You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5620 lines
188 KiB
C
5620 lines
188 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32u0xx_hal_cryp.c
|
|
* @author MCD Application Team
|
|
* @brief CRYP HAL module driver.
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of the Cryptography (CRYP) peripheral:
|
|
* + Initialization, de-initialization, set config and get config functions
|
|
* + AES processing functions
|
|
* + DMA callback functions
|
|
* + CRYP IRQ handler management
|
|
* + Peripheral State functions
|
|
*
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2023 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
*
|
|
******************************************************************************
|
|
@verbatim
|
|
==============================================================================
|
|
##### How to use this driver #####
|
|
==============================================================================
|
|
[..]
|
|
The CRYP HAL driver can be used in CRYP or TinyAES peripheral as follows:
|
|
|
|
(#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
|
|
(##) Enable the CRYP interface clock using __HAL_RCC_CRYP_CLK_ENABLE()
|
|
or __HAL_RCC_AES_CLK_ENABLE for TinyAES peripheral
|
|
(##) In case of using interrupts (e.g. HAL_CRYP_Encrypt_IT())
|
|
(+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
|
|
(+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
|
|
(+++) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
|
|
(##) In case of using DMA to control data transfer (e.g. HAL_CRYP_Encrypt_DMA())
|
|
(+++) Enable the DMAx interface clock using __RCC_DMAx_CLK_ENABLE()
|
|
(+++) Configure and enable two DMA streams one for managing data transfer from
|
|
memory to peripheral (input stream) and another stream for managing data
|
|
transfer from peripheral to memory (output stream)
|
|
(+++) Associate the initialized DMA handle to the CRYP DMA handle
|
|
using __HAL_LINKDMA()
|
|
(+++) Configure the priority and enable the NVIC for the transfer complete
|
|
interrupt on the two DMA channels. The output channel should have higher
|
|
priority than the input channel HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ().
|
|
|
|
(#)Initialize the CRYP according to the specified parameters :
|
|
(##) The data type: 1-bit, 8-bit, 16-bit or 32-bit.
|
|
(##) The key size: 128, 192 or 256.
|
|
(##) The AlgoMode DES/ TDES Algorithm ECB/CBC or AES Algorithm ECB/CBC/CTR/GCM or CCM.
|
|
(##) The initialization vector (counter). It is not used in ECB mode.
|
|
(##) The key buffer used for encryption/decryption.
|
|
(+++) In some specific configurations, the key is written by the application
|
|
code out of the HAL scope. In that case, user can still resort to the
|
|
HAL APIs as usual but must make sure that pKey pointer is set to NULL.
|
|
(##) The DataWidthUnit field. It specifies whether the data length (or the payload length for authentication
|
|
algorithms) is in words or bytes.
|
|
(##) The Header used only in AES GCM and CCM Algorithm for authentication.
|
|
(##) The HeaderSize providing the size of the header buffer in words or bytes,
|
|
depending upon HeaderWidthUnit field.
|
|
(##) The HeaderWidthUnit field. It specifies whether the header length (for authentication algorithms)
|
|
is in words or bytes.
|
|
(##) The B0 block is the first authentication block used only in AES CCM mode.
|
|
(##) The KeyIVConfigSkip used to process several messages in a row (please see more information below).
|
|
|
|
(#)Three processing (encryption/decryption) functions are available:
|
|
(##) Polling mode: encryption and decryption APIs are blocking functions
|
|
i.e. they process the data and wait till the processing is finished,
|
|
e.g. HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
|
|
(##) Interrupt mode: encryption and decryption APIs are not blocking functions
|
|
i.e. they process the data under interrupt,
|
|
e.g. HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
|
|
(##) DMA mode: encryption and decryption APIs are not blocking functions
|
|
i.e. the data transfer is ensured by DMA,
|
|
e.g. HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
|
|
|
|
(#)When the processing function is called at first time after HAL_CRYP_Init()
|
|
the CRYP peripheral is configured and processes the buffer in input.
|
|
At second call, no need to Initialize the CRYP, user have to get current configuration via
|
|
HAL_CRYP_GetConfig() API, then only HAL_CRYP_SetConfig() is requested to set
|
|
new parameters, finally user can start encryption/decryption.
|
|
|
|
(#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
|
|
|
|
(#)To process a single message with consecutive calls to HAL_CRYP_Encrypt() or HAL_CRYP_Decrypt()
|
|
without having to configure again the Key or the Initialization Vector between each API call,
|
|
the field KeyIVConfigSkip of the initialization structure must be set to CRYP_KEYIVCONFIG_ONCE.
|
|
Same is true for consecutive calls of HAL_CRYP_Encrypt_IT(), HAL_CRYP_Decrypt_IT(), HAL_CRYP_Encrypt_DMA()
|
|
or HAL_CRYP_Decrypt_DMA().
|
|
|
|
[..]
|
|
The cryptographic processor supports following standards:
|
|
(#) The data encryption standard (DES) and Triple-DES (TDES) supported only by CRYP1 peripheral:
|
|
(##)64-bit data block processing
|
|
(##) chaining modes supported :
|
|
(+++) Electronic Code Book(ECB)
|
|
(+++) Cipher Block Chaining (CBC)
|
|
(##) keys length supported :64-bit, 128-bit and 192-bit.
|
|
(#) The advanced encryption standard (AES) supported by CRYP1 & TinyAES peripheral:
|
|
(##)128-bit data block processing
|
|
(##) chaining modes supported :
|
|
(+++) Electronic Code Book(ECB)
|
|
(+++) Cipher Block Chaining (CBC)
|
|
(+++) Counter mode (CTR)
|
|
(+++) Galois/counter mode (GCM/GMAC)
|
|
(+++) Counter with Cipher Block Chaining-Message(CCM)
|
|
(##) keys length Supported :
|
|
(+++) for CRYP1 peripheral: 128-bit, 192-bit and 256-bit.
|
|
(+++) for TinyAES peripheral: 128-bit and 256-bit
|
|
|
|
[..]
|
|
(@) Specific care must be taken to format the key and the Initialization Vector IV!
|
|
|
|
[..] If the key is defined as a 128-bit long array key[127..0] = {b127 ... b0} where
|
|
b127 is the MSB and b0 the LSB, the key must be stored in MCU memory
|
|
(+) as a sequence of words where the MSB word comes first (occupies the
|
|
lowest memory address)
|
|
(++) address n+0 : 0b b127 .. b120 b119 .. b112 b111 .. b104 b103 .. b96
|
|
(++) address n+4 : 0b b95 .. b88 b87 .. b80 b79 .. b72 b71 .. b64
|
|
(++) address n+8 : 0b b63 .. b56 b55 .. b48 b47 .. b40 b39 .. b32
|
|
(++) address n+C : 0b b31 .. b24 b23 .. b16 b15 .. b8 b7 .. b0
|
|
[..] Hereafter, another illustration when considering a 128-bit long key made of 16 bytes {B15..B0}.
|
|
The 4 32-bit words that make the key must be stored as follows in MCU memory:
|
|
(+) address n+0 : 0x B15 B14 B13 B12
|
|
(+) address n+4 : 0x B11 B10 B9 B8
|
|
(+) address n+8 : 0x B7 B6 B5 B4
|
|
(+) address n+C : 0x B3 B2 B1 B0
|
|
[..] which leads to the expected setting
|
|
(+) AES_KEYR3 = 0x B15 B14 B13 B12
|
|
(+) AES_KEYR2 = 0x B11 B10 B9 B8
|
|
(+) AES_KEYR1 = 0x B7 B6 B5 B4
|
|
(+) AES_KEYR0 = 0x B3 B2 B1 B0
|
|
|
|
[..] Same format must be applied for a 256-bit long key made of 32 bytes {B31..B0}.
|
|
The 8 32-bit words that make the key must be stored as follows in MCU memory:
|
|
(+) address n+00 : 0x B31 B30 B29 B28
|
|
(+) address n+04 : 0x B27 B26 B25 B24
|
|
(+) address n+08 : 0x B23 B22 B21 B20
|
|
(+) address n+0C : 0x B19 B18 B17 B16
|
|
(+) address n+10 : 0x B15 B14 B13 B12
|
|
(+) address n+14 : 0x B11 B10 B9 B8
|
|
(+) address n+18 : 0x B7 B6 B5 B4
|
|
(+) address n+1C : 0x B3 B2 B1 B0
|
|
[..] which leads to the expected setting
|
|
(+) AES_KEYR7 = 0x B31 B30 B29 B28
|
|
(+) AES_KEYR6 = 0x B27 B26 B25 B24
|
|
(+) AES_KEYR5 = 0x B23 B22 B21 B20
|
|
(+) AES_KEYR4 = 0x B19 B18 B17 B16
|
|
(+) AES_KEYR3 = 0x B15 B14 B13 B12
|
|
(+) AES_KEYR2 = 0x B11 B10 B9 B8
|
|
(+) AES_KEYR1 = 0x B7 B6 B5 B4
|
|
(+) AES_KEYR0 = 0x B3 B2 B1 B0
|
|
|
|
[..] Initialization Vector IV (4 32-bit words) format must follow the same as
|
|
that of a 128-bit long key.
|
|
|
|
[..] Note that key and IV registers are not sensitive to swap mode selection.
|
|
|
|
[..] This section describes the AES Galois/counter mode (GCM) supported by both CRYP1 and TinyAES peripherals:
|
|
(#) Algorithm supported :
|
|
(##) Galois/counter mode (GCM)
|
|
(##) Galois message authentication code (GMAC) :is exactly the same as
|
|
GCM algorithm composed only by an header.
|
|
(#) Four phases are performed in GCM :
|
|
(##) Init phase: peripheral prepares the GCM hash subkey (H) and do the IV processing
|
|
(##) Header phase: peripheral processes the Additional Authenticated Data (AAD), with hash
|
|
computation only.
|
|
(##) Payload phase: peripheral processes the plaintext (P) with hash computation + keystream
|
|
encryption + data XORing. It works in a similar way for ciphertext (C).
|
|
(##) Final phase: peripheral generates the authenticated tag (T) using the last block of data.
|
|
(#) structure of message construction in GCM is defined as below :
|
|
(##) 16 bytes Initial Counter Block (ICB)composed of IV and counter
|
|
(##) The authenticated header A (also knows as Additional Authentication Data AAD)
|
|
this part of the message is only authenticated, not encrypted.
|
|
(##) The plaintext message P is both authenticated and encrypted as ciphertext.
|
|
GCM standard specifies that ciphertext has same bit length as the plaintext.
|
|
(##) The last block is composed of the length of A (on 64 bits) and the length of ciphertext
|
|
(on 64 bits)
|
|
|
|
[..] A more detailed description of the GCM message structure is available below.
|
|
|
|
[..] This section describe The AES Counter with Cipher Block Chaining-Message
|
|
Authentication Code (CCM) supported by both CRYP1 and TinyAES peripheral:
|
|
(#) Specific parameters for CCM :
|
|
|
|
(##) B0 block : follows NIST Special Publication 800-38C,
|
|
(##) B1 block (header)
|
|
(##) CTRx block : control blocks
|
|
|
|
[..] A detailed description of the CCM message structure is available below.
|
|
|
|
(#) Four phases are performed in CCM for CRYP1 peripheral:
|
|
(##) Init phase: peripheral prepares the GCM hash subkey (H) and do the IV processing
|
|
(##) Header phase: peripheral processes the Additional Authenticated Data (AAD), with hash
|
|
computation only.
|
|
(##) Payload phase: peripheral processes the plaintext (P) with hash computation + keystream
|
|
encryption + data XORing. It works in a similar way for ciphertext (C).
|
|
(##) Final phase: peripheral generates the authenticated tag (T) using the last block of data.
|
|
(#) CCM in TinyAES peripheral:
|
|
(##) To perform message payload encryption or decryption AES is configured in CTR mode.
|
|
(##) For authentication two phases are performed :
|
|
- Header phase: peripheral processes the Additional Authenticated Data (AAD) first, then the cleartext message
|
|
only cleartext payload (not the ciphertext payload) is used and no output.
|
|
(##) Final phase: peripheral generates the authenticated tag (T) using the last block of data.
|
|
|
|
*** Callback registration ***
|
|
=============================
|
|
|
|
[..]
|
|
The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS when set to 1
|
|
allows the user to configure dynamically the driver callbacks.
|
|
Use Functions HAL_CRYP_RegisterCallback() or HAL_CRYP_RegisterXXXCallback()
|
|
to register an interrupt callback.
|
|
|
|
[..]
|
|
Function HAL_CRYP_RegisterCallback() allows to register following callbacks:
|
|
(+) InCpltCallback : Input FIFO transfer completed callback.
|
|
(+) OutCpltCallback : Output FIFO transfer completed callback.
|
|
(+) ErrorCallback : callback for error detection.
|
|
(+) MspInitCallback : CRYP MspInit.
|
|
(+) MspDeInitCallback : CRYP MspDeInit.
|
|
This function takes as parameters the HAL peripheral handle, the Callback ID
|
|
and a pointer to the user callback function.
|
|
|
|
[..]
|
|
Use function HAL_CRYP_UnRegisterCallback() to reset a callback to the default
|
|
weak function.
|
|
HAL_CRYP_UnRegisterCallback() takes as parameters the HAL peripheral handle,
|
|
and the Callback ID.
|
|
This function allows to reset following callbacks:
|
|
(+) InCpltCallback : Input FIFO transfer completed callback.
|
|
(+) OutCpltCallback : Output FIFO transfer completed callback.
|
|
(+) ErrorCallback : callback for error detection.
|
|
(+) MspInitCallback : CRYP MspInit.
|
|
(+) MspDeInitCallback : CRYP MspDeInit.
|
|
|
|
[..]
|
|
By default, after the HAL_CRYP_Init() and when the state is HAL_CRYP_STATE_RESET
|
|
all callbacks are set to the corresponding weak functions :
|
|
examples HAL_CRYP_InCpltCallback() , HAL_CRYP_OutCpltCallback().
|
|
Exception done for MspInit and MspDeInit functions that are
|
|
reset to the legacy weak function in the HAL_CRYP_Init()/ HAL_CRYP_DeInit() only when
|
|
these callbacks are null (not registered beforehand).
|
|
if not, MspInit or MspDeInit are not null, the HAL_CRYP_Init() / HAL_CRYP_DeInit()
|
|
keep and use the user MspInit/MspDeInit functions (registered beforehand)
|
|
|
|
[..]
|
|
Callbacks can be registered/unregistered in HAL_CRYP_STATE_READY state only.
|
|
Exception done MspInit/MspDeInit callbacks that can be registered/unregistered
|
|
in HAL_CRYP_STATE_READY or HAL_CRYP_STATE_RESET state,
|
|
thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
|
|
In that case first register the MspInit/MspDeInit user callbacks
|
|
using HAL_CRYP_RegisterCallback() before calling HAL_CRYP_DeInit()
|
|
or HAL_CRYP_Init() function.
|
|
|
|
[..]
|
|
When The compilation define USE_HAL_CRYP_REGISTER_CALLBACKS is set to 0 or
|
|
not defined, the callback registration feature is not available and all callbacks
|
|
are set to the corresponding weak functions.
|
|
|
|
|
|
*** Suspend/Resume feature ***
|
|
==============================
|
|
|
|
[..]
|
|
The compilation define USE_HAL_CRYP_SUSPEND_RESUME when set to 1
|
|
allows the user to resort to the suspend/resume feature.
|
|
A low priority block processing can be suspended to process a high priority block
|
|
instead. When the high priority block processing is over, the low priority block
|
|
processing can be resumed, restarting from the point where it was suspended. This
|
|
feature is applicable only in non-blocking interrupt mode.
|
|
|
|
[..] User must resort to HAL_CRYP_Suspend() to suspend the low priority block
|
|
processing. This API manages the hardware block processing suspension and saves all the
|
|
internal data that will be needed to restart later on. Upon HAL_CRYP_Suspend() completion,
|
|
the user can launch the processing of any other block (high priority block processing).
|
|
|
|
[..] When the high priority block processing is over, user must invoke HAL_CRYP_Resume()
|
|
to resume the low priority block processing. Ciphering (or deciphering) restarts from
|
|
the suspension point and ends as usual.
|
|
|
|
[..] HAL_CRYP_Suspend() reports an error when the suspension request is sent too late
|
|
(i.e when the low priority block processing is about to end). There is no use to
|
|
suspend the tag generation processing for authentication algorithms.
|
|
|
|
[..]
|
|
(@) If the key is written out of HAL scope (case pKey pointer set to NULL by the user),
|
|
the block processing suspension/resumption mechanism is NOT applicable.
|
|
|
|
[..]
|
|
(@) If the Key and Initialization Vector are configured only once and configuration is
|
|
skipped for consecutive processings (case KeyIVConfigSkip set to CRYP_KEYIVCONFIG_ONCE),
|
|
the block processing suspension/resumption mechanism is NOT applicable.
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32u0xx_hal.h"
|
|
|
|
/** @addtogroup STM32U0xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @addtogroup CRYP
|
|
* @{
|
|
*/
|
|
|
|
#if defined(AES)
|
|
#ifdef HAL_CRYP_MODULE_ENABLED
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/** @addtogroup CRYP_Private_Defines
|
|
* @{
|
|
*/
|
|
#define CRYP_TIMEOUT_KEYPREPARATION 82U /* The latency of key preparation operation is 82 clock cycles.*/
|
|
#define CRYP_TIMEOUT_GCMCCMINITPHASE 299U /* The latency of GCM/CCM init phase to prepare hash subkey
|
|
is 299 clock cycles.*/
|
|
#define CRYP_TIMEOUT_GCMCCMHEADERPHASE 290U /* The latency of GCM/CCM header phase is 290 clock cycles.*/
|
|
|
|
#define CRYP_PHASE_READY 0x00000001U /*!< CRYP peripheral is ready for initialization. */
|
|
#define CRYP_PHASE_PROCESS 0x00000002U /*!< CRYP peripheral is in processing phase */
|
|
#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
|
|
#define CRYP_PHASE_HEADER_SUSPENDED 0x00000004U /*!< GCM/GMAC/CCM header phase is suspended */
|
|
#define CRYP_PHASE_PAYLOAD_SUSPENDED 0x00000005U /*!< GCM/CCM payload phase is suspended */
|
|
#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
|
|
#define CRYP_PHASE_HEADER_DMA_FEED 0x00000006U /*!< GCM/GMAC/CCM header is fed to the peripheral in DMA mode */
|
|
|
|
#define CRYP_OPERATINGMODE_ENCRYPT 0x00000000U /*!< Encryption mode(Mode 1) */
|
|
#define CRYP_OPERATINGMODE_KEYDERIVATION AES_CR_MODE_0 /*!< Key derivation mode only used when performing ECB and CBC decryptions (Mode 2) */
|
|
#define CRYP_OPERATINGMODE_DECRYPT AES_CR_MODE_1 /*!< Decryption (Mode 3) */
|
|
#define CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT AES_CR_MODE /*!< Key derivation and decryption only used when performing ECB and CBC decryptions (Mode 4) */
|
|
#define CRYP_PHASE_INIT 0x00000000U /*!< GCM/GMAC (or CCM) init phase */
|
|
#define CRYP_PHASE_HEADER AES_CR_GCMPH_0 /*!< GCM/GMAC or CCM header phase */
|
|
#define CRYP_PHASE_PAYLOAD AES_CR_GCMPH_1 /*!< GCM(/CCM) payload phase */
|
|
#define CRYP_PHASE_FINAL AES_CR_GCMPH /*!< GCM/GMAC or CCM final phase */
|
|
|
|
/* CTR1 information to use in CCM algorithm */
|
|
#define CRYP_CCM_CTR1_0 0x07FFFFFFU
|
|
#define CRYP_CCM_CTR1_1 0xFFFFFF00U
|
|
#define CRYP_CCM_CTR1_2 0x00000001U
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/** @addtogroup CRYP_Private_Macros
|
|
* @{
|
|
*/
|
|
|
|
#define CRYP_SET_PHASE(__HANDLE__, __PHASE__) MODIFY_REG((__HANDLE__)->Instance->CR,\
|
|
AES_CR_GCMPH, (uint32_t)(__PHASE__))
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private struct -------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
/** @addtogroup CRYP_Private_Functions
|
|
* @{
|
|
*/
|
|
|
|
static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
|
|
static HAL_StatusTypeDef CRYP_SetHeaderDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size);
|
|
static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
|
|
static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
|
|
static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
|
|
static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize);
|
|
static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp);
|
|
static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_GCMCCM_SetPayloadPhase_DMA(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp);
|
|
static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcrypt, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp);
|
|
static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
static void CRYP_ClearCCFlagWhenHigh(CRYP_HandleTypeDef *hcryp, uint32_t Timeout);
|
|
#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
|
|
static void CRYP_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output);
|
|
static void CRYP_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input);
|
|
static void CRYP_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output);
|
|
static void CRYP_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input);
|
|
static void CRYP_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output, uint32_t KeySize);
|
|
static void CRYP_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint32_t KeySize);
|
|
static void CRYP_PhaseProcessingResume(CRYP_HandleTypeDef *hcryp);
|
|
#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
|
|
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Exported functions ---------------------------------------------------------*/
|
|
|
|
/** @addtogroup CRYP_Exported_Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions
|
|
* @brief Initialization and Configuration functions.
|
|
*
|
|
@verbatim
|
|
========================================================================================
|
|
##### Initialization, de-initialization and Set and Get configuration functions #####
|
|
========================================================================================
|
|
[..] This section provides functions allowing to:
|
|
(+) Initialize the CRYP
|
|
(+) DeInitialize the CRYP
|
|
(+) Initialize the CRYP MSP
|
|
(+) DeInitialize the CRYP MSP
|
|
(+) configure CRYP (HAL_CRYP_SetConfig) with the specified parameters in the CRYP_ConfigTypeDef
|
|
Parameters which are configured in This section are :
|
|
(++) Key size
|
|
(++) Data Type : 32,16, 8 or 1bit
|
|
(++) AlgoMode :
|
|
(+++) for CRYP1 peripheral :
|
|
ECB and CBC in DES/TDES Standard
|
|
ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard.
|
|
(+++) for TinyAES2 peripheral, only ECB,CBC,CTR,GCM/GMAC and CCM in AES Standard are supported.
|
|
(+) Get CRYP configuration (HAL_CRYP_GetConfig) from the specified parameters in the CRYP_HandleTypeDef
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Initializes the CRYP according to the specified
|
|
* parameters in the CRYP_ConfigTypeDef and creates the associated handle.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Check the CRYP handle allocation */
|
|
if (hcryp == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check parameters */
|
|
assert_param(IS_CRYP_KEYSIZE(hcryp->Init.KeySize));
|
|
assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType));
|
|
assert_param(IS_CRYP_ALGORITHM(hcryp->Init.Algorithm));
|
|
assert_param(IS_CRYP_INIT(hcryp->Init.KeyIVConfigSkip));
|
|
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
if (hcryp->State == HAL_CRYP_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
hcryp->Lock = HAL_UNLOCKED;
|
|
|
|
hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
|
|
hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
|
|
hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
|
|
|
|
if (hcryp->MspInitCallback == NULL)
|
|
{
|
|
hcryp->MspInitCallback = HAL_CRYP_MspInit; /* Legacy weak MspInit */
|
|
}
|
|
|
|
/* Init the low level hardware */
|
|
hcryp->MspInitCallback(hcryp);
|
|
}
|
|
#else
|
|
if (hcryp->State == HAL_CRYP_STATE_RESET)
|
|
{
|
|
/* Allocate lock resource and initialize it */
|
|
hcryp->Lock = HAL_UNLOCKED;
|
|
|
|
/* Init the low level hardware */
|
|
HAL_CRYP_MspInit(hcryp);
|
|
}
|
|
#endif /* (USE_HAL_CRYP_REGISTER_CALLBACKS) */
|
|
|
|
/* Set the key size (This bit field is do not care in the DES or TDES modes), data type and Algorithm */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD,
|
|
hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
|
|
|
|
/* Reset Error Code field */
|
|
hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
|
|
|
|
/* Reset peripheral Key and IV configuration flag */
|
|
hcryp->KeyIVConfig = 0U;
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Set the default CRYP phase */
|
|
hcryp->Phase = CRYP_PHASE_READY;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief De-Initializes the CRYP peripheral.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Check the CRYP handle allocation */
|
|
if (hcryp == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Set the default CRYP phase */
|
|
hcryp->Phase = CRYP_PHASE_READY;
|
|
|
|
/* Reset CrypInCount and CrypOutCount */
|
|
hcryp->CrypInCount = 0;
|
|
hcryp->CrypOutCount = 0;
|
|
hcryp->CrypHeaderCount = 0;
|
|
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
|
|
if (hcryp->MspDeInitCallback == NULL)
|
|
{
|
|
hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit; /* Legacy weak MspDeInit */
|
|
}
|
|
/* DeInit the low level hardware */
|
|
hcryp->MspDeInitCallback(hcryp);
|
|
|
|
#else
|
|
|
|
/* DeInit the low level hardware: CLOCK, NVIC.*/
|
|
HAL_CRYP_MspDeInit(hcryp);
|
|
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_RESET;
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Configure the CRYP according to the specified
|
|
* parameters in the CRYP_ConfigTypeDef
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure
|
|
* @param pConf pointer to a CRYP_ConfigTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_SetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf)
|
|
{
|
|
/* Check the CRYP handle allocation */
|
|
if ((hcryp == NULL) || (pConf == NULL))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/* Check parameters */
|
|
assert_param(IS_CRYP_KEYSIZE(pConf->KeySize));
|
|
assert_param(IS_CRYP_DATATYPE(pConf->DataType));
|
|
assert_param(IS_CRYP_ALGORITHM(pConf->Algorithm));
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Set CRYP parameters */
|
|
hcryp->Init.DataType = pConf->DataType;
|
|
hcryp->Init.pKey = pConf->pKey;
|
|
hcryp->Init.Algorithm = pConf->Algorithm;
|
|
hcryp->Init.KeySize = pConf->KeySize;
|
|
hcryp->Init.pInitVect = pConf->pInitVect;
|
|
hcryp->Init.Header = pConf->Header;
|
|
hcryp->Init.HeaderSize = pConf->HeaderSize;
|
|
hcryp->Init.B0 = pConf->B0;
|
|
hcryp->Init.DataWidthUnit = pConf->DataWidthUnit;
|
|
hcryp->Init.HeaderWidthUnit = pConf->HeaderWidthUnit;
|
|
hcryp->Init.KeyIVConfigSkip = pConf->KeyIVConfigSkip;
|
|
|
|
/* Set the key size (This bit field is do not care in the DES or TDES modes), data type and operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE | AES_CR_KEYSIZE | AES_CR_CHMOD,
|
|
hcryp->Init.DataType | hcryp->Init.KeySize | hcryp->Init.Algorithm);
|
|
|
|
/*clear error flags*/
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_ERR_CLEAR);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Reset Error Code field */
|
|
hcryp->ErrorCode = HAL_CRYP_ERROR_NONE;
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Set the default CRYP phase */
|
|
hcryp->Phase = CRYP_PHASE_READY;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Get CRYP Configuration parameters in associated handle.
|
|
* @param pConf pointer to a CRYP_ConfigTypeDef structure
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_GetConfig(CRYP_HandleTypeDef *hcryp, CRYP_ConfigTypeDef *pConf)
|
|
{
|
|
/* Check the CRYP handle allocation */
|
|
if ((hcryp == NULL) || (pConf == NULL))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Get CRYP parameters */
|
|
pConf->DataType = hcryp->Init.DataType;
|
|
pConf->pKey = hcryp->Init.pKey;
|
|
pConf->Algorithm = hcryp->Init.Algorithm;
|
|
pConf->KeySize = hcryp->Init.KeySize ;
|
|
pConf->pInitVect = hcryp->Init.pInitVect;
|
|
pConf->Header = hcryp->Init.Header ;
|
|
pConf->HeaderSize = hcryp->Init.HeaderSize;
|
|
pConf->B0 = hcryp->Init.B0;
|
|
pConf->DataWidthUnit = hcryp->Init.DataWidthUnit;
|
|
pConf->HeaderWidthUnit = hcryp->Init.HeaderWidthUnit;
|
|
pConf->KeyIVConfigSkip = hcryp->Init.KeyIVConfigSkip;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
/**
|
|
* @brief Initializes the CRYP MSP.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hcryp);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
the HAL_CRYP_MspInit can be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief DeInitializes CRYP MSP.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hcryp);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
the HAL_CRYP_MspDeInit can be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/**
|
|
* @brief Register a User CRYP Callback
|
|
* To be used instead of the weak predefined callback
|
|
* @param hcryp cryp handle
|
|
* @param CallbackID ID of the callback to be registered
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
|
|
* @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
|
|
* @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
|
|
* @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
|
|
* @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
|
|
* @param pCallback pointer to the Callback function
|
|
* @retval status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_RegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID,
|
|
pCRYP_CallbackTypeDef pCallback)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
if (pCallback == NULL)
|
|
{
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
|
|
|
return HAL_ERROR;
|
|
}
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_CRYP_INPUT_COMPLETE_CB_ID :
|
|
hcryp->InCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
|
|
hcryp->OutCpltCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_CRYP_ERROR_CB_ID :
|
|
hcryp->ErrorCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_CRYP_MSPINIT_CB_ID :
|
|
hcryp->MspInitCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_CRYP_MSPDEINIT_CB_ID :
|
|
hcryp->MspDeInitCallback = pCallback;
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else if (hcryp->State == HAL_CRYP_STATE_RESET)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_CRYP_MSPINIT_CB_ID :
|
|
hcryp->MspInitCallback = pCallback;
|
|
break;
|
|
|
|
case HAL_CRYP_MSPDEINIT_CB_ID :
|
|
hcryp->MspDeInitCallback = pCallback;
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Unregister an CRYP Callback
|
|
* CRYP callback is redirected to the weak predefined callback
|
|
* @param hcryp cryp handle
|
|
* @param CallbackID ID of the callback to be unregistered
|
|
* This parameter can be one of the following values:
|
|
* @arg @ref HAL_CRYP_INPUT_COMPLETE_CB_ID Input FIFO transfer completed callback ID
|
|
* @arg @ref HAL_CRYP_OUTPUT_COMPLETE_CB_ID Output FIFO transfer completed callback ID
|
|
* @arg @ref HAL_CRYP_ERROR_CB_ID Error callback ID
|
|
* @arg @ref HAL_CRYP_MSPINIT_CB_ID MspInit callback ID
|
|
* @arg @ref HAL_CRYP_MSPDEINIT_CB_ID MspDeInit callback ID
|
|
* @retval status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_UnRegisterCallback(CRYP_HandleTypeDef *hcryp, HAL_CRYP_CallbackIDTypeDef CallbackID)
|
|
{
|
|
HAL_StatusTypeDef status = HAL_OK;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_CRYP_INPUT_COMPLETE_CB_ID :
|
|
hcryp->InCpltCallback = HAL_CRYP_InCpltCallback; /* Legacy weak InCpltCallback */
|
|
break;
|
|
|
|
case HAL_CRYP_OUTPUT_COMPLETE_CB_ID :
|
|
hcryp->OutCpltCallback = HAL_CRYP_OutCpltCallback; /* Legacy weak OutCpltCallback */
|
|
break;
|
|
|
|
case HAL_CRYP_ERROR_CB_ID :
|
|
hcryp->ErrorCallback = HAL_CRYP_ErrorCallback; /* Legacy weak ErrorCallback */
|
|
break;
|
|
|
|
case HAL_CRYP_MSPINIT_CB_ID :
|
|
hcryp->MspInitCallback = HAL_CRYP_MspInit;
|
|
break;
|
|
|
|
case HAL_CRYP_MSPDEINIT_CB_ID :
|
|
hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else if (hcryp->State == HAL_CRYP_STATE_RESET)
|
|
{
|
|
switch (CallbackID)
|
|
{
|
|
case HAL_CRYP_MSPINIT_CB_ID :
|
|
hcryp->MspInitCallback = HAL_CRYP_MspInit;
|
|
break;
|
|
|
|
case HAL_CRYP_MSPDEINIT_CB_ID :
|
|
hcryp->MspDeInitCallback = HAL_CRYP_MspDeInit;
|
|
break;
|
|
|
|
default :
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Update the error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_INVALID_CALLBACK;;
|
|
/* Return error status */
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Release Lock */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return status;
|
|
}
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
|
|
#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
|
|
/**
|
|
* @brief Request CRYP processing suspension when in interruption mode.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @note Set the handle field SuspendRequest to the appropriate value so that
|
|
* the on-going CRYP processing is suspended as soon as the required
|
|
* conditions are met.
|
|
* @note HAL_CRYP_ProcessSuspend() can only be invoked when the processing is done
|
|
* in non-blocking interrupt mode.
|
|
* @note It is advised not to suspend the CRYP processing when the DMA controller
|
|
* is managing the data transfer.
|
|
* @retval None
|
|
*/
|
|
void HAL_CRYP_ProcessSuspend(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Set Handle SuspendRequest field */
|
|
hcryp->SuspendRequest = HAL_CRYP_SUSPEND;
|
|
}
|
|
|
|
/**
|
|
* @brief CRYP processing suspension and peripheral internal parameters storage.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @note peripheral internal parameters are stored to be readily available when
|
|
* suspended processing is resumed later on.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Suspend(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
HAL_CRYP_STATETypeDef state;
|
|
|
|
/* Request suspension */
|
|
HAL_CRYP_ProcessSuspend(hcryp);
|
|
|
|
do
|
|
{
|
|
state = HAL_CRYP_GetState(hcryp);
|
|
} while ((state != HAL_CRYP_STATE_SUSPENDED) && (state != HAL_CRYP_STATE_READY));
|
|
|
|
if (HAL_CRYP_GetState(hcryp) == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Processing was already over or was about to end. No suspension done */
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
/* Suspend Processing */
|
|
|
|
/* If authentication algorithms on-going, carry out first saving steps
|
|
before disable the peripheral */
|
|
if ((hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC) || \
|
|
(hcryp->Init.Algorithm == CRYP_AES_CCM))
|
|
{
|
|
/* Save Suspension registers */
|
|
CRYP_Read_SuspendRegisters(hcryp, hcryp->SUSPxR_saved);
|
|
/* Save Key */
|
|
CRYP_Read_KeyRegisters(hcryp, hcryp->Key_saved, hcryp->Init.KeySize);
|
|
/* Save IV */
|
|
CRYP_Read_IVRegisters(hcryp, hcryp->IV_saved);
|
|
}
|
|
/* Disable AES */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Save low-priority block CRYP handle parameters */
|
|
hcryp->Init_saved = hcryp->Init;
|
|
hcryp->pCrypInBuffPtr_saved = hcryp->pCrypInBuffPtr;
|
|
hcryp->pCrypOutBuffPtr_saved = hcryp->pCrypOutBuffPtr;
|
|
hcryp->CrypInCount_saved = hcryp->CrypInCount;
|
|
hcryp->CrypOutCount_saved = hcryp->CrypOutCount;
|
|
hcryp->Phase_saved = hcryp->Phase;
|
|
hcryp->State_saved = hcryp->State;
|
|
hcryp->Size_saved = ((hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD) ? \
|
|
(hcryp->Size / 4U) : hcryp->Size);
|
|
hcryp->SizesSum_saved = hcryp->SizesSum;
|
|
hcryp->AutoKeyDerivation_saved = hcryp->AutoKeyDerivation;
|
|
hcryp->CrypHeaderCount_saved = hcryp->CrypHeaderCount;
|
|
hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
|
|
|
|
if ((hcryp->Init.Algorithm == CRYP_AES_CBC) || \
|
|
(hcryp->Init.Algorithm == CRYP_AES_CTR))
|
|
{
|
|
/* Save Initialisation Vector registers */
|
|
CRYP_Read_IVRegisters(hcryp, hcryp->IV_saved);
|
|
}
|
|
|
|
/* Save Control register */
|
|
hcryp->CR_saved = hcryp->Instance->CR;
|
|
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief CRYP processing resumption.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @note Processing restarts at the exact point where it was suspended, based
|
|
* on the parameters saved at suspension time.
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Resume(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Check the CRYP handle allocation */
|
|
if (hcryp == NULL)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
if (hcryp->State_saved != HAL_CRYP_STATE_SUSPENDED)
|
|
{
|
|
/* CRYP was not suspended */
|
|
return HAL_ERROR;
|
|
}
|
|
else
|
|
{
|
|
|
|
/* Restore low-priority block CRYP handle parameters */
|
|
hcryp->Init = hcryp->Init_saved;
|
|
hcryp->State = hcryp->State_saved;
|
|
|
|
/* Chaining algorithms case */
|
|
if ((hcryp->Init_saved.Algorithm == CRYP_AES_ECB) || \
|
|
(hcryp->Init_saved.Algorithm == CRYP_AES_CBC) || \
|
|
(hcryp->Init_saved.Algorithm == CRYP_AES_CTR))
|
|
{
|
|
/* Restore low-priority block CRYP handle parameters */
|
|
hcryp->AutoKeyDerivation = hcryp->AutoKeyDerivation_saved;
|
|
|
|
if ((hcryp->Init.Algorithm == CRYP_AES_CBC) || \
|
|
(hcryp->Init.Algorithm == CRYP_AES_CTR))
|
|
{
|
|
hcryp->Init.pInitVect = hcryp->IV_saved;
|
|
}
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
(void) HAL_CRYP_Init(hcryp);
|
|
}
|
|
else /* Authentication algorithms case */
|
|
{
|
|
/* Restore low-priority block CRYP handle parameters */
|
|
hcryp->Phase = hcryp->Phase_saved;
|
|
hcryp->CrypHeaderCount = hcryp->CrypHeaderCount_saved;
|
|
hcryp->SizesSum = hcryp->SizesSum_saved;
|
|
|
|
/* Disable AES and write-back SUSPxR registers */;
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
/* Restore AES Suspend Registers */
|
|
CRYP_Write_SuspendRegisters(hcryp, hcryp->SUSPxR_saved);
|
|
/* Restore Control, Key and IV Registers, then enable AES */
|
|
hcryp->Instance->CR = hcryp->CR_saved;
|
|
CRYP_Write_KeyRegisters(hcryp, hcryp->Key_saved, hcryp->Init.KeySize);
|
|
CRYP_Write_IVRegisters(hcryp, hcryp->IV_saved);
|
|
|
|
/* At the same time, set handle state back to READY to be able to resume the AES calculations
|
|
without the processing APIs returning HAL_BUSY when called. */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
|
|
|
|
/* Resume low-priority block processing under IT */
|
|
hcryp->ResumingFlag = 1U;
|
|
if (READ_BIT(hcryp->CR_saved, AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
|
|
{
|
|
if (HAL_CRYP_Encrypt_IT(hcryp, hcryp->pCrypInBuffPtr_saved, hcryp->Size_saved, \
|
|
hcryp->pCrypOutBuffPtr_saved) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (HAL_CRYP_Decrypt_IT(hcryp, hcryp->pCrypInBuffPtr_saved, hcryp->Size_saved, \
|
|
hcryp->pCrypOutBuffPtr_saved) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
#endif /* defined (USE_HAL_CRYP_SUSPEND_RESUME) */
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup CRYP_Exported_Functions_Group2 Encryption Decryption functions
|
|
* @brief Encryption Decryption functions.
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### Encrypt Decrypt functions #####
|
|
==============================================================================
|
|
[..] This section provides API allowing to Encrypt/Decrypt Data following
|
|
Standard DES/TDES or AES, and Algorithm configured by the user:
|
|
(+) Standard DES/TDES only supported by CRYP1 peripheral, below list of Algorithm supported :
|
|
- Electronic Code Book(ECB)
|
|
- Cipher Block Chaining (CBC)
|
|
(+) Standard AES supported by CRYP1 peripheral & TinyAES, list of Algorithm supported:
|
|
- Electronic Code Book(ECB)
|
|
- Cipher Block Chaining (CBC)
|
|
- Counter mode (CTR)
|
|
- Cipher Block Chaining (CBC)
|
|
- Counter mode (CTR)
|
|
- Galois/counter mode (GCM)
|
|
- Counter with Cipher Block Chaining-Message(CCM)
|
|
[..] Three processing functions are available:
|
|
(+) Polling mode : HAL_CRYP_Encrypt & HAL_CRYP_Decrypt
|
|
(+) Interrupt mode : HAL_CRYP_Encrypt_IT & HAL_CRYP_Decrypt_IT
|
|
(+) DMA mode : HAL_CRYP_Encrypt_DMA & HAL_CRYP_Decrypt_DMA
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/* GCM message structure additional details
|
|
|
|
ICB
|
|
+-------------------------------------------------------+
|
|
| Initialization vector (IV) | Counter |
|
|
|----------------|----------------|-----------|---------|
|
|
127 95 63 31 0
|
|
|
|
|
|
Bit Number Register Contents
|
|
---------- --------------- -----------
|
|
127 ...96 CRYP_IV1R[31:0] ICB[127:96]
|
|
95 ...64 CRYP_IV1L[31:0] B0[95:64]
|
|
63 ... 32 CRYP_IV0R[31:0] ICB[63:32]
|
|
31 ... 0 CRYP_IV0L[31:0] ICB[31:0], where 32-bit counter= 0x2
|
|
|
|
|
|
|
|
GCM last block definition
|
|
+-------------------------------------------------------------------+
|
|
| Bit[0] | Bit[32] | Bit[64] | Bit[96] |
|
|
|-----------|--------------------|-----------|----------------------|
|
|
| 0x0 | Header length[31:0]| 0x0 | Payload length[31:0] |
|
|
|-----------|--------------------|-----------|----------------------|
|
|
|
|
*/
|
|
|
|
/* CCM message blocks description
|
|
|
|
(##) B0 block : According to NIST Special Publication 800-38C,
|
|
The first block B0 is formatted as follows, where l(m) is encoded in
|
|
most-significant-byte first order:
|
|
|
|
Octet Number Contents
|
|
------------ ---------
|
|
0 Flags
|
|
1 ... 15-q Nonce N
|
|
16-q ... 15 Q
|
|
|
|
the Flags field is formatted as follows:
|
|
|
|
Bit Number Contents
|
|
---------- ----------------------
|
|
7 Reserved (always zero)
|
|
6 Adata
|
|
5 ... 3 (t-2)/2
|
|
2 ... 0 [q-1]3
|
|
|
|
- Q: a bit string representation of the octet length of P (plaintext)
|
|
- q The octet length of the binary representation of the octet length of the payload
|
|
- A nonce (N), n The octet length of the where n+q=15.
|
|
- Flags: most significant octet containing four flags for control information,
|
|
- t The octet length of the MAC.
|
|
(##) B1 block (header) : associated data length(a) concatenated with Associated Data (A)
|
|
the associated data length expressed in bytes (a) defined as below:
|
|
- If 0 < a < 216-28, then it is encoded as [a]16, i.e. two octets
|
|
- If 216-28 < a < 232, then it is encoded as 0xff || 0xfe || [a]32, i.e. six octets
|
|
- If 232 < a < 264, then it is encoded as 0xff || 0xff || [a]64, i.e. ten octets
|
|
(##) CTRx block : control blocks
|
|
- Generation of CTR1 from first block B0 information :
|
|
equal to B0 with first 5 bits zeroed and most significant bits storing octet
|
|
length of P also zeroed, then incremented by one
|
|
|
|
Bit Number Register Contents
|
|
---------- --------------- -----------
|
|
127 ...96 CRYP_IV1R[31:0] B0[127:96], where Q length bits are set to 0, except for
|
|
bit 0 that is set to 1
|
|
95 ...64 CRYP_IV1L[31:0] B0[95:64]
|
|
63 ... 32 CRYP_IV0R[31:0] B0[63:32]
|
|
31 ... 0 CRYP_IV0L[31:0] B0[31:0], where flag bits set to 0
|
|
|
|
- Generation of CTR0: same as CTR1 with bit[0] set to zero.
|
|
|
|
*/
|
|
|
|
/**
|
|
* @brief Encryption mode.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Input Pointer to the input buffer (plaintext)
|
|
* @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field)
|
|
* @param Output Pointer to the output buffer(ciphertext)
|
|
* @param Timeout Specify Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output,
|
|
uint32_t Timeout)
|
|
{
|
|
uint32_t algo;
|
|
HAL_StatusTypeDef status;
|
|
#ifdef USE_FULL_ASSERT
|
|
uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD;
|
|
|
|
/* Check input buffer size */
|
|
assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size));
|
|
#endif /* USE_FULL_ASSERT */
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change state Busy */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
hcryp->pCrypInBuffPtr = Input;
|
|
hcryp->pCrypOutBuffPtr = Output;
|
|
|
|
/* Calculate Size parameter in Byte*/
|
|
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
|
{
|
|
hcryp->Size = Size * 4U;
|
|
}
|
|
else
|
|
{
|
|
hcryp->Size = Size;
|
|
}
|
|
|
|
/* Set the operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
|
|
|
switch (algo)
|
|
{
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES encryption */
|
|
status = CRYP_AES_Encrypt(hcryp, Timeout);
|
|
break;
|
|
|
|
case CRYP_AES_GCM_GMAC:
|
|
|
|
/* AES GCM encryption */
|
|
status = CRYP_AESGCM_Process(hcryp, Timeout) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
/* AES CCM encryption */
|
|
status = CRYP_AESCCM_Process(hcryp, Timeout);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Decryption mode.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Input Pointer to the input buffer (ciphertext )
|
|
* @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field)
|
|
* @param Output Pointer to the output buffer(plaintext)
|
|
* @param Timeout Specify Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output,
|
|
uint32_t Timeout)
|
|
{
|
|
HAL_StatusTypeDef status;
|
|
uint32_t algo;
|
|
#ifdef USE_FULL_ASSERT
|
|
uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD;
|
|
|
|
/* Check input buffer size */
|
|
assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size));
|
|
#endif /* USE_FULL_ASSERT */
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change state Busy */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
hcryp->pCrypInBuffPtr = Input;
|
|
hcryp->pCrypOutBuffPtr = Output;
|
|
|
|
/* Calculate Size parameter in Byte*/
|
|
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
|
{
|
|
hcryp->Size = Size * 4U;
|
|
}
|
|
else
|
|
{
|
|
hcryp->Size = Size;
|
|
}
|
|
|
|
/* Set Decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
|
|
|
switch (algo)
|
|
{
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES decryption */
|
|
status = CRYP_AES_Decrypt(hcryp, Timeout);
|
|
break;
|
|
|
|
case CRYP_AES_GCM_GMAC:
|
|
|
|
/* AES GCM decryption */
|
|
status = CRYP_AESGCM_Process(hcryp, Timeout) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
/* AES CCM decryption */
|
|
status = CRYP_AESCCM_Process(hcryp, Timeout);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
|
|
if (status == HAL_OK)
|
|
{
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Encryption in interrupt mode.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Input Pointer to the input buffer (plaintext)
|
|
* @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field)
|
|
* @param Output Pointer to the output buffer(ciphertext)
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
|
{
|
|
HAL_StatusTypeDef status;
|
|
uint32_t algo;
|
|
#ifdef USE_FULL_ASSERT
|
|
uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD;
|
|
|
|
/* Check input buffer size */
|
|
assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size));
|
|
#endif /* USE_FULL_ASSERT */
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change state Busy */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
|
#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
|
|
if (hcryp->ResumingFlag == 1U)
|
|
{
|
|
hcryp->ResumingFlag = 0U;
|
|
if (hcryp->Phase != CRYP_PHASE_HEADER_SUSPENDED)
|
|
{
|
|
hcryp->CrypInCount = (uint16_t) hcryp->CrypInCount_saved;
|
|
hcryp->CrypOutCount = (uint16_t) hcryp->CrypOutCount_saved;
|
|
}
|
|
else
|
|
{
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
}
|
|
}
|
|
else
|
|
#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
|
|
{
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
}
|
|
|
|
hcryp->pCrypInBuffPtr = Input;
|
|
hcryp->pCrypOutBuffPtr = Output;
|
|
|
|
/* Calculate Size parameter in Byte*/
|
|
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
|
{
|
|
hcryp->Size = Size * 4U;
|
|
}
|
|
else
|
|
{
|
|
hcryp->Size = Size;
|
|
}
|
|
|
|
/* Set encryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
|
|
|
switch (algo)
|
|
{
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES encryption */
|
|
status = CRYP_AES_Encrypt_IT(hcryp);
|
|
break;
|
|
|
|
case CRYP_AES_GCM_GMAC:
|
|
|
|
/* AES GCM encryption */
|
|
status = CRYP_AESGCM_Process_IT(hcryp) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
/* AES CCM encryption */
|
|
status = CRYP_AESCCM_Process_IT(hcryp);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Decryption in interrupt mode.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Input Pointer to the input buffer (ciphertext )
|
|
* @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field)
|
|
* @param Output Pointer to the output buffer(plaintext)
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
|
{
|
|
HAL_StatusTypeDef status;
|
|
uint32_t algo;
|
|
#ifdef USE_FULL_ASSERT
|
|
uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD;
|
|
|
|
/* Check input buffer size */
|
|
assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size));
|
|
#endif /* USE_FULL_ASSERT */
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change state Busy */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
|
#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
|
|
if (hcryp->ResumingFlag == 1U)
|
|
{
|
|
hcryp->ResumingFlag = 0U;
|
|
if (hcryp->Phase != CRYP_PHASE_HEADER_SUSPENDED)
|
|
{
|
|
hcryp->CrypInCount = (uint16_t) hcryp->CrypInCount_saved;
|
|
hcryp->CrypOutCount = (uint16_t) hcryp->CrypOutCount_saved;
|
|
}
|
|
else
|
|
{
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
}
|
|
}
|
|
else
|
|
#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
|
|
{
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
}
|
|
hcryp->pCrypInBuffPtr = Input;
|
|
hcryp->pCrypOutBuffPtr = Output;
|
|
|
|
/* Calculate Size parameter in Byte*/
|
|
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
|
{
|
|
hcryp->Size = Size * 4U;
|
|
}
|
|
else
|
|
{
|
|
hcryp->Size = Size;
|
|
}
|
|
|
|
/* Set decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
|
|
|
switch (algo)
|
|
{
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES decryption */
|
|
status = CRYP_AES_Decrypt_IT(hcryp);
|
|
break;
|
|
|
|
case CRYP_AES_GCM_GMAC:
|
|
|
|
/* AES GCM decryption */
|
|
status = CRYP_AESGCM_Process_IT(hcryp) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
/* AES CCM decryption */
|
|
status = CRYP_AESCCM_Process_IT(hcryp);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Encryption in DMA mode.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Input Pointer to the input buffer (plaintext)
|
|
* @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field)
|
|
* @param Output Pointer to the output buffer(ciphertext)
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
|
{
|
|
HAL_StatusTypeDef status;
|
|
uint32_t algo;
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
#ifdef USE_FULL_ASSERT
|
|
uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD;
|
|
|
|
/* Check input buffer size */
|
|
assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size));
|
|
#endif /* USE_FULL_ASSERT */
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Change state Busy */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr and pCrypOutBuffPtr parameters*/
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
hcryp->pCrypInBuffPtr = Input;
|
|
hcryp->pCrypOutBuffPtr = Output;
|
|
|
|
/* Calculate Size parameter in Byte*/
|
|
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
|
{
|
|
hcryp->Size = Size * 4U;
|
|
}
|
|
else
|
|
{
|
|
hcryp->Size = Size;
|
|
}
|
|
|
|
/* Set encryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_ENCRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
|
|
|
switch (algo)
|
|
{
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
}
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the Initialization Vector*/
|
|
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
|
{
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Start DMA process transfer for AES */
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), \
|
|
(uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
status = HAL_OK;
|
|
break;
|
|
|
|
case CRYP_AES_GCM_GMAC:
|
|
|
|
/* AES GCM encryption */
|
|
status = CRYP_AESGCM_Process_DMA(hcryp) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
/* AES CCM encryption */
|
|
status = CRYP_AESCCM_Process_DMA(hcryp);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
status = HAL_ERROR;
|
|
}
|
|
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @brief Decryption in DMA mode.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Input Pointer to the input buffer (ciphertext )
|
|
* @param Size Length of the plaintext buffer in bytes or words (depending upon DataWidthUnit field)
|
|
* @param Output Pointer to the output buffer(plaintext)
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYP_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint16_t Size, uint32_t *Output)
|
|
{
|
|
HAL_StatusTypeDef status;
|
|
uint32_t algo;
|
|
#ifdef USE_FULL_ASSERT
|
|
uint32_t algo_assert = (hcryp->Instance->CR) & AES_CR_CHMOD;
|
|
|
|
/* Check input buffer size */
|
|
assert_param(IS_CRYP_BUFFERSIZE(algo_assert, hcryp->Init.DataWidthUnit, Size));
|
|
#endif /* USE_FULL_ASSERT */
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
|
|
/* Change state Busy */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Process locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Reset CrypInCount, CrypOutCount and Initialize pCrypInBuffPtr, pCrypOutBuffPtr and Size parameters*/
|
|
hcryp->CrypInCount = 0U;
|
|
hcryp->CrypOutCount = 0U;
|
|
hcryp->pCrypInBuffPtr = Input;
|
|
hcryp->pCrypOutBuffPtr = Output;
|
|
|
|
/* Calculate Size parameter in Byte*/
|
|
if (hcryp->Init.DataWidthUnit == CRYP_DATAWIDTHUNIT_WORD)
|
|
{
|
|
hcryp->Size = Size * 4U;
|
|
}
|
|
else
|
|
{
|
|
hcryp->Size = Size;
|
|
}
|
|
|
|
/* Set decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
|
|
|
/* algo get algorithm selected */
|
|
algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
|
|
|
switch (algo)
|
|
{
|
|
|
|
case CRYP_AES_ECB:
|
|
case CRYP_AES_CBC:
|
|
case CRYP_AES_CTR:
|
|
|
|
/* AES decryption */
|
|
status = CRYP_AES_Decrypt_DMA(hcryp);
|
|
break;
|
|
|
|
case CRYP_AES_GCM_GMAC:
|
|
|
|
/* AES GCM decryption */
|
|
status = CRYP_AESGCM_Process_DMA(hcryp) ;
|
|
break;
|
|
|
|
case CRYP_AES_CCM:
|
|
|
|
/* AES CCM decryption */
|
|
status = CRYP_AESCCM_Process_DMA(hcryp);
|
|
break;
|
|
|
|
default:
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_NOT_SUPPORTED;
|
|
status = HAL_ERROR;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
status = HAL_ERROR;
|
|
}
|
|
/* Return function status */
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/** @defgroup CRYP_Exported_Functions_Group3 CRYP IRQ handler management
|
|
* @brief CRYP IRQ handler.
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### CRYP IRQ handler management #####
|
|
==============================================================================
|
|
[..] This section provides CRYP IRQ handler and callback functions.
|
|
(+) HAL_CRYP_IRQHandler CRYP interrupt request
|
|
(+) HAL_CRYP_InCpltCallback input data transfer complete callback
|
|
(+) HAL_CRYP_OutCpltCallback output data transfer complete callback
|
|
(+) HAL_CRYP_ErrorCallback CRYP error callback
|
|
(+) HAL_CRYP_GetState return the CRYP state
|
|
(+) HAL_CRYP_GetError return the CRYP error code
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief This function handles cryptographic interrupt request.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval None
|
|
*/
|
|
void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t itsource = hcryp->Instance->CR;
|
|
uint32_t itflag = hcryp->Instance->SR;
|
|
|
|
/* Check if error occurred */
|
|
if ((itsource & CRYP_IT_ERRIE) == CRYP_IT_ERRIE)
|
|
{
|
|
/* If write Error occurred */
|
|
if ((itflag & CRYP_IT_WRERR) == CRYP_IT_WRERR)
|
|
{
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_WRITE;
|
|
}
|
|
/* If read Error occurred */
|
|
if ((itflag & CRYP_IT_RDERR) == CRYP_IT_RDERR)
|
|
{
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_READ;
|
|
}
|
|
}
|
|
|
|
if ((itflag & CRYP_IT_CCF) == CRYP_IT_CCF)
|
|
{
|
|
if ((itsource & CRYP_IT_CCFIE) == CRYP_IT_CCFIE)
|
|
{
|
|
/* Clear computation complete flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
if ((hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC) || (hcryp->Init.Algorithm == CRYP_AES_CCM))
|
|
{
|
|
|
|
/* if header phase */
|
|
if ((hcryp->Instance->CR & CRYP_PHASE_HEADER) == CRYP_PHASE_HEADER)
|
|
{
|
|
CRYP_GCMCCM_SetHeaderPhase_IT(hcryp);
|
|
}
|
|
else /* if payload phase */
|
|
{
|
|
CRYP_GCMCCM_SetPayloadPhase_IT(hcryp);
|
|
}
|
|
}
|
|
else /* AES Algorithm ECB,CBC or CTR*/
|
|
{
|
|
CRYP_AES_IT(hcryp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Return the CRYP error code.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for the CRYP peripheral
|
|
* @retval CRYP error code
|
|
*/
|
|
uint32_t HAL_CRYP_GetError(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
return hcryp->ErrorCode;
|
|
}
|
|
|
|
/**
|
|
* @brief Returns the CRYP state.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @retval HAL state
|
|
*/
|
|
HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
return hcryp->State;
|
|
}
|
|
|
|
/**
|
|
* @brief Input FIFO transfer completed callback.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hcryp);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
the HAL_CRYP_InCpltCallback can be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief Output FIFO transfer completed callback.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hcryp);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
the HAL_CRYP_OutCpltCallback can be implemented in the user file
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @brief CRYP error callback.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @retval None
|
|
*/
|
|
__weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
/* Prevent unused argument(s) compilation warning */
|
|
UNUSED(hcryp);
|
|
|
|
/* NOTE : This function should not be modified; when the callback is needed,
|
|
the HAL_CRYP_ErrorCallback can be implemented in the user file
|
|
*/
|
|
}
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/* Private functions ---------------------------------------------------------*/
|
|
/** @addtogroup CRYP_Private_Functions
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Encryption in ECB/CBC & CTR Algorithm with AES Standard
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure
|
|
* @param Timeout specify Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AES_Encrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint16_t incount; /* Temporary CrypInCount Value */
|
|
uint16_t outcount; /* Temporary CrypOutCount Value */
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
}
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
|
{
|
|
/* Set the Initialization Vector*/
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
incount = hcryp->CrypInCount;
|
|
outcount = hcryp->CrypOutCount;
|
|
while ((incount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U)))
|
|
{
|
|
/* Write plain Ddta and get cipher data */
|
|
CRYP_AES_ProcessData(hcryp, Timeout);
|
|
incount = hcryp->CrypInCount;
|
|
outcount = hcryp->CrypOutCount;
|
|
}
|
|
|
|
/* Disable CRYP */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Encryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AES_Encrypt_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
}
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
|
{
|
|
/* Set the Initialization Vector*/
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
if (hcryp->Size != 0U)
|
|
{
|
|
|
|
/* Enable computation complete flag and error interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Increment the pointer before writing the input block in the IN FIFO to make sure that
|
|
when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value
|
|
and it is ready for the next operation. */
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
}
|
|
else
|
|
{
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Decryption in ECB/CBC & CTR mode with AES Standard
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure
|
|
* @param Timeout Specify Timeout value
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AES_Decrypt(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint16_t incount; /* Temporary CrypInCount Value */
|
|
uint16_t outcount; /* Temporary CrypOutCount Value */
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
}
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Key preparation for ECB/CBC */
|
|
if (hcryp->Init.Algorithm != CRYP_AES_CTR) /*ECB or CBC*/
|
|
{
|
|
if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
|
|
{
|
|
/* Set key preparation for decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
|
|
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Wait for CCF flag to be raised */
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state & error code*/
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Return to decryption operating mode(Mode 3)*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
|
}
|
|
else /*Mode 4 : decryption & Key preparation*/
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set decryption & Key preparation operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
|
|
}
|
|
}
|
|
else /*Algorithm CTR */
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
}
|
|
|
|
/* Set IV */
|
|
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
|
{
|
|
/* Set the Initialization Vector*/
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
incount = hcryp->CrypInCount;
|
|
outcount = hcryp->CrypOutCount;
|
|
while ((incount < (hcryp->Size / 4U)) && (outcount < (hcryp->Size / 4U)))
|
|
{
|
|
/* Write plain data and get cipher data */
|
|
CRYP_AES_ProcessData(hcryp, Timeout);
|
|
incount = hcryp->CrypInCount;
|
|
outcount = hcryp->CrypOutCount;
|
|
}
|
|
|
|
/* Disable CRYP */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
/**
|
|
* @brief Decryption in ECB/CBC & CTR mode with AES Standard using interrupt mode
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AES_Decrypt_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
__IO uint32_t count = 0U;
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
}
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Key preparation for ECB/CBC */
|
|
if (hcryp->Init.Algorithm != CRYP_AES_CTR)
|
|
{
|
|
if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 Key preparation*/
|
|
{
|
|
/* Set key preparation for decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
|
|
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Wait for CCF flag to be raised */
|
|
count = CRYP_TIMEOUT_KEYPREPARATION;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Return to decryption operating mode(Mode 3)*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
|
}
|
|
else /*Mode 4 : decryption & key preparation*/
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set decryption & key preparation operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
|
|
}
|
|
}
|
|
else /*Algorithm CTR */
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
}
|
|
|
|
/* Set IV */
|
|
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
|
{
|
|
/* Set the Initialization Vector*/
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
if (hcryp->Size != 0U)
|
|
{
|
|
/* Enable computation complete flag and error interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Increment the pointer before writing the input block in the IN FIFO to make sure that
|
|
when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value
|
|
and it is ready for the next operation. */
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
}
|
|
else
|
|
{
|
|
/* Process locked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
/**
|
|
* @brief Decryption in ECB/CBC & CTR mode with AES Standard using DMA mode
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AES_Decrypt_DMA(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
__IO uint32_t count = 0U;
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
}
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Key preparation for ECB/CBC */
|
|
if (hcryp->Init.Algorithm != CRYP_AES_CTR)
|
|
{
|
|
if (hcryp->AutoKeyDerivation == DISABLE)/*Mode 2 key preparation*/
|
|
{
|
|
/* Set key preparation for decryption operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION);
|
|
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Enable CRYP */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Wait for CCF flag to be raised */
|
|
count = CRYP_TIMEOUT_KEYPREPARATION;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Return to decryption operating mode(Mode 3)*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_DECRYPT);
|
|
}
|
|
else /*Mode 4 : decryption & key preparation*/
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set decryption & Key preparation operating mode*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_MODE, CRYP_OPERATINGMODE_KEYDERIVATION_DECRYPT);
|
|
}
|
|
}
|
|
else /*Algorithm CTR */
|
|
{
|
|
/* Set the Key*/
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
}
|
|
|
|
if (hcryp->Init.Algorithm != CRYP_AES_ECB)
|
|
{
|
|
/* Set the Initialization Vector*/
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
if (hcryp->Size != 0U)
|
|
{
|
|
/* Set the input and output addresses and start DMA transfer */
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), (hcryp->Size / 4U), (uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
}
|
|
else
|
|
{
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief DMA CRYP input data process complete callback.
|
|
* @param hdma DMA handle
|
|
* @retval None
|
|
*/
|
|
static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
uint32_t loopcounter;
|
|
uint32_t headersize_in_bytes;
|
|
uint32_t tmp;
|
|
static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
|
|
0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
|
|
0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU
|
|
}; /* 8-bit data type */
|
|
|
|
/* Stop the DMA transfers to the IN FIFO by clearing to "0" the DMAINEN */
|
|
CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
|
|
|
|
if (hcryp->Phase == CRYP_PHASE_HEADER_DMA_FEED)
|
|
{
|
|
/* DMA is disabled, CCF is meaningful. Wait for computation completion before moving forward */
|
|
CRYP_ClearCCFlagWhenHigh(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE);
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
|
|
}
|
|
else
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize;
|
|
}
|
|
|
|
if ((headersize_in_bytes % 16U) != 0U)
|
|
{
|
|
/* Write last words that couldn't be fed by DMA */
|
|
hcryp->CrypHeaderCount = (uint16_t)((headersize_in_bytes / 16U) * 4U);
|
|
for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 4U) % 4U)); loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
/* If the header size is a multiple of words */
|
|
if ((headersize_in_bytes % 4U) == 0U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Enter last bytes, padded with zeros */
|
|
tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
|
|
hcryp->Instance->DINR = tmp;
|
|
loopcounter++;
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
|
|
/* Wait for computation completion before moving forward */
|
|
CRYP_ClearCCFlagWhenHigh(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE);
|
|
} /* if ((headersize_in_bytes % 16U) != 0U) */
|
|
|
|
/* Set to 0 the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Initiate payload DMA IN and processed data DMA OUT transfers */
|
|
(void)CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp);
|
|
}
|
|
else
|
|
{
|
|
uint32_t algo;
|
|
/* ECB, CBC or CTR end of input data feeding
|
|
or
|
|
end of GCM/CCM payload data feeding through DMA */
|
|
algo = hcryp->Instance->CR & AES_CR_CHMOD;
|
|
|
|
/* Don't call input data transfer complete callback only if
|
|
it remains some input data to write to the peripheral.
|
|
This case can only occur for GCM and CCM with a payload length
|
|
not a multiple of 16 bytes */
|
|
if (!(((algo == CRYP_AES_GCM_GMAC) || (algo == CRYP_AES_CCM)) && \
|
|
(((hcryp->Size) % 16U) != 0U)))
|
|
{
|
|
/* Call input data transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
} /* if (hcryp->Phase == CRYP_PHASE_HEADER_DMA_FEED) */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA CRYP output data process complete callback.
|
|
* @param hdma DMA handle
|
|
* @retval None
|
|
*/
|
|
static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
uint32_t count;
|
|
uint32_t npblb;
|
|
uint32_t lastwordsize;
|
|
uint32_t temp[4]; /* Temporary CrypOutBuff */
|
|
uint32_t mode;
|
|
|
|
CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
/* Stop the DMA transfers to the OUT FIFO by clearing to "0" the DMAOUTEN */
|
|
CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Last block transfer in case of GCM or CCM with Size not %16*/
|
|
if (((hcryp->Size) % 16U) != 0U)
|
|
{
|
|
/* set CrypInCount and CrypOutCount to exact number of word already computed via DMA */
|
|
hcryp->CrypInCount = (hcryp->Size / 16U) * 4U;
|
|
hcryp->CrypOutCount = hcryp->CrypInCount;
|
|
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size);
|
|
|
|
mode = hcryp->Instance->CR & AES_CR_MODE;
|
|
if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
|
|
((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
|
|
{
|
|
/* Specify the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
|
|
}
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (count = 0U; count < lastwordsize; count++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (count < 4U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
count++;
|
|
}
|
|
/* Call input data transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
|
|
/*Wait on CCF flag*/
|
|
CRYP_ClearCCFlagWhenHigh(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE);
|
|
|
|
/*Read the output block from the output FIFO */
|
|
for (count = 0U; count < 4U; count++)
|
|
{
|
|
/* Read the output block from the output FIFO and put them in temporary buffer
|
|
then get CrypOutBuff from temporary buffer */
|
|
temp[count] = hcryp->Instance->DOUTR;
|
|
}
|
|
|
|
count = 0U;
|
|
while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (count < 4U))
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[count];
|
|
hcryp->CrypOutCount++;
|
|
count++;
|
|
}
|
|
}
|
|
|
|
if (((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC)
|
|
&& ((hcryp->Init.Algorithm & CRYP_AES_CCM) != CRYP_AES_CCM))
|
|
{
|
|
/* Disable CRYP (not allowed in GCM)*/
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
}
|
|
|
|
/* Change the CRYP state to ready */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Call output data transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Output complete callback*/
|
|
hcryp->OutCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Output complete callback*/
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief DMA CRYP communication error callback.
|
|
* @param hdma DMA handle
|
|
* @retval None
|
|
*/
|
|
static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
|
|
{
|
|
CRYP_HandleTypeDef *hcryp = (CRYP_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent;
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* DMA error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Call error callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/**
|
|
* @brief Set the DMA configuration and start the DMA transfer
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param inputaddr address of the input buffer
|
|
* @param Size size of the input and output buffers in words, must be a multiple of 4
|
|
* @param outputaddr address of the output buffer
|
|
* @retval None
|
|
*/
|
|
static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
|
|
{
|
|
/* Set the CRYP DMA transfer complete callback */
|
|
hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
|
|
|
|
/* Set the DMA input error callback */
|
|
hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
|
|
|
|
/* Set the CRYP DMA transfer complete callback */
|
|
hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
|
|
|
|
/* Set the DMA output error callback */
|
|
hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;
|
|
|
|
if ((hcryp->Init.Algorithm & CRYP_AES_GCM_GMAC) != CRYP_AES_GCM_GMAC)
|
|
{
|
|
/* Enable CRYP (not allowed in GCM & CCM)*/
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
}
|
|
|
|
/* Enable the DMA input stream */
|
|
if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size) != HAL_OK)
|
|
{
|
|
/* DMA error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
|
|
|
/* Call error callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
/* Enable the DMA output stream */
|
|
if (HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size) != HAL_OK)
|
|
{
|
|
/* DMA error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
|
|
|
/* Call error callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
/* Enable In and Out DMA requests */
|
|
SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN));
|
|
}
|
|
|
|
/**
|
|
* @brief Set the DMA configuration and start the header DMA transfer
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param inputaddr address of the input buffer
|
|
* @param Size size of the input buffer in words, must be a multiple of 4
|
|
* @retval None
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_SetHeaderDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size)
|
|
{
|
|
/* Set the CRYP DMA transfer complete callback */
|
|
hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
|
|
|
|
/* Set the DMA input error callback */
|
|
hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
|
|
|
|
/* Mark that header is fed to the peripheral in DMA mode */
|
|
hcryp->Phase = CRYP_PHASE_HEADER_DMA_FEED;
|
|
/* Enable the DMA input stream */
|
|
if (HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size) != HAL_OK)
|
|
{
|
|
/* DMA error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_DMA;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
/* Call error callback */
|
|
}
|
|
|
|
/* Enable IN DMA requests */
|
|
SET_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Process Data: Write Input data in polling mode and used in AES functions.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Timeout Specify Timeout value
|
|
* @retval None
|
|
*/
|
|
static void CRYP_AES_ProcessData(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
|
|
uint32_t temp[4]; /* Temporary CrypOutBuff */
|
|
uint32_t i;
|
|
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
|
|
/* Wait for CCF flag to be raised */
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
/*Call registered error callback*/
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* Read the output block from the output FIFO and put them in temporary buffer
|
|
then get CrypOutBuff from temporary buffer*/
|
|
for (i = 0U; i < 4U; i++)
|
|
{
|
|
temp[i] = hcryp->Instance->DOUTR;
|
|
}
|
|
i = 0U;
|
|
while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U))
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
|
hcryp->CrypOutCount++;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Handle CRYP block input/output data handling under interruption.
|
|
* @note The function is called under interruption only, once
|
|
* interruptions have been enabled by HAL_CRYP_Encrypt_IT or HAL_CRYP_Decrypt_IT.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @retval HAL status
|
|
*/
|
|
static void CRYP_AES_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t temp[4]; /* Temporary CrypOutBuff */
|
|
uint32_t i;
|
|
|
|
if (hcryp->State == HAL_CRYP_STATE_BUSY)
|
|
{
|
|
/* Read the output block from the output FIFO and put them in temporary buffer
|
|
then get CrypOutBuff from temporary buffer*/
|
|
for (i = 0U; i < 4U; i++)
|
|
{
|
|
temp[i] = hcryp->Instance->DOUTR;
|
|
}
|
|
i = 0U;
|
|
while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U))
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
|
hcryp->CrypOutCount++;
|
|
i++;
|
|
}
|
|
if (hcryp->CrypOutCount == (hcryp->Size / 4U))
|
|
{
|
|
/* Disable Computation Complete flag and errors interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Disable CRYP */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Call Output transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Output complete callback*/
|
|
hcryp->OutCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Output complete callback*/
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
else
|
|
{
|
|
#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
|
|
/* If suspension flag has been raised, suspend processing
|
|
only if not already at the end of the payload */
|
|
if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
|
|
{
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* reset SuspendRequest */
|
|
hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
|
|
/* Disable Computation Complete Flag and Errors Interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_SUSPENDED;
|
|
/* Mark that the payload phase is suspended */
|
|
hcryp->Phase = CRYP_PHASE_PAYLOAD_SUSPENDED;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
else
|
|
#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
|
|
{
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
|
|
if (hcryp->CrypInCount == (hcryp->Size / 4U))
|
|
{
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Busy error code field */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_BUSY;
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Writes Key in Key registers.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param KeySize Size of Key
|
|
* @note If pKey is NULL, the Key registers are not written. This configuration
|
|
* occurs when the key is written out of HAL scope.
|
|
* @retval None
|
|
*/
|
|
static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint32_t KeySize)
|
|
{
|
|
if (hcryp->Init.pKey != NULL)
|
|
{
|
|
switch (KeySize)
|
|
{
|
|
case CRYP_KEYSIZE_256B:
|
|
hcryp->Instance->KEYR7 = *(uint32_t *)(hcryp->Init.pKey);
|
|
hcryp->Instance->KEYR6 = *(uint32_t *)(hcryp->Init.pKey + 1U);
|
|
hcryp->Instance->KEYR5 = *(uint32_t *)(hcryp->Init.pKey + 2U);
|
|
hcryp->Instance->KEYR4 = *(uint32_t *)(hcryp->Init.pKey + 3U);
|
|
hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey + 4U);
|
|
hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 5U);
|
|
hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 6U);
|
|
hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 7U);
|
|
break;
|
|
case CRYP_KEYSIZE_128B:
|
|
hcryp->Instance->KEYR3 = *(uint32_t *)(hcryp->Init.pKey);
|
|
hcryp->Instance->KEYR2 = *(uint32_t *)(hcryp->Init.pKey + 1U);
|
|
hcryp->Instance->KEYR1 = *(uint32_t *)(hcryp->Init.pKey + 2U);
|
|
hcryp->Instance->KEYR0 = *(uint32_t *)(hcryp->Init.pKey + 3U);
|
|
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Timeout Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AESGCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
uint32_t wordsize = ((uint32_t)hcryp->Size / 4U) ;
|
|
uint32_t npblb;
|
|
uint32_t temp[4]; /* Temporary CrypOutBuff */
|
|
uint32_t index;
|
|
uint32_t lastwordsize;
|
|
uint32_t incount; /* Temporary CrypInCount Value */
|
|
uint32_t outcount; /* Temporary CrypOutCount Value */
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hcryp->SizesSum = hcryp->Size;
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
|
|
/* Reset CrypHeaderCount */
|
|
hcryp->CrypHeaderCount = 0U;
|
|
|
|
/****************************** Init phase **********************************/
|
|
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* just wait for hash computation */
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked & return error */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/************************ Header phase *************************************/
|
|
|
|
if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/*************************Payload phase ************************************/
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Set to 0 the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
|
|
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
if ((hcryp->Size % 16U) != 0U)
|
|
{
|
|
/* recalculate wordsize */
|
|
wordsize = ((wordsize / 4U) * 4U) ;
|
|
}
|
|
|
|
/* Get tick */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Write input data and get output Data */
|
|
incount = hcryp->CrypInCount;
|
|
outcount = hcryp->CrypOutCount;
|
|
while ((incount < wordsize) && (outcount < wordsize))
|
|
{
|
|
/* Write plain data and get cipher data */
|
|
CRYP_AES_ProcessData(hcryp, Timeout);
|
|
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state & error code */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
incount = hcryp->CrypInCount;
|
|
outcount = hcryp->CrypOutCount;
|
|
}
|
|
|
|
if ((hcryp->Size % 16U) != 0U)
|
|
{
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size);
|
|
|
|
/* Set Npblb in case of AES GCM payload encryption to get right tag*/
|
|
if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
|
|
{
|
|
/* Set to 0 the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
|
|
}
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
/* last block optionally pad the data with zeros*/
|
|
for (index = 0U; index < lastwordsize; index ++)
|
|
{
|
|
/* Write the last Input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (index < 4U)
|
|
{
|
|
/* pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0U;
|
|
index++;
|
|
}
|
|
/* Wait for CCF flag to be raised */
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/*Read the output block from the output FIFO */
|
|
for (index = 0U; index < 4U; index++)
|
|
{
|
|
/* Read the output block from the output FIFO and put them in temporary buffer
|
|
then get CrypOutBuff from temporary buffer */
|
|
temp[index] = hcryp->Instance->DOUTR;
|
|
}
|
|
for (index = 0U; index < lastwordsize; index++)
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + (hcryp->CrypOutCount)) = temp[index];
|
|
hcryp->CrypOutCount++;
|
|
}
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG in interrupt mode
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AESGCM_Process_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
__IO uint32_t count = 0U;
|
|
uint32_t loopcounter;
|
|
uint32_t lastwordsize;
|
|
uint32_t npblb;
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
uint32_t headersize_in_bytes;
|
|
uint32_t tmp;
|
|
static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
|
|
0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
|
|
0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU
|
|
}; /* 8-bit data type */
|
|
|
|
|
|
#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
|
|
if ((hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) || (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED))
|
|
{
|
|
CRYP_PhaseProcessingResume(hcryp);
|
|
return HAL_OK;
|
|
}
|
|
#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
|
|
|
|
/* Manage header size given in bytes to handle cases where
|
|
header size is not a multiple of 4 bytes */
|
|
if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
|
|
}
|
|
else
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize;
|
|
}
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hcryp->SizesSum = hcryp->Size;
|
|
}
|
|
|
|
/* Configure Key, IV and process message (header and payload) */
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Reset CrypHeaderCount */
|
|
hcryp->CrypHeaderCount = 0U;
|
|
|
|
/******************************* Init phase *********************************/
|
|
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* just wait for hash computation */
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/***************************** Header phase *********************************/
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* Enable computation complete flag and error interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
if (hcryp->Init.HeaderSize == 0U) /*header phase is skipped*/
|
|
{
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Set to 0 the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
|
|
|
|
/* Write the payload Input block in the IN FIFO */
|
|
if (hcryp->Size == 0U)
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
else if (hcryp->Size >= 16U)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
|
|
{
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
else /* Size < 16Bytes : first block is the last block*/
|
|
{
|
|
/* Workaround not implemented for TinyAES2*/
|
|
/* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption:
|
|
Workaround is implemented in polling mode, so if last block of
|
|
payload <128bit do not use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */
|
|
|
|
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = 16U - ((uint32_t)hcryp->Size);
|
|
|
|
if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
|
|
{
|
|
/* Set to 0 the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
|
|
}
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
/* Enter header data */
|
|
/* Cher first whether header length is small enough to enter the full header in one shot */
|
|
else if (headersize_in_bytes <= 16U)
|
|
{
|
|
/* Write header data, padded with zeros if need be */
|
|
for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
/* If the header size is a multiple of words */
|
|
if ((headersize_in_bytes % 4U) == 0U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Enter last bytes, padded with zeros */
|
|
tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
|
|
hcryp->Instance->DINR = tmp;
|
|
loopcounter++;
|
|
hcryp->CrypHeaderCount++ ;
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Write the first input header block in the Input FIFO,
|
|
the following header data will be fed after interrupt occurrence */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
|
|
} /* end of if (DoKeyIVConfig == 1U) */
|
|
else /* Key and IV have already been configured,
|
|
header has already been processed;
|
|
only process here message payload */
|
|
{
|
|
/* Set to 0 the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
|
|
|
|
/* Write the payload Input block in the IN FIFO */
|
|
if (hcryp->Size == 0U)
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
else if (hcryp->Size >= 16U)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
|
|
{
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
/* Enable computation complete flag and error interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
}
|
|
else /* Size < 16Bytes : first block is the last block*/
|
|
{
|
|
/* Workaround not implemented for TinyAES2*/
|
|
/* Size should be %4 otherwise Tag will be incorrectly generated for GCM Encryption:
|
|
Workaround is implemented in polling mode, so if last block of
|
|
payload <128bit do not use CRYP_Encrypt_IT otherwise TAG is incorrectly generated for GCM Encryption. */
|
|
|
|
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = 16U - ((uint32_t)hcryp->Size);
|
|
|
|
if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT)
|
|
{
|
|
/* Set to 0 the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
|
|
}
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < lastwordsize ; loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
|
|
/* Enable computation complete flag and error interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
}
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Encryption/Decryption process in AES GCM mode and prepare the authentication TAG using DMA
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AESGCM_Process_DMA(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t count;
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hcryp->SizesSum = hcryp->Size;
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
|
|
/* Reset CrypHeaderCount */
|
|
hcryp->CrypHeaderCount = 0U;
|
|
|
|
/*************************** Init phase ************************************/
|
|
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the initialization vector and the counter : Initial Counter Block (ICB)*/
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.pInitVect);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.pInitVect + 1U);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.pInitVect + 2U);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.pInitVect + 3U);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* just wait for hash computation */
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/************************ Header phase *************************************/
|
|
|
|
if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Initialization and header phases already done, only do payload phase */
|
|
if (CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief AES CCM encryption/decryption processing in polling mode
|
|
* for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @param Timeout Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AESCCM_Process(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
uint32_t wordsize = ((uint32_t)hcryp->Size / 4U) ;
|
|
uint32_t loopcounter;
|
|
uint32_t npblb;
|
|
uint32_t lastwordsize;
|
|
uint32_t temp[4] ; /* Temporary CrypOutBuff */
|
|
uint32_t incount; /* Temporary CrypInCount Value */
|
|
uint32_t outcount; /* Temporary CrypOutCount Value */
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hcryp->SizesSum = hcryp->Size;
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Reset CrypHeaderCount */
|
|
hcryp->CrypHeaderCount = 0U;
|
|
|
|
/********************** Init phase ******************************************/
|
|
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the initialization vector (IV) with B0 */
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* just wait for hash computation */
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked & return error */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/************************ Header phase *************************************/
|
|
/* Header block(B1) : associated data length expressed in bytes concatenated
|
|
with Associated Data (A)*/
|
|
if (CRYP_GCMCCM_SetHeaderPhase(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
/*************************Payload phase ************************************/
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Set to 0 the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
|
|
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
if ((hcryp->Size % 16U) != 0U)
|
|
{
|
|
/* recalculate wordsize */
|
|
wordsize = ((wordsize / 4U) * 4U) ;
|
|
}
|
|
/* Get tick */
|
|
tickstart = HAL_GetTick();
|
|
|
|
/* Write input data and get output data */
|
|
incount = hcryp->CrypInCount;
|
|
outcount = hcryp->CrypOutCount;
|
|
while ((incount < wordsize) && (outcount < wordsize))
|
|
{
|
|
/* Write plain data and get cipher data */
|
|
CRYP_AES_ProcessData(hcryp, Timeout);
|
|
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
incount = hcryp->CrypInCount;
|
|
outcount = hcryp->CrypOutCount;
|
|
}
|
|
|
|
if ((hcryp->Size % 16U) != 0U)
|
|
{
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size);
|
|
|
|
if ((hcryp->Instance->CR & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT)
|
|
{
|
|
/* Set Npblb in case of AES CCM payload decryption to get right tag */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20);
|
|
|
|
}
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* Write the last input block in the IN FIFO */
|
|
for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter ++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0U;
|
|
loopcounter++;
|
|
}
|
|
/* just wait for hash computation */
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked & return error */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
for (loopcounter = 0U; loopcounter < 4U; loopcounter++)
|
|
{
|
|
/* Read the output block from the output FIFO and put them in temporary buffer
|
|
then get CrypOutBuff from temporary buffer */
|
|
temp[loopcounter] = hcryp->Instance->DOUTR;
|
|
}
|
|
for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[loopcounter];
|
|
hcryp->CrypOutCount++;
|
|
}
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief AES CCM encryption/decryption process in interrupt mode
|
|
* for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AESCCM_Process_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
__IO uint32_t count = 0U;
|
|
uint32_t loopcounter;
|
|
uint32_t lastwordsize;
|
|
uint32_t npblb;
|
|
uint32_t mode;
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
uint32_t headersize_in_bytes;
|
|
uint32_t tmp;
|
|
static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
|
|
0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
|
|
0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU
|
|
}; /* 8-bit data type */
|
|
|
|
#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
|
|
if ((hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED) || (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED))
|
|
{
|
|
CRYP_PhaseProcessingResume(hcryp);
|
|
return HAL_OK;
|
|
}
|
|
#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hcryp->SizesSum = hcryp->Size;
|
|
}
|
|
|
|
/* Configure Key, IV and process message (header and payload) */
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
/* Reset CrypHeaderCount */
|
|
hcryp->CrypHeaderCount = 0U;
|
|
|
|
/********************** Init phase ******************************************/
|
|
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the initialization vector (IV) with B0 */
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* just wait for hash computation */
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/***************************** Header phase *********************************/
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* Enable computation complete flag and error interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
|
|
}
|
|
else
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize;
|
|
}
|
|
|
|
if (headersize_in_bytes == 0U) /* Header phase is skipped */
|
|
{
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
/* Select payload phase once the header phase is performed */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
|
/* Set to 0 the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
|
|
|
|
if (hcryp->Init.Algorithm == CRYP_AES_CCM)
|
|
{
|
|
/* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
/* Write the payload Input block in the IN FIFO */
|
|
if (hcryp->Size == 0U)
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
else if (hcryp->Size >= 16U)
|
|
{
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
|
|
if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
|
|
{
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
else /* Size < 4 words : first block is the last block*/
|
|
{
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = 16U - (uint32_t)hcryp->Size;
|
|
|
|
mode = hcryp->Instance->CR & AES_CR_MODE;
|
|
if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
|
|
((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
|
|
{
|
|
/* Specify the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
|
|
}
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
/* Enter header data */
|
|
/* Check first whether header length is small enough to enter the full header in one shot */
|
|
else if (headersize_in_bytes <= 16U)
|
|
{
|
|
for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
/* If the header size is a multiple of words */
|
|
if ((headersize_in_bytes % 4U) == 0U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Enter last bytes, padded with zeros */
|
|
tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
|
|
hcryp->Instance->DINR = tmp;
|
|
hcryp->CrypHeaderCount++;
|
|
loopcounter++;
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
else
|
|
{
|
|
/* Write the first input header block in the Input FIFO,
|
|
the following header data will be fed after interrupt occurrence */
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount - 1U);
|
|
}/* if (hcryp->Init.HeaderSize == 0U) */ /* Header phase is skipped*/
|
|
} /* end of if (dokeyivconfig == 1U) */
|
|
else /* Key and IV have already been configured,
|
|
header has already been processed;
|
|
only process here message payload */
|
|
{
|
|
/* Write the payload Input block in the IN FIFO */
|
|
if (hcryp->Size == 0U)
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
else if (hcryp->Size >= 16U)
|
|
{
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + (hcryp->CrypInCount - 1U));
|
|
|
|
if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
|
|
{
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
else /* Size < 4 words : first block is the last block*/
|
|
{
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = 16U - (uint32_t)hcryp->Size;
|
|
|
|
mode = hcryp->Instance->CR & AES_CR_MODE;
|
|
if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
|
|
((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
|
|
{
|
|
/* Specify the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
|
|
}
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
/* Call Input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief AES CCM encryption/decryption process in DMA mode
|
|
* for TinyAES peripheral, no encrypt/decrypt performed, only authentication preparation.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_AESCCM_Process_DMA(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t count;
|
|
uint32_t DoKeyIVConfig = 1U; /* By default, carry out peripheral Key and IV configuration */
|
|
|
|
if (hcryp->Init.KeyIVConfigSkip == CRYP_KEYIVCONFIG_ONCE)
|
|
{
|
|
if (hcryp->KeyIVConfig == 1U)
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has already been done, skip it */
|
|
DoKeyIVConfig = 0U;
|
|
hcryp->SizesSum += hcryp->Size; /* Compute message total payload length */
|
|
}
|
|
else
|
|
{
|
|
/* If the Key and IV configuration has to be done only once
|
|
and if it has not been done already, do it and set KeyIVConfig
|
|
to keep track it won't have to be done again next time */
|
|
hcryp->KeyIVConfig = 1U;
|
|
hcryp->SizesSum = hcryp->Size; /* Merely store payload length */
|
|
}
|
|
}
|
|
else
|
|
{
|
|
hcryp->SizesSum = hcryp->Size;
|
|
}
|
|
|
|
if (DoKeyIVConfig == 1U)
|
|
{
|
|
|
|
/* Reset CrypHeaderCount */
|
|
hcryp->CrypHeaderCount = 0U;
|
|
|
|
|
|
/********************** Init phase ******************************************/
|
|
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_INIT);
|
|
|
|
/* Set the key */
|
|
CRYP_SetKey(hcryp, hcryp->Init.KeySize);
|
|
|
|
/* Set the initialization vector (IV) with B0 */
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(hcryp->Init.B0);
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(hcryp->Init.B0 + 1U);
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(hcryp->Init.B0 + 2U);
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(hcryp->Init.B0 + 3U);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* just wait for hash computation */
|
|
count = CRYP_TIMEOUT_GCMCCMINITPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
|
|
/********************* Header phase *****************************************/
|
|
|
|
if (CRYP_GCMCCM_SetHeaderPhase_DMA(hcryp) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
/* Initialization and header phases already done, only do payload phase */
|
|
if (CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
} /* if (DoKeyIVConfig == 1U) */
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Sets the payload phase in interrupt mode
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval state
|
|
*/
|
|
static void CRYP_GCMCCM_SetPayloadPhase_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t loopcounter;
|
|
uint32_t temp[4]; /* Temporary CrypOutBuff */
|
|
uint32_t lastwordsize;
|
|
uint32_t npblb;
|
|
uint32_t mode;
|
|
uint16_t incount; /* Temporary CrypInCount Value */
|
|
uint16_t outcount; /* Temporary CrypOutCount Value */
|
|
uint32_t i;
|
|
|
|
/***************************** Payload phase *******************************/
|
|
|
|
/* Read the output block from the output FIFO and put them in temporary buffer
|
|
then get CrypOutBuff from temporary buffer*/
|
|
for (i = 0U; i < 4U; i++)
|
|
{
|
|
temp[i] = hcryp->Instance->DOUTR;
|
|
}
|
|
i = 0U;
|
|
while ((hcryp->CrypOutCount < ((hcryp->Size + 3U) / 4U)) && (i < 4U))
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[i];
|
|
hcryp->CrypOutCount++;
|
|
i++;
|
|
}
|
|
incount = hcryp->CrypInCount;
|
|
outcount = hcryp->CrypOutCount;
|
|
if ((outcount >= (hcryp->Size / 4U)) && ((incount * 4U) >= hcryp->Size))
|
|
{
|
|
|
|
/* When in CCM with Key and IV configuration skipped, don't disable interruptions */
|
|
if (!((hcryp->Init.Algorithm == CRYP_AES_CCM) && (hcryp->KeyIVConfig == 1U)))
|
|
{
|
|
/* Disable computation complete flag and errors interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
}
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Call output transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Output complete callback*/
|
|
hcryp->OutCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Output complete callback*/
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
else if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U)
|
|
{
|
|
|
|
#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
|
|
/* If suspension flag has been raised, suspend processing
|
|
only if not already at the end of the payload */
|
|
if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
|
|
{
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* reset SuspendRequest */
|
|
hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
|
|
/* Disable Computation Complete Flag and Errors Interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_SUSPENDED;
|
|
/* Mark that the payload phase is suspended */
|
|
hcryp->Phase = CRYP_PHASE_PAYLOAD_SUSPENDED;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
else
|
|
#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
|
|
{
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
|
|
{
|
|
/* Call input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
}
|
|
else /* Last block of payload < 128bit*/
|
|
{
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = ((((uint32_t)hcryp->Size / 16U) + 1U) * 16U) - ((uint32_t)hcryp->Size);
|
|
|
|
mode = hcryp->Instance->CR & AES_CR_MODE;
|
|
if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
|
|
((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
|
|
{
|
|
/* Specify the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
|
|
}
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
/* Call input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Sets the payload phase in DMA mode
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module
|
|
* @retval state
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_GCMCCM_SetPayloadPhase_DMA(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint16_t wordsize = hcryp->Size / 4U ;
|
|
uint32_t index;
|
|
uint32_t npblb;
|
|
uint32_t lastwordsize;
|
|
uint32_t temp[4]; /* Temporary CrypOutBuff */
|
|
uint32_t count;
|
|
uint32_t reg;
|
|
|
|
/************************ Payload phase ************************************/
|
|
if (hcryp->Size == 0U)
|
|
{
|
|
/* Process unLocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Change the CRYP state and phase */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
else if (hcryp->Size >= 16U)
|
|
{
|
|
/*DMA transfer must not include the last block in case of Size is not %16 */
|
|
wordsize = wordsize - (wordsize % 4U);
|
|
|
|
/*DMA transfer */
|
|
CRYP_SetDMAConfig(hcryp, (uint32_t)(hcryp->pCrypInBuffPtr), wordsize, (uint32_t)(hcryp->pCrypOutBuffPtr));
|
|
}
|
|
else /* length of input data is < 16 */
|
|
{
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = 16U - (uint32_t)hcryp->Size;
|
|
|
|
/* Set Npblb in case of AES GCM payload encryption or AES CCM payload decryption to get right tag*/
|
|
reg = hcryp->Instance->CR & (AES_CR_CHMOD | AES_CR_MODE);
|
|
if ((reg == (CRYP_AES_GCM_GMAC | CRYP_OPERATINGMODE_ENCRYPT)) || \
|
|
(reg == (CRYP_AES_CCM | CRYP_OPERATINGMODE_DECRYPT)))
|
|
{
|
|
/* Specify the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
|
|
}
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* last block optionally pad the data with zeros*/
|
|
for (index = 0U; index < lastwordsize; index ++)
|
|
{
|
|
/* Write the last Input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (index < 4U)
|
|
{
|
|
/* pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0U;
|
|
index++;
|
|
}
|
|
/* Call the input data transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
/* Wait for CCF flag to be raised */
|
|
count = CRYP_TIMEOUT_GCMCCMHEADERPHASE;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/*Read the output block from the output FIFO */
|
|
for (index = 0U; index < 4U; index++)
|
|
{
|
|
/* Read the output block from the output FIFO and put them in temporary buffer
|
|
then get CrypOutBuff from temporary buffer */
|
|
temp[index] = hcryp->Instance->DOUTR;
|
|
}
|
|
for (index = 0U; index < lastwordsize; index++)
|
|
{
|
|
*(uint32_t *)(hcryp->pCrypOutBuffPtr + hcryp->CrypOutCount) = temp[index];
|
|
hcryp->CrypOutCount++;
|
|
}
|
|
|
|
/* Change the CRYP state to ready */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Call Output transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Output complete callback*/
|
|
hcryp->OutCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Output complete callback*/
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Sets the header phase in polling mode
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module(Header & HeaderSize)
|
|
* @param Timeout Timeout value
|
|
* @retval state
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t loopcounter;
|
|
uint32_t size_in_bytes;
|
|
uint32_t tmp;
|
|
static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
|
|
0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
|
|
0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU
|
|
}; /* 8-bit data type */
|
|
|
|
/***************************** Header phase for GCM/GMAC or CCM *********************************/
|
|
if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
|
|
{
|
|
size_in_bytes = hcryp->Init.HeaderSize * 4U;
|
|
}
|
|
else
|
|
{
|
|
size_in_bytes = hcryp->Init.HeaderSize;
|
|
}
|
|
|
|
if ((size_in_bytes != 0U))
|
|
{
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* If size_in_bytes is a multiple of blocks (a multiple of four 32-bits words ) */
|
|
if ((size_in_bytes % 16U) == 0U)
|
|
{
|
|
/* No padding */
|
|
for (loopcounter = 0U; (loopcounter < (size_in_bytes / 4U)); loopcounter += 4U)
|
|
{
|
|
/* Write the input block in the data input register */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Write header block in the IN FIFO without last block */
|
|
for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 16U) * 4U)); loopcounter += 4U)
|
|
{
|
|
/* Write the input block in the data input register */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
/* Write last complete words */
|
|
for (loopcounter = 0U; (loopcounter < ((size_in_bytes / 4U) % 4U)); loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
/* If the header size is a multiple of words */
|
|
if ((size_in_bytes % 4U) == 0U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Enter last bytes, padded with zeros */
|
|
tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
tmp &= mask[(hcryp->Init.DataType * 2U) + (size_in_bytes % 4U)];
|
|
hcryp->Instance->DINR = tmp;
|
|
loopcounter++;
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
|
|
if (CRYP_WaitOnCCFlag(hcryp, Timeout) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*Workaround 1: only AES, before re-enabling the peripheral, datatype can be configured.*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
}
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Sets the header phase when using DMA in process
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module(Header & HeaderSize)
|
|
* @retval None
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_GCMCCM_SetHeaderPhase_DMA(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t loopcounter;
|
|
uint32_t headersize_in_bytes;
|
|
uint32_t tmp;
|
|
static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
|
|
0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
|
|
0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU
|
|
}; /* 8-bit data type */
|
|
|
|
/***************************** Header phase for GCM/GMAC or CCM *********************************/
|
|
if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
|
|
}
|
|
else
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize;
|
|
}
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* If header size is at least equal to 16 bytes, feed the header through DMA.
|
|
If size_in_bytes is not a multiple of blocks (is not a multiple of four 32-bit words ),
|
|
last bytes feeding and padding will be done in CRYP_DMAInCplt() */
|
|
if (headersize_in_bytes >= 16U)
|
|
{
|
|
/* Initiate header DMA transfer */
|
|
if (CRYP_SetHeaderDMAConfig(hcryp, (uint32_t)(hcryp->Init.Header),
|
|
(uint16_t)((headersize_in_bytes / 16U) * 4U)) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (headersize_in_bytes != 0U)
|
|
{
|
|
/* Header length is larger than 0 and strictly less than 16 bytes */
|
|
/* Write last complete words */
|
|
for (loopcounter = 0U; (loopcounter < (headersize_in_bytes / 4U)); loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
/* If the header size is a multiple of words */
|
|
if ((headersize_in_bytes % 4U) == 0U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Enter last bytes, padded with zeros */
|
|
tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
|
|
hcryp->Instance->DINR = tmp;
|
|
loopcounter++;
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
|
|
if (CRYP_WaitOnCCFlag(hcryp, CRYP_TIMEOUT_GCMCCMHEADERPHASE) != HAL_OK)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
return HAL_ERROR;
|
|
}
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
} /* if (headersize_in_bytes != 0U) */
|
|
|
|
/* Move to payload phase if header length is null or
|
|
if the header length was less than 16 and header written by software instead of DMA */
|
|
|
|
/* Set to 0 the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Initiate payload DMA IN and processed data DMA OUT transfers */
|
|
if (CRYP_GCMCCM_SetPayloadPhase_DMA(hcryp) != HAL_OK)
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
} /* if (headersize_in_bytes >= 16U) */
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Sets the header phase in interrupt mode
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module(Header & HeaderSize)
|
|
* @retval None
|
|
*/
|
|
static void CRYP_GCMCCM_SetHeaderPhase_IT(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t loopcounter;
|
|
uint32_t lastwordsize;
|
|
uint32_t npblb;
|
|
uint32_t mode;
|
|
uint32_t headersize_in_bytes;
|
|
uint32_t tmp;
|
|
static const uint32_t mask[12U] = {0x0U, 0xFF000000U, 0xFFFF0000U, 0xFFFFFF00U, /* 32-bit data type */
|
|
0x0U, 0x0000FF00U, 0x0000FFFFU, 0xFF00FFFFU, /* 16-bit data type */
|
|
0x0U, 0x000000FFU, 0x0000FFFFU, 0x00FFFFFFU
|
|
}; /* 8-bit data type */
|
|
|
|
if (hcryp->Init.HeaderWidthUnit == CRYP_HEADERWIDTHUNIT_WORD)
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize * 4U;
|
|
}
|
|
else
|
|
{
|
|
headersize_in_bytes = hcryp->Init.HeaderSize;
|
|
}
|
|
|
|
/***************************** Header phase *********************************/
|
|
/* Test whether or not the header phase is over.
|
|
If the test below is true, move to payload phase */
|
|
if (headersize_in_bytes <= ((uint32_t)(hcryp->CrypHeaderCount) * 4U))
|
|
{
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
/* Select payload phase */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
|
|
/* Set to 0 the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
|
|
|
|
if (hcryp->Init.Algorithm == CRYP_AES_CCM)
|
|
{
|
|
/* Increment CrypHeaderCount to pass in CRYP_GCMCCM_SetPayloadPhase_IT */
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
/* Write the payload Input block in the IN FIFO */
|
|
if (hcryp->Size == 0U)
|
|
{
|
|
/* Disable interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
else if (hcryp->Size >= 16U)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
|
|
if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
|
|
{
|
|
/* Call the input data transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
else /* Size < 4 words : first block is the last block*/
|
|
{
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = 16U - ((uint32_t)hcryp->Size);
|
|
mode = hcryp->Instance->CR & AES_CR_MODE;
|
|
if (((mode == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
|
|
((mode == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
|
|
{
|
|
/* Specify the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, npblb << 20U);
|
|
}
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
/* Call the input data transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
else if ((((headersize_in_bytes / 4U) - (hcryp->CrypHeaderCount)) >= 4U))
|
|
{
|
|
/* Can enter full 4 header words */
|
|
#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
|
|
/* If suspension flag has been raised, suspend processing
|
|
only if not already at the end of the header */
|
|
if (hcryp->SuspendRequest == HAL_CRYP_SUSPEND)
|
|
{
|
|
/* Clear CCF Flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
|
|
/* reset SuspendRequest */
|
|
hcryp->SuspendRequest = HAL_CRYP_SUSPEND_NONE;
|
|
/* Disable Computation Complete Flag and Errors Interrupts */
|
|
__HAL_CRYP_DISABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
/* Change the CRYP state */
|
|
hcryp->State = HAL_CRYP_STATE_SUSPENDED;
|
|
/* Mark that the payload phase is suspended */
|
|
hcryp->Phase = CRYP_PHASE_HEADER_SUSPENDED;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
}
|
|
else
|
|
#endif /* USE_HAL_CRYP_SUSPEND_RESUME */
|
|
{
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
}
|
|
else /* Write last header block (4 words), padded with zeros if needed */
|
|
{
|
|
|
|
for (loopcounter = 0U; (loopcounter < ((headersize_in_bytes / 4U) % 4U)); loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
/* If the header size is a multiple of words */
|
|
if ((headersize_in_bytes % 4U) == 0U)
|
|
{
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Enter last bytes, padded with zeros */
|
|
tmp = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
tmp &= mask[(hcryp->Init.DataType * 2U) + (headersize_in_bytes % 4U)];
|
|
hcryp->Instance->DINR = tmp;
|
|
loopcounter++;
|
|
hcryp->CrypHeaderCount++;
|
|
/* Pad the data with zeros to have a complete block */
|
|
while (loopcounter < 4U)
|
|
{
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Handle CRYP hardware block Timeout when waiting for CCF flag to be raised.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @param Timeout Timeout duration.
|
|
* @note This function can only be used in thread mode.
|
|
* @retval HAL status
|
|
*/
|
|
static HAL_StatusTypeDef CRYP_WaitOnCCFlag(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t tickstart;
|
|
|
|
/* Get timeout */
|
|
tickstart = HAL_GetTick();
|
|
|
|
while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF))
|
|
{
|
|
/* Check for the Timeout */
|
|
if (Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U))
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
}
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Wait for Computation Complete Flag (CCF) to raise then clear it.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @param Timeout Timeout duration.
|
|
* @note This function can be used in thread or handler mode.
|
|
* @retval HAL status
|
|
*/
|
|
static void CRYP_ClearCCFlagWhenHigh(CRYP_HandleTypeDef *hcryp, uint32_t Timeout)
|
|
{
|
|
uint32_t count = Timeout;
|
|
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Disable the CRYP peripheral clock */
|
|
__HAL_CRYP_DISABLE(hcryp);
|
|
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1U)
|
|
/*Call registered error callback*/
|
|
hcryp->ErrorCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak error callback*/
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
} while (HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF));
|
|
|
|
/* Clear CCF flag */
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CCF_CLEAR);
|
|
}
|
|
|
|
#if (USE_HAL_CRYP_SUSPEND_RESUME == 1U)
|
|
/**
|
|
* @brief In case of message processing suspension, read the Initialization Vector.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @param Output Pointer to the buffer containing the saved Initialization Vector.
|
|
* @note This value has to be stored for reuse by writing the AES_IVRx registers
|
|
* as soon as the suspended processing has to be resumed.
|
|
* @retval None
|
|
*/
|
|
static void CRYP_Read_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output)
|
|
{
|
|
uint32_t outputaddr = (uint32_t)Output;
|
|
|
|
*(uint32_t *)(outputaddr) = hcryp->Instance->IVR3;
|
|
outputaddr += 4U;
|
|
*(uint32_t *)(outputaddr) = hcryp->Instance->IVR2;
|
|
outputaddr += 4U;
|
|
*(uint32_t *)(outputaddr) = hcryp->Instance->IVR1;
|
|
outputaddr += 4U;
|
|
*(uint32_t *)(outputaddr) = hcryp->Instance->IVR0;
|
|
}
|
|
|
|
/**
|
|
* @brief In case of message processing resumption, rewrite the Initialization
|
|
* Vector in the AES_IVRx registers.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @param Input Pointer to the buffer containing the saved Initialization Vector to
|
|
* write back in the CRYP hardware block.
|
|
* @note AES must be disabled when reconfiguring the IV values.
|
|
* @retval None
|
|
*/
|
|
static void CRYP_Write_IVRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input)
|
|
{
|
|
uint32_t ivaddr = (uint32_t)Input;
|
|
|
|
hcryp->Instance->IVR3 = *(uint32_t *)(ivaddr);
|
|
ivaddr += 4U;
|
|
hcryp->Instance->IVR2 = *(uint32_t *)(ivaddr);
|
|
ivaddr += 4U;
|
|
hcryp->Instance->IVR1 = *(uint32_t *)(ivaddr);
|
|
ivaddr += 4U;
|
|
hcryp->Instance->IVR0 = *(uint32_t *)(ivaddr);
|
|
}
|
|
|
|
/**
|
|
* @brief In case of message GCM/GMAC/CCM processing suspension,
|
|
* read the Suspend Registers.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @param Output Pointer to the buffer containing the saved Suspend Registers.
|
|
* @note These values have to be stored for reuse by writing back the AES_SUSPxR registers
|
|
* as soon as the suspended processing has to be resumed.
|
|
* @retval None
|
|
*/
|
|
static void CRYP_Read_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output)
|
|
{
|
|
uint32_t outputaddr = (uint32_t)Output;
|
|
__IO uint32_t count = 0U;
|
|
|
|
/* In case of GCM payload phase encryption, check that suspension can be carried out */
|
|
if (READ_BIT(hcryp->Instance->CR,
|
|
(AES_CR_CHMOD | AES_CR_GCMPH | AES_CR_MODE)) == (CRYP_AES_GCM_GMAC | AES_CR_GCMPH_1 | 0x0U))
|
|
{
|
|
|
|
/* Wait for BUSY flag to be cleared */
|
|
count = 0xFFF;
|
|
do
|
|
{
|
|
count-- ;
|
|
if (count == 0U)
|
|
{
|
|
/* Change state */
|
|
hcryp->ErrorCode |= HAL_CRYP_ERROR_TIMEOUT;
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
return;
|
|
}
|
|
} while (HAL_IS_BIT_SET(hcryp->Instance->SR, AES_SR_BUSY));
|
|
|
|
}
|
|
|
|
|
|
*(uint32_t *)(outputaddr) = hcryp->Instance->SUSP7R;
|
|
outputaddr += 4U;
|
|
*(uint32_t *)(outputaddr) = hcryp->Instance->SUSP6R;
|
|
outputaddr += 4U;
|
|
*(uint32_t *)(outputaddr) = hcryp->Instance->SUSP5R;
|
|
outputaddr += 4U;
|
|
*(uint32_t *)(outputaddr) = hcryp->Instance->SUSP4R;
|
|
outputaddr += 4U;
|
|
*(uint32_t *)(outputaddr) = hcryp->Instance->SUSP3R;
|
|
outputaddr += 4U;
|
|
*(uint32_t *)(outputaddr) = hcryp->Instance->SUSP2R;
|
|
outputaddr += 4U;
|
|
*(uint32_t *)(outputaddr) = hcryp->Instance->SUSP1R;
|
|
outputaddr += 4U;
|
|
*(uint32_t *)(outputaddr) = hcryp->Instance->SUSP0R;
|
|
}
|
|
|
|
/**
|
|
* @brief In case of message GCM/GMAC/CCM processing resumption, rewrite the Suspend
|
|
* Registers in the AES_SUSPxR registers.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @param Input Pointer to the buffer containing the saved suspend registers to
|
|
* write back in the CRYP hardware block.
|
|
* @note AES must be disabled when reconfiguring the suspend registers.
|
|
* @retval None
|
|
*/
|
|
static void CRYP_Write_SuspendRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input)
|
|
{
|
|
uint32_t ivaddr = (uint32_t)Input;
|
|
|
|
hcryp->Instance->SUSP7R = *(uint32_t *)(ivaddr);
|
|
ivaddr += 4U;
|
|
hcryp->Instance->SUSP6R = *(uint32_t *)(ivaddr);
|
|
ivaddr += 4U;
|
|
hcryp->Instance->SUSP5R = *(uint32_t *)(ivaddr);
|
|
ivaddr += 4U;
|
|
hcryp->Instance->SUSP4R = *(uint32_t *)(ivaddr);
|
|
ivaddr += 4U;
|
|
hcryp->Instance->SUSP3R = *(uint32_t *)(ivaddr);
|
|
ivaddr += 4U;
|
|
hcryp->Instance->SUSP2R = *(uint32_t *)(ivaddr);
|
|
ivaddr += 4U;
|
|
hcryp->Instance->SUSP1R = *(uint32_t *)(ivaddr);
|
|
ivaddr += 4U;
|
|
hcryp->Instance->SUSP0R = *(uint32_t *)(ivaddr);
|
|
}
|
|
|
|
/**
|
|
* @brief In case of message GCM/GMAC/CCM processing suspension, read the Key Registers.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @param Output Pointer to the buffer containing the saved Key Registers.
|
|
* @param KeySize Indicates the key size (128 or 256 bits).
|
|
* @note These values have to be stored for reuse by writing back the AES_KEYRx registers
|
|
* as soon as the suspended processing has to be resumed.
|
|
* @retval None
|
|
*/
|
|
static void CRYP_Read_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Output, uint32_t KeySize)
|
|
{
|
|
uint32_t keyaddr = (uint32_t)Output;
|
|
|
|
switch (KeySize)
|
|
{
|
|
case CRYP_KEYSIZE_256B:
|
|
*(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey);
|
|
keyaddr += 4U;
|
|
*(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 1U);
|
|
keyaddr += 4U;
|
|
*(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 2U);
|
|
keyaddr += 4U;
|
|
*(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 3U);
|
|
keyaddr += 4U;
|
|
*(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 4U);
|
|
keyaddr += 4U;
|
|
*(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 5U);
|
|
keyaddr += 4U;
|
|
*(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 6U);
|
|
keyaddr += 4U;
|
|
*(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 7U);
|
|
break;
|
|
case CRYP_KEYSIZE_128B:
|
|
*(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey);
|
|
keyaddr += 4U;
|
|
*(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 1U);
|
|
keyaddr += 4U;
|
|
*(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 2U);
|
|
keyaddr += 4U;
|
|
*(uint32_t *)(keyaddr) = *(uint32_t *)(hcryp->Init.pKey + 3U);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief In case of message GCM/GMAC (CCM/CMAC when applicable) processing resumption, rewrite the Key
|
|
* Registers in the AES_KEYRx registers.
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module.
|
|
* @param Input Pointer to the buffer containing the saved key registers to
|
|
* write back in the CRYP hardware block.
|
|
* @param KeySize Indicates the key size (128 or 256 bits)
|
|
* @note AES must be disabled when reconfiguring the Key registers.
|
|
* @retval None
|
|
*/
|
|
static void CRYP_Write_KeyRegisters(CRYP_HandleTypeDef *hcryp, uint32_t *Input, uint32_t KeySize)
|
|
{
|
|
uint32_t keyaddr = (uint32_t)Input;
|
|
|
|
if (KeySize == CRYP_KEYSIZE_256B)
|
|
{
|
|
hcryp->Instance->KEYR7 = *(uint32_t *)(keyaddr);
|
|
keyaddr += 4U;
|
|
hcryp->Instance->KEYR6 = *(uint32_t *)(keyaddr);
|
|
keyaddr += 4U;
|
|
hcryp->Instance->KEYR5 = *(uint32_t *)(keyaddr);
|
|
keyaddr += 4U;
|
|
hcryp->Instance->KEYR4 = *(uint32_t *)(keyaddr);
|
|
keyaddr += 4U;
|
|
}
|
|
|
|
hcryp->Instance->KEYR3 = *(uint32_t *)(keyaddr);
|
|
keyaddr += 4U;
|
|
hcryp->Instance->KEYR2 = *(uint32_t *)(keyaddr);
|
|
keyaddr += 4U;
|
|
hcryp->Instance->KEYR1 = *(uint32_t *)(keyaddr);
|
|
keyaddr += 4U;
|
|
hcryp->Instance->KEYR0 = *(uint32_t *)(keyaddr);
|
|
}
|
|
|
|
/**
|
|
* @brief Authentication phase resumption in case of GCM/GMAC/CCM process in interrupt mode
|
|
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
|
|
* the configuration information for CRYP module(Header & HeaderSize)
|
|
* @retval None
|
|
*/
|
|
static void CRYP_PhaseProcessingResume(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
uint32_t loopcounter;
|
|
uint16_t lastwordsize;
|
|
uint16_t npblb;
|
|
uint32_t cr_temp;
|
|
|
|
|
|
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_ERR_CLEAR | CRYP_CCF_CLEAR);
|
|
|
|
/* Enable computation complete flag and error interrupts */
|
|
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CCFIE | CRYP_IT_ERRIE);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE(hcryp);
|
|
|
|
/* Case of header phase resumption =================================================*/
|
|
if (hcryp->Phase == CRYP_PHASE_HEADER_SUSPENDED)
|
|
{
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Select header phase */
|
|
CRYP_SET_PHASE(hcryp, CRYP_PHASE_HEADER);
|
|
|
|
if ((((hcryp->Init.HeaderSize) - (hcryp->CrypHeaderCount)) >= 4U))
|
|
{
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++;
|
|
}
|
|
else /*HeaderSize < 4 or HeaderSize >4 & HeaderSize %4 != 0*/
|
|
{
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < (hcryp->Init.HeaderSize % 4U); loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->Init.Header + hcryp->CrypHeaderCount);
|
|
hcryp->CrypHeaderCount++ ;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
}
|
|
/* Case of payload phase resumption =================================================*/
|
|
else
|
|
{
|
|
if (hcryp->Phase == CRYP_PHASE_PAYLOAD_SUSPENDED)
|
|
{
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = CRYP_PHASE_PROCESS;
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_GCMPH, CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Set to 0 the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, 0U);
|
|
|
|
if (((hcryp->Size / 4U) - (hcryp->CrypInCount)) >= 4U)
|
|
{
|
|
/* Write the input block in the IN FIFO */
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
if ((hcryp->CrypInCount == (hcryp->Size / 4U)) && ((hcryp->Size % 16U) == 0U))
|
|
{
|
|
/* Call input transfer complete callback */
|
|
#if (USE_HAL_CRYP_REGISTER_CALLBACKS == 1)
|
|
/*Call registered Input complete callback*/
|
|
hcryp->InCpltCallback(hcryp);
|
|
#else
|
|
/*Call legacy weak Input complete callback*/
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
#endif /* USE_HAL_CRYP_REGISTER_CALLBACKS */
|
|
}
|
|
}
|
|
else /* Last block of payload < 128bit*/
|
|
{
|
|
/* Compute the number of padding bytes in last block of payload */
|
|
npblb = (((hcryp->Size / 16U) + 1U) * 16U) - (hcryp->Size);
|
|
cr_temp = hcryp->Instance->CR;
|
|
if ((((cr_temp & AES_CR_MODE) == CRYP_OPERATINGMODE_ENCRYPT) && (hcryp->Init.Algorithm == CRYP_AES_GCM_GMAC)) ||
|
|
(((cr_temp & AES_CR_MODE) == CRYP_OPERATINGMODE_DECRYPT) && (hcryp->Init.Algorithm == CRYP_AES_CCM)))
|
|
{
|
|
/* Specify the number of non-valid bytes using NPBLB register*/
|
|
MODIFY_REG(hcryp->Instance->CR, AES_CR_NPBLB, ((uint32_t)npblb) << 20U);
|
|
}
|
|
|
|
/* Number of valid words (lastwordsize) in last block */
|
|
if ((npblb % 4U) == 0U)
|
|
{
|
|
lastwordsize = (16U - npblb) / 4U;
|
|
}
|
|
else
|
|
{
|
|
lastwordsize = ((16U - npblb) / 4U) + 1U;
|
|
}
|
|
|
|
/* Last block optionally pad the data with zeros*/
|
|
for (loopcounter = 0U; loopcounter < lastwordsize; loopcounter++)
|
|
{
|
|
hcryp->Instance->DINR = *(uint32_t *)(hcryp->pCrypInBuffPtr + hcryp->CrypInCount);
|
|
hcryp->CrypInCount++;
|
|
}
|
|
while (loopcounter < 4U)
|
|
{
|
|
/* pad the data with zeros to have a complete block */
|
|
hcryp->Instance->DINR = 0x0U;
|
|
loopcounter++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* defined (USE_HAL_CRYP_SUSPEND_RESUME) */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
|
|
#endif /* HAL_CRYP_MODULE_ENABLED */
|
|
|
|
#endif /* AES */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|