in INIT state and if Time out is reached exit */
+ while (READ_BIT(RTC->ICSR, RTC_ICSR_INITF) == 0U)
+ {
+ if ((HAL_GetTick() - tickstart) > RTC_TIMEOUT_VALUE)
+ {
+ return HAL_TIMEOUT;
+ }
+ }
+ }
+
+ return HAL_OK;
+}
+
+/**
+ * @brief Exit the RTC Initialization mode.
+ * @param hrtc RTC handle
+ * @retval HAL status
+ */
+HAL_StatusTypeDef RTC_ExitInitMode(RTC_HandleTypeDef *hrtc)
+{
+ HAL_StatusTypeDef status = HAL_OK;
+
+ /* Exit Initialization mode */
+ CLEAR_BIT(RTC->ICSR, RTC_ICSR_INIT);
+
+ /* If CR_BYPSHAD bit = 0, wait for synchro */
+ if (READ_BIT(RTC->CR, RTC_CR_BYPSHAD) == 0U)
+ {
+ if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
+ {
+ /* Change RTC state */
+ hrtc->State = HAL_RTC_STATE_TIMEOUT;
+ status = HAL_TIMEOUT;
+ }
+ }
+ else /* WA 2.9.6 Calendar initialization may fail in case of consecutive INIT mode entry. */
+ {
+ /* Clear BYPSHAD bit */
+ CLEAR_BIT(RTC->CR, RTC_CR_BYPSHAD);
+ if (HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
+ {
+ /* Change RTC state */
+ hrtc->State = HAL_RTC_STATE_TIMEOUT;
+ status = HAL_TIMEOUT;
+ }
+ /* Restore BYPSHAD bit */
+ SET_BIT(RTC->CR, RTC_CR_BYPSHAD);
+ }
+ return status;
+}
+/**
+ * @brief Convert a 2 digit decimal to BCD format.
+ * @param Value Byte to be converted
+ * @retval Converted byte
+ */
+uint8_t RTC_ByteToBcd2(uint8_t Value)
+{
+ uint32_t bcdhigh = 0U;
+ uint8_t tmp_Value = Value;
+
+ while (tmp_Value >= 10U)
+ {
+ bcdhigh++;
+ tmp_Value -= 10U;
+ }
+
+ return ((uint8_t)(bcdhigh << 4U) | tmp_Value);
+}
+
+/**
+ * @brief Convert from 2 digit BCD to Binary.
+ * @param Value BCD value to be converted
+ * @retval Converted word
+ */
+uint8_t RTC_Bcd2ToByte(uint8_t Value)
+{
+ uint32_t tmp;
+ tmp = (((uint32_t)Value & 0xF0U) >> 4) * 10U;
+ return (uint8_t)(tmp + ((uint32_t)Value & 0x0FU));
+}
+
+/**
+ * @}
+ */
+
+#endif /* HAL_RTC_MODULE_ENABLED */
+/**
+ * @}
+ */
+
+/**
+ * @}
+ */