You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

534 lines
16 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
#include <math.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
typedef uint32_t sample_t;
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define SAMPLE_COUNT (1024) // (Stereo!) Sample count per half-transfer
#define SAMPLES_PER_REPORT (48000) // Report every second given our 48 kHz rate
#define MIC_OFFSET_DB ( 0.f) // Linear offset
#define MIC_SENSITIVITY (-26.f) // dBFS value expected at MIC_REF_DB
#define MIC_REF_DB ( 94.f) // dB where sensitivity is specified
#define MIC_BITS (18u)
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;
DMA_HandleTypeDef hdma_spi1_rx;
DMA_HandleTypeDef hdma_spi1_tx;
UART_HandleTypeDef huart2;
/* USER CODE BEGIN PV */
static const uint8_t I2S_Frame_Buffer[8] = {
0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF
};
static uint8_t I2S_Receive_Buffer[SAMPLE_COUNT * 2 * sizeof(sample_t)];
float ln10;
float MIC_REF_AMPL;
static float DB_Sum_Squares = 0.f;
static int DB_Count = 0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART2_UART_Init(void);
/* USER CODE BEGIN PFP */
static HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA_Mixed(
SPI_HandleTypeDef *hspi,
const uint8_t *pTxData,
uint8_t *pRxData,
uint16_t TxSize,
uint16_t RxSize);
__RAM_FUNC
static void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma);
__RAM_FUNC
static void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int __io_putchar(int ch)
{
uint8_t buf = ch;
HAL_UART_Transmit(&huart2, &buf, sizeof(buf), HAL_TIMEOUT);
return buf;
}
__RAM_FUNC
void fvar_init(void)
{
ln10 = logf(10.f);
MIC_REF_AMPL = (float)((1u << (MIC_BITS - 2)) - 1) *
powf(10.f, MIC_SENSITIVITY / 20.f);
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
fvar_init();
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_SPI1_Init();
MX_USART2_UART_Init();
/* USER CODE BEGIN 2 */
HAL_SPI_TransmitReceive_DMA_Mixed(&hspi1,
I2S_Frame_Buffer,
I2S_Receive_Buffer,
sizeof(I2S_Frame_Buffer),
sizeof(I2S_Receive_Buffer));
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
HAL_PWR_EnableSleepOnExit();
__enable_irq();
while (1)
{
__WFI();
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE2) != HAL_OK)
{
Error_Handler();
}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = 0;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 12;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV8;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief SPI1 Initialization Function
* @param None
* @retval None
*/
static void MX_SPI1_Init(void)
{
/* USER CODE BEGIN SPI1_Init 0 */
/* USER CODE END SPI1_Init 0 */
/* USER CODE BEGIN SPI1_Init 1 */
/* USER CODE END SPI1_Init 1 */
/* SPI1 parameter configuration*/
hspi1.Instance = SPI1;
hspi1.Init.Mode = SPI_MODE_MASTER;
hspi1.Init.Direction = SPI_DIRECTION_2LINES;
hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
hspi1.Init.CRCPolynomial = 7;
hspi1.Init.CRCLength = SPI_CRC_LENGTH_DATASIZE;
hspi1.Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
if (HAL_SPI_Init(&hspi1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN SPI1_Init 2 */
/* USER CODE END SPI1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel2_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
/* DMA1_Channel3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pins : PC13 PC14 PC15 PC0
PC1 PC2 PC3 PC4
PC5 PC6 PC7 PC8
PC9 PC10 PC11 PC12 */
GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_0
|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4
|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8
|GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pins : PH0 PH1 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOH, &GPIO_InitStruct);
/*Configure GPIO pins : PA0 PA1 PA4 PA5
PA6 PA7 PA8 PA9
PA10 PA11 PA12 PA15 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_4|GPIO_PIN_5
|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8|GPIO_PIN_9
|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/*Configure GPIO pins : PB0 PB1 PB2 PB10
PB11 PB12 PB13 PB14
PB15 PB6 PB7 PB8
PB9 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_10
|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
|GPIO_PIN_15|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8
|GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pin : PD2 */
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA_Mixed(
SPI_HandleTypeDef *hspi,
const uint8_t *pTxData,
uint8_t *pRxData,
uint16_t TxSize,
uint16_t RxSize)
{
HAL_StatusTypeDef errorcode = HAL_OK;
assert_param(IS_SPI_DMA_HANDLE(hspi->hdmarx));
assert_param(IS_SPI_DMA_HANDLE(hspi->hdmatx));
assert_param(IS_SPI_DIRECTION_2LINES(hspi->Init.Direction));
__HAL_LOCK(hspi);
hspi->State = HAL_SPI_STATE_BUSY_TX_RX;
hspi->ErrorCode = HAL_SPI_ERROR_NONE;
hspi->pTxBuffPtr = (uint8_t *)pTxData;
hspi->TxXferSize = TxSize;
hspi->TxXferCount = TxSize;
hspi->pRxBuffPtr = (uint8_t *)pRxData;
hspi->RxXferSize = RxSize;
hspi->RxXferCount = RxSize;
hspi->RxISR = NULL;
hspi->TxISR = NULL;
/* Reset the threshold bit */
CLEAR_BIT(hspi->Instance->CR2, SPI_CR2_LDMATX | SPI_CR2_LDMARX);
/* Set RX Fifo threshold according the reception data length: 8bit */
SET_BIT(hspi->Instance->CR2, SPI_RXFIFO_THRESHOLD);
hspi->hdmarx->XferHalfCpltCallback = SPI_DMAHalfTransmitReceiveCplt;
hspi->hdmarx->XferCpltCallback = SPI_DMATransmitReceiveCplt;
hspi->hdmarx->XferErrorCallback = NULL;
hspi->hdmarx->XferAbortCallback = NULL;
hspi->hdmatx->XferHalfCpltCallback = NULL;
hspi->hdmatx->XferCpltCallback = NULL;
hspi->hdmatx->XferErrorCallback = NULL;
hspi->hdmatx->XferAbortCallback = NULL;
/* Enable the Rx DMA Stream/Channel */
errorcode = HAL_DMA_Start_IT(hspi->hdmarx, (uint32_t)&hspi->Instance->DR,
(uint32_t)hspi->pRxBuffPtr, hspi->RxXferCount);
if (HAL_OK != errorcode) {
/* Update SPI error code */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
goto error;
}
/* Enable Rx DMA Request */
SET_BIT(hspi->Instance->CR2, SPI_CR2_RXDMAEN);
/* Enable the Tx DMA Stream/Channel */
errorcode = HAL_DMA_Start_IT(hspi->hdmatx, (uint32_t)hspi->pTxBuffPtr,
(uint32_t)&hspi->Instance->DR, hspi->TxXferCount);
if (HAL_OK != errorcode) {
/* Update SPI error code */
SET_BIT(hspi->ErrorCode, HAL_SPI_ERROR_DMA);
goto error;
}
/* Check if the SPI is already enabled */
if ((hspi->Instance->CR1 & SPI_CR1_SPE) != SPI_CR1_SPE) {
__HAL_SPI_ENABLE(hspi);
}
/* Enable the SPI Error Interrupt Bit */
__HAL_SPI_ENABLE_IT(hspi, (SPI_IT_ERR));
/* Enable Tx DMA Request */
SET_BIT(hspi->Instance->CR2, SPI_CR2_TXDMAEN);
error :
__HAL_UNLOCK(hspi);
return errorcode;
}
__RAM_FUNC
static inline void process(float in_div4)
{
static float z[4] = {0.f, 0.f, 0.f, 0.f};
float out1 = in_div4 + z[0];
z[0] = out1 * 1.062f + z[1];
z[1] = out1 * -0.14f - in_div4;
float out2 = out1 + z[2];
z[2] = out1;
float out3 = out2 + z[3];
z[3] = out3 * 0.985f - out2;
DB_Sum_Squares += out3 * out3;
}
__RAM_FUNC
static void processSampleBlock(sample_t *sample)
{
//IDLE_GPIO_Port->ODR ^= IDLE_Pin;
for (int i = 0; i < SAMPLE_COUNT; i += 2) {
// 18-bit sample comes in as big-endian with right padding.
// Use REVSH to extract 18-bit reading divided by four for process().
int samp;
asm("revsh %0, %1" : "=l" (samp) : "l" (sample[i]));
process(samp);
}
DB_Count += SAMPLE_COUNT / 2;
if (DB_Count >= SAMPLES_PER_REPORT) {
float rms = sqrtf(DB_Sum_Squares / DB_Count);
float db = 20.f * log10f(rms / MIC_REF_AMPL) + MIC_OFFSET_DB + MIC_REF_DB;
DB_Sum_Squares = 0.f;
DB_Count = 0;
printf("%d dB\r\n", (int)db);
}
//IDLE_GPIO_Port->ODR ^= IDLE_Pin;
}
void SPI_DMATransmitReceiveCplt(DMA_HandleTypeDef *hdma)
{
processSampleBlock((sample_t *)I2S_Receive_Buffer + SAMPLE_COUNT);
}
void SPI_DMAHalfTransmitReceiveCplt(DMA_HandleTypeDef *hdma)
{
processSampleBlock((sample_t *)I2S_Receive_Buffer);
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
__disable_irq();
printf("Unhandled error, halting!\r\n");
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
printf("Wrong parameters value: file %s on line %d\r\n", file, line);
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */