summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Include/dsp/svm_functions_f16.h
blob: 7c9fbab9d4dfca7f907de3316a4d0e912b9d7353 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/******************************************************************************
 * @file     svm_functions_f16.h
 * @brief    Public header file for CMSIS DSP Library
 * @version  V1.10.0
 * @date     08 July 2021
 * Target Processor: Cortex-M and Cortex-A cores
 ******************************************************************************/
/*
 * Copyright (c) 2010-2020 Arm Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

 
#ifndef _SVM_FUNCTIONS_F16_H_
#define _SVM_FUNCTIONS_F16_H_

#include "arm_math_types_f16.h"
#include "arm_math_memory.h"

#include "dsp/none.h"
#include "dsp/utils.h"
#include "dsp/svm_defines.h"


#ifdef   __cplusplus
extern "C"
{
#endif

#if defined(ARM_FLOAT16_SUPPORTED)

#define STEP(x) (x) <= 0 ? 0 : 1

/**
 * @defgroup groupSVM SVM Functions
 * This set of functions is implementing SVM classification on 2 classes.
 * The training must be done from scikit-learn. The parameters can be easily
 * generated from the scikit-learn object. Some examples are given in
 * DSP/Testing/PatternGeneration/SVM.py
 *
 * If more than 2 classes are needed, the functions in this folder 
 * will have to be used, as building blocks, to do multi-class classification.
 *
 * No multi-class classification is provided in this SVM folder.
 * 
 */



/**
 * @brief Instance structure for linear SVM prediction function.
 */
typedef struct
{
  uint32_t        nbOfSupportVectors;     /**< Number of support vectors */
  uint32_t        vectorDimension;        /**< Dimension of vector space */
  float16_t       intercept;              /**< Intercept */
  const float16_t *dualCoefficients;      /**< Dual coefficients */
  const float16_t *supportVectors;        /**< Support vectors */
  const int32_t   *classes;               /**< The two SVM classes */
} arm_svm_linear_instance_f16;


/**
 * @brief Instance structure for polynomial SVM prediction function.
 */
typedef struct
{
  uint32_t        nbOfSupportVectors;     /**< Number of support vectors */
  uint32_t        vectorDimension;        /**< Dimension of vector space */
  float16_t       intercept;              /**< Intercept */
  const float16_t *dualCoefficients;      /**< Dual coefficients */
  const float16_t *supportVectors;        /**< Support vectors */
  const int32_t   *classes;               /**< The two SVM classes */
  int32_t         degree;                 /**< Polynomial degree */
  float16_t       coef0;                  /**< Polynomial constant */
  float16_t       gamma;                  /**< Gamma factor */
} arm_svm_polynomial_instance_f16;

/**
 * @brief Instance structure for rbf SVM prediction function.
 */
typedef struct
{
  uint32_t        nbOfSupportVectors;     /**< Number of support vectors */
  uint32_t        vectorDimension;        /**< Dimension of vector space */
  float16_t       intercept;              /**< Intercept */
  const float16_t *dualCoefficients;      /**< Dual coefficients */
  const float16_t *supportVectors;        /**< Support vectors */
  const int32_t   *classes;               /**< The two SVM classes */
  float16_t       gamma;                  /**< Gamma factor */
} arm_svm_rbf_instance_f16;

/**
 * @brief Instance structure for sigmoid SVM prediction function.
 */
typedef struct
{
  uint32_t        nbOfSupportVectors;     /**< Number of support vectors */
  uint32_t        vectorDimension;        /**< Dimension of vector space */
  float16_t       intercept;              /**< Intercept */
  const float16_t *dualCoefficients;      /**< Dual coefficients */
  const float16_t *supportVectors;        /**< Support vectors */
  const int32_t   *classes;               /**< The two SVM classes */
  float16_t       coef0;                  /**< Independent constant */
  float16_t       gamma;                  /**< Gamma factor */
} arm_svm_sigmoid_instance_f16;

/**
 * @brief        SVM linear instance init function
 * @param[in]    S                      Parameters for SVM functions
 * @param[in]    nbOfSupportVectors     Number of support vectors
 * @param[in]    vectorDimension        Dimension of vector space
 * @param[in]    intercept              Intercept
 * @param[in]    dualCoefficients       Array of dual coefficients
 * @param[in]    supportVectors         Array of support vectors
 * @param[in]    classes                Array of 2 classes ID
 * @return none.
 *
 */


void arm_svm_linear_init_f16(arm_svm_linear_instance_f16 *S, 
  uint32_t nbOfSupportVectors,
  uint32_t vectorDimension,
  float16_t intercept,
  const float16_t *dualCoefficients,
  const float16_t *supportVectors,
  const int32_t  *classes);

/**
 * @brief SVM linear prediction
 * @param[in]    S          Pointer to an instance of the linear SVM structure.
 * @param[in]    in         Pointer to input vector
 * @param[out]   pResult    Decision value
 * @return none.
 *
 */
  
void arm_svm_linear_predict_f16(const arm_svm_linear_instance_f16 *S, 
   const float16_t * in, 
   int32_t * pResult);


/**
 * @brief        SVM polynomial instance init function
 * @param[in]    S                      points to an instance of the polynomial SVM structure.
 * @param[in]    nbOfSupportVectors     Number of support vectors
 * @param[in]    vectorDimension        Dimension of vector space
 * @param[in]    intercept              Intercept
 * @param[in]    dualCoefficients       Array of dual coefficients
 * @param[in]    supportVectors         Array of support vectors
 * @param[in]    classes                Array of 2 classes ID
 * @param[in]    degree                 Polynomial degree
 * @param[in]    coef0                  coeff0 (scikit-learn terminology)
 * @param[in]    gamma                  gamma (scikit-learn terminology)
 * @return none.
 *
 */


void arm_svm_polynomial_init_f16(arm_svm_polynomial_instance_f16 *S, 
  uint32_t nbOfSupportVectors,
  uint32_t vectorDimension,
  float16_t intercept,
  const float16_t *dualCoefficients,
  const float16_t *supportVectors,
  const int32_t   *classes,
  int32_t      degree,
  float16_t coef0,
  float16_t gamma
  );

/**
 * @brief SVM polynomial prediction
 * @param[in]    S          Pointer to an instance of the polynomial SVM structure.
 * @param[in]    in         Pointer to input vector
 * @param[out]   pResult    Decision value
 * @return none.
 *
 */
void arm_svm_polynomial_predict_f16(const arm_svm_polynomial_instance_f16 *S, 
   const float16_t * in, 
   int32_t * pResult);


/**
 * @brief        SVM radial basis function instance init function
 * @param[in]    S                      points to an instance of the polynomial SVM structure.
 * @param[in]    nbOfSupportVectors     Number of support vectors
 * @param[in]    vectorDimension        Dimension of vector space
 * @param[in]    intercept              Intercept
 * @param[in]    dualCoefficients       Array of dual coefficients
 * @param[in]    supportVectors         Array of support vectors
 * @param[in]    classes                Array of 2 classes ID
 * @param[in]    gamma                  gamma (scikit-learn terminology)
 * @return none.
 *
 */

void arm_svm_rbf_init_f16(arm_svm_rbf_instance_f16 *S, 
  uint32_t nbOfSupportVectors,
  uint32_t vectorDimension,
  float16_t intercept,
  const float16_t *dualCoefficients,
  const float16_t *supportVectors,
  const int32_t   *classes,
  float16_t gamma
  );

/**
 * @brief SVM rbf prediction
 * @param[in]    S         Pointer to an instance of the rbf SVM structure.
 * @param[in]    in        Pointer to input vector
 * @param[out]   pResult   decision value
 * @return none.
 *
 */
void arm_svm_rbf_predict_f16(const arm_svm_rbf_instance_f16 *S, 
   const float16_t * in, 
   int32_t * pResult);

/**
 * @brief        SVM sigmoid instance init function
 * @param[in]    S                      points to an instance of the rbf SVM structure.
 * @param[in]    nbOfSupportVectors     Number of support vectors
 * @param[in]    vectorDimension        Dimension of vector space
 * @param[in]    intercept              Intercept
 * @param[in]    dualCoefficients       Array of dual coefficients
 * @param[in]    supportVectors         Array of support vectors
 * @param[in]    classes                Array of 2 classes ID
 * @param[in]    coef0                  coeff0 (scikit-learn terminology)
 * @param[in]    gamma                  gamma (scikit-learn terminology)
 * @return none.
 *
 */

void arm_svm_sigmoid_init_f16(arm_svm_sigmoid_instance_f16 *S, 
  uint32_t nbOfSupportVectors,
  uint32_t vectorDimension,
  float16_t intercept,
  const float16_t *dualCoefficients,
  const float16_t *supportVectors,
  const int32_t   *classes,
  float16_t coef0,
  float16_t gamma
  );

/**
 * @brief SVM sigmoid prediction
 * @param[in]    S        Pointer to an instance of the rbf SVM structure.
 * @param[in]    in       Pointer to input vector
 * @param[out]   pResult  Decision value
 * @return none.
 *
 */
void arm_svm_sigmoid_predict_f16(const arm_svm_sigmoid_instance_f16 *S, 
   const float16_t * in, 
   int32_t * pResult);



#endif /*defined(ARM_FLOAT16_SUPPORTED)*/
#ifdef   __cplusplus
}
#endif

#endif /* ifndef _SVM_FUNCTIONS_F16_H_ */