1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_naive_gaussian_bayes_predict_f16
* Description: Naive Gaussian Bayesian Estimator
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/bayes_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
#include <limits.h>
#include <math.h>
/**
* @addtogroup groupBayes
* @{
*/
/**
* @brief Naive Gaussian Bayesian Estimator
*
* @param[in] *S points to a naive bayes instance structure
* @param[in] *in points to the elements of the input vector.
* @param[out] *pOutputProbabilities points to a buffer of length numberOfClasses containing estimated probabilities
* @param[out] *pBufferB points to a temporary buffer of length numberOfClasses
* @return The predicted class
*
*
*/
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
#include "arm_vec_math_f16.h"
uint32_t arm_gaussian_naive_bayes_predict_f16(const arm_gaussian_naive_bayes_instance_f16 *S,
const float16_t * in,
float16_t *pOutputProbabilities,
float16_t *pBufferB
)
{
uint32_t nbClass;
const float16_t *pTheta = S->theta;
const float16_t *pSigma = S->sigma;
float16_t *buffer = pOutputProbabilities;
const float16_t *pIn = in;
float16_t result;
f16x8_t vsigma;
_Float16 tmp;
f16x8_t vacc1, vacc2;
uint32_t index;
float16_t *logclassPriors=pBufferB;
float16_t *pLogPrior = logclassPriors;
arm_vlog_f16((float16_t *) S->classPriors, logclassPriors, S->numberOfClasses);
pTheta = S->theta;
pSigma = S->sigma;
for (nbClass = 0; nbClass < S->numberOfClasses; nbClass++) {
pIn = in;
vacc1 = vdupq_n_f16(0.0f16);
vacc2 = vdupq_n_f16(0.0f16);
uint32_t blkCnt =S->vectorDimension >> 3;
while (blkCnt > 0U) {
f16x8_t vinvSigma, vtmp;
vsigma = vaddq_n_f16(vld1q(pSigma), S->epsilon);
vacc1 = vaddq(vacc1, vlogq_f16(vmulq_n_f16(vsigma, 2.0f16 * (_Float16)PI)));
vinvSigma = vrecip_medprec_f16(vsigma);
vtmp = vsubq(vld1q(pIn), vld1q(pTheta));
/* squaring */
vtmp = vmulq(vtmp, vtmp);
vacc2 = vfmaq(vacc2, vtmp, vinvSigma);
pIn += 8;
pTheta += 8;
pSigma += 8;
blkCnt--;
}
blkCnt = S->vectorDimension & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vinvSigma, vtmp;
vsigma = vaddq_n_f16(vld1q(pSigma), S->epsilon);
vacc1 =
vaddq_m_f16(vacc1, vacc1, vlogq_f16(vmulq_n_f16(vsigma, 2.0f16 * (_Float16)PI)), p0);
vinvSigma = vrecip_medprec_f16(vsigma);
vtmp = vsubq(vld1q(pIn), vld1q(pTheta));
/* squaring */
vtmp = vmulq(vtmp, vtmp);
vacc2 = vfmaq_m_f16(vacc2, vtmp, vinvSigma, p0);
pTheta += blkCnt;
pSigma += blkCnt;
}
tmp = -0.5f16 * (_Float16)vecAddAcrossF16Mve(vacc1);
tmp -= 0.5f16 * (_Float16)vecAddAcrossF16Mve(vacc2);
*buffer = (_Float16)tmp + (_Float16)*pLogPrior++;
buffer++;
}
arm_max_f16(pOutputProbabilities, S->numberOfClasses, &result, &index);
return (index);
}
#else
uint32_t arm_gaussian_naive_bayes_predict_f16(const arm_gaussian_naive_bayes_instance_f16 *S,
const float16_t * in,
float16_t *pOutputProbabilities,
float16_t *pBufferB)
{
uint32_t nbClass;
uint32_t nbDim;
const float16_t *pPrior = S->classPriors;
const float16_t *pTheta = S->theta;
const float16_t *pSigma = S->sigma;
float16_t *buffer = pOutputProbabilities;
const float16_t *pIn=in;
float16_t result;
_Float16 sigma;
_Float16 tmp;
_Float16 acc1,acc2;
uint32_t index;
(void)pBufferB;
pTheta=S->theta;
pSigma=S->sigma;
for(nbClass = 0; nbClass < S->numberOfClasses; nbClass++)
{
pIn = in;
tmp = 0.0f16;
acc1 = 0.0f16;
acc2 = 0.0f16;
for(nbDim = 0; nbDim < S->vectorDimension; nbDim++)
{
sigma = (_Float16)*pSigma + (_Float16)S->epsilon;
acc1 += (_Float16)logf(2.0f * PI * (float32_t)sigma);
acc2 += ((_Float16)*pIn - (_Float16)*pTheta) * ((_Float16)*pIn - (_Float16)*pTheta) / (_Float16)sigma;
pIn++;
pTheta++;
pSigma++;
}
tmp = -0.5f16 * (_Float16)acc1;
tmp -= 0.5f16 * (_Float16)acc2;
*buffer = (_Float16)tmp + (_Float16)logf((float32_t)*pPrior++);
buffer++;
}
arm_max_f16(pOutputProbabilities,S->numberOfClasses,&result,&index);
return(index);
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of groupBayes group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */
|