1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
/******************************************************************************
* @file arm_math.h
* @brief Public header file for CMSIS DSP Library
* @version V1.10.0
* @date 08 July 2021
* Target Processor: Cortex-M and Cortex-A cores
******************************************************************************/
/*
* Copyright (c) 2010-2021 Arm Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
\mainpage CMSIS DSP Software Library
*
* \section intro Introduction
*
* This user manual describes the CMSIS DSP software library,
* a suite of common signal processing functions for use on Cortex-M and Cortex-A processor
* based devices.
*
* The library is divided into a number of functions each covering a specific category:
* - Basic math functions
* - Fast math functions
* - Complex math functions
* - Filtering functions
* - Matrix functions
* - Transform functions
* - Motor control functions
* - Statistical functions
* - Support functions
* - Interpolation functions
* - Support Vector Machine functions (SVM)
* - Bayes classifier functions
* - Distance functions
* - Quaternion functions
*
* The library has generally separate functions for operating on 8-bit integers, 16-bit integers,
* 32-bit integer and 32-bit floating-point values.
*
* The library is providing vectorized versions of most algorthms for Helium
* and of most f32 algorithms for Neon.
*
* When using a vectorized version, provide a little bit of padding after the end of
* a buffer (3 words) because the vectorized code may read a little bit after the end
* of a buffer. You don't have to modify your buffers but just ensure that the
* end of buffer + padding is not outside of a memory region.
*
* \section using Using the Library
*
* The library is released in source form. It is strongly advised to compile the library using -Ofast to
* have the best performances.
*
* The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
* Simply include this file. If you don't want to include everything, you can also rely
* on headers in Include/dsp folder and use only what you need.
*
* \section example Examples
*
* The library ships with a number of examples which demonstrate how to use the library functions.
*
* \section toolchain Toolchain Support
*
* The library is now tested on Fast Models building with cmake.
* Core M0, M4, M7, M33, M55, A32 are tested.
*
*
* \section preprocessor Preprocessor Macros
*
* Each library project have different preprocessor macros.
*
* - ARM_MATH_BIG_ENDIAN:
*
* Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
*
* - ARM_MATH_MATRIX_CHECK:
*
* Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
*
* - ARM_MATH_ROUNDING:
*
* Define macro ARM_MATH_ROUNDING for rounding on support functions
*
* - ARM_MATH_LOOPUNROLL:
*
* Define macro ARM_MATH_LOOPUNROLL to enable manual loop unrolling in DSP functions
*
* - ARM_MATH_NEON:
*
* Define macro ARM_MATH_NEON to enable Neon versions of the DSP functions.
* It is not enabled by default when Neon is available because performances are
* dependent on the compiler and target architecture.
*
* - ARM_MATH_NEON_EXPERIMENTAL:
*
* Define macro ARM_MATH_NEON_EXPERIMENTAL to enable experimental Neon versions of
* of some DSP functions. Experimental Neon versions currently do not have better
* performances than the scalar versions.
*
* - ARM_MATH_HELIUM:
*
* It implies the flags ARM_MATH_MVEF and ARM_MATH_MVEI and ARM_MATH_MVE_FLOAT16.
*
* - ARM_MATH_HELIUM_EXPERIMENTAL:
*
* Only taken into account when ARM_MATH_MVEF, ARM_MATH_MVEI or ARM_MATH_MVE_FLOAT16 are defined.
* Enable some vector versions which may have worse performance than scalar
* depending on the core / compiler configuration.
*
* - ARM_MATH_MVEF:
*
* Select Helium versions of the f32 algorithms.
* It implies ARM_MATH_FLOAT16 and ARM_MATH_MVEI.
*
* - ARM_MATH_MVEI:
*
* Select Helium versions of the int and fixed point algorithms.
*
* - ARM_MATH_MVE_FLOAT16:
*
* MVE Float16 implementations of some algorithms (Requires MVE extension).
*
* - DISABLEFLOAT16:
*
* Disable float16 algorithms when __fp16 is not supported for a
* specific compiler / core configuration.
* This is only valid for scalar. When vector architecture is
* supporting f16 then it can't be disabled.
*
* - ARM_MATH_AUTOVECTORIZE:
*
* With Helium or Neon, disable the use of vectorized code with C intrinsics
* and use pure C instead. The vectorization is then done by the compiler.
*
* <hr>
* \section pack CMSIS-DSP in ARM::CMSIS Pack
*
* The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
* |File/Folder |Content |
* |---------------------------------|------------------------------------------------------------------------|
* |\b CMSIS\\Documentation\\DSP | This documentation |
* |\b CMSIS\\DSP\\Examples | Example projects demonstrating the usage of the library functions |
* |\b CMSIS\\DSP\\Include | DSP_Lib include files for using and building the lib
* |\b CMSIS\\DSP\\PrivateInclude | DSP_Lib private include files for building the lib |
* |\b CMSIS\\DSP\\Lib | DSP_Lib binaries |
* |\b CMSIS\\DSP\\Source | DSP_Lib source files |
*
* <hr>
* \section rev Revision History of CMSIS-DSP
* Please refer to \ref ChangeLog_pg.
*/
/**
* @defgroup groupExamples Examples
*/
#ifndef _ARM_MATH_H
#define _ARM_MATH_H
#include "arm_math_types.h"
#include "arm_math_memory.h"
#include "dsp/none.h"
#include "dsp/utils.h"
#include "dsp/basic_math_functions.h"
#include "dsp/interpolation_functions.h"
#include "dsp/bayes_functions.h"
#include "dsp/matrix_functions.h"
#include "dsp/complex_math_functions.h"
#include "dsp/statistics_functions.h"
#include "dsp/controller_functions.h"
#include "dsp/support_functions.h"
#include "dsp/distance_functions.h"
#include "dsp/svm_functions.h"
#include "dsp/fast_math_functions.h"
#include "dsp/transform_functions.h"
#include "dsp/filtering_functions.h"
#include "dsp/quaternion_math_functions.h"
#ifdef __cplusplus
extern "C"
{
#endif
//#define TABLE_SPACING_Q31 0x400000
//#define TABLE_SPACING_Q15 0x80
#ifdef __cplusplus
}
#endif
#endif /* _ARM_MATH_H */
/**
*
* End of file.
*/
|