summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Include/dsp/distance_functions.h
blob: 3123fc3aa2e68a3a461f8e047877029576b2d2c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
/******************************************************************************
 * @file     distance_functions.h
 * @brief    Public header file for CMSIS DSP Library
 * @version  V1.10.0
 * @date     08 July 2021
 * Target Processor: Cortex-M and Cortex-A cores
 ******************************************************************************/
/*
 * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

 
#ifndef _DISTANCE_FUNCTIONS_H_
#define _DISTANCE_FUNCTIONS_H_

#include "arm_math_types.h"
#include "arm_math_memory.h"

#include "dsp/none.h"
#include "dsp/utils.h"

#include "dsp/statistics_functions.h"
#include "dsp/basic_math_functions.h"
#include "dsp/fast_math_functions.h"

#ifdef   __cplusplus
extern "C"
{
#endif


/**
 * @defgroup groupDistance Distance functions
 *
 * Distance functions for use with clustering algorithms.
 * There are distance functions for float vectors and boolean vectors.
 *
 */

/* 6.14 bug */
#if defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100) && (__ARMCC_VERSION < 6150001)
 
__attribute__((weak)) float __powisf2(float a, int b);

#endif 

/**
 * @brief        Euclidean distance between two vectors
 * @param[in]    pA         First vector
 * @param[in]    pB         Second vector
 * @param[in]    blockSize  vector length
 * @return distance
 *
 */

float32_t arm_euclidean_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);

/**
 * @brief        Euclidean distance between two vectors
 * @param[in]    pA         First vector
 * @param[in]    pB         Second vector
 * @param[in]    blockSize  vector length
 * @return distance
 *
 */

float64_t arm_euclidean_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize);

/**
 * @brief        Bray-Curtis distance between two vectors
 * @param[in]    pA         First vector
 * @param[in]    pB         Second vector
 * @param[in]    blockSize  vector length
 * @return distance
 *
 */
float32_t arm_braycurtis_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);

/**
 * @brief        Canberra distance between two vectors
 *
 * This function may divide by zero when samples pA[i] and pB[i] are both zero.
 * The result of the computation will be correct. So the division per zero may be
 * ignored.
 *
 * @param[in]    pA         First vector
 * @param[in]    pB         Second vector
 * @param[in]    blockSize  vector length
 * @return distance
 *
 */
float32_t arm_canberra_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);


/**
 * @brief        Chebyshev distance between two vectors
 * @param[in]    pA         First vector
 * @param[in]    pB         Second vector
 * @param[in]    blockSize  vector length
 * @return distance
 *
 */
float32_t arm_chebyshev_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);


/**
 * @brief        Chebyshev distance between two vectors
 * @param[in]    pA         First vector
 * @param[in]    pB         Second vector
 * @param[in]    blockSize  vector length
 * @return distance
 *
 */
float64_t arm_chebyshev_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize);


/**
 * @brief        Cityblock (Manhattan) distance between two vectors
 * @param[in]    pA         First vector
 * @param[in]    pB         Second vector
 * @param[in]    blockSize  vector length
 * @return distance
 *
 */
float32_t arm_cityblock_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);

/**
 * @brief        Cityblock (Manhattan) distance between two vectors
 * @param[in]    pA         First vector
 * @param[in]    pB         Second vector
 * @param[in]    blockSize  vector length
 * @return distance
 *
 */
float64_t arm_cityblock_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize);

/**
 * @brief        Correlation distance between two vectors
 *
 * The input vectors are modified in place !
 *
 * @param[in]    pA         First vector
 * @param[in]    pB         Second vector
 * @param[in]    blockSize  vector length
 * @return distance
 *
 */
float32_t arm_correlation_distance_f32(float32_t *pA,float32_t *pB, uint32_t blockSize);

/**
 * @brief        Cosine distance between two vectors
 *
 * @param[in]    pA         First vector
 * @param[in]    pB         Second vector
 * @param[in]    blockSize  vector length
 * @return distance
 *
 */

float32_t arm_cosine_distance_f32(const float32_t *pA,const float32_t *pB, uint32_t blockSize);

/**
 * @brief        Cosine distance between two vectors
 *
 * @param[in]    pA         First vector
 * @param[in]    pB         Second vector
 * @param[in]    blockSize  vector length
 * @return distance
 *
 */

float64_t arm_cosine_distance_f64(const float64_t *pA,const float64_t *pB, uint32_t blockSize);

/**
 * @brief        Jensen-Shannon distance between two vectors
 *
 * This function is assuming that elements of second vector are > 0
 * and 0 only when the corresponding element of first vector is 0.
 * Otherwise the result of the computation does not make sense
 * and for speed reasons, the cases returning NaN or Infinity are not
 * managed.
 *
 * When the function is computing x log (x / y) with x 0 and y 0,
 * it will compute the right value (0) but a division per zero will occur
 * and shoudl be ignored in client code.
 *
 * @param[in]    pA         First vector
 * @param[in]    pB         Second vector
 * @param[in]    blockSize  vector length
 * @return distance
 *
 */

float32_t arm_jensenshannon_distance_f32(const float32_t *pA,const float32_t *pB,uint32_t blockSize);

/**
 * @brief        Minkowski distance between two vectors
 *
 * @param[in]    pA         First vector
 * @param[in]    pB         Second vector
 * @param[in]    n          Norm order (>= 2)
 * @param[in]    blockSize  vector length
 * @return distance
 *
 */



float32_t arm_minkowski_distance_f32(const float32_t *pA,const float32_t *pB, int32_t order, uint32_t blockSize);

/**
 * @brief        Dice distance between two vectors
 *
 * @param[in]    pA              First vector of packed booleans
 * @param[in]    pB              Second vector of packed booleans
 * @param[in]    order           Distance order
 * @param[in]    blockSize       Number of samples
 * @return distance
 *
 */


float32_t arm_dice_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);

/**
 * @brief        Hamming distance between two vectors
 *
 * @param[in]    pA              First vector of packed booleans
 * @param[in]    pB              Second vector of packed booleans
 * @param[in]    numberOfBools   Number of booleans
 * @return distance
 *
 */

float32_t arm_hamming_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);

/**
 * @brief        Jaccard distance between two vectors
 *
 * @param[in]    pA              First vector of packed booleans
 * @param[in]    pB              Second vector of packed booleans
 * @param[in]    numberOfBools   Number of booleans
 * @return distance
 *
 */

float32_t arm_jaccard_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);

/**
 * @brief        Kulsinski distance between two vectors
 *
 * @param[in]    pA              First vector of packed booleans
 * @param[in]    pB              Second vector of packed booleans
 * @param[in]    numberOfBools   Number of booleans
 * @return distance
 *
 */

float32_t arm_kulsinski_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);

/**
 * @brief        Roger Stanimoto distance between two vectors
 *
 * @param[in]    pA              First vector of packed booleans
 * @param[in]    pB              Second vector of packed booleans
 * @param[in]    numberOfBools   Number of booleans
 * @return distance
 *
 */

float32_t arm_rogerstanimoto_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);

/**
 * @brief        Russell-Rao distance between two vectors
 *
 * @param[in]    pA              First vector of packed booleans
 * @param[in]    pB              Second vector of packed booleans
 * @param[in]    numberOfBools   Number of booleans
 * @return distance
 *
 */

float32_t arm_russellrao_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);

/**
 * @brief        Sokal-Michener distance between two vectors
 *
 * @param[in]    pA              First vector of packed booleans
 * @param[in]    pB              Second vector of packed booleans
 * @param[in]    numberOfBools   Number of booleans
 * @return distance
 *
 */

float32_t arm_sokalmichener_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);

/**
 * @brief        Sokal-Sneath distance between two vectors
 *
 * @param[in]    pA              First vector of packed booleans
 * @param[in]    pB              Second vector of packed booleans
 * @param[in]    numberOfBools   Number of booleans
 * @return distance
 *
 */

float32_t arm_sokalsneath_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);

/**
 * @brief        Yule distance between two vectors
 *
 * @param[in]    pA              First vector of packed booleans
 * @param[in]    pB              Second vector of packed booleans
 * @param[in]    numberOfBools   Number of booleans
 * @return distance
 *
 */

float32_t arm_yule_distance(const uint32_t *pA, const uint32_t *pB, uint32_t numberOfBools);



#ifdef   __cplusplus
}
#endif

#endif /* ifndef _DISTANCE_FUNCTIONS_H_ */