summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_dot_prod_f32.c
blob: af60d32bc851679f65eea0014359e2c155bc3c06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_cmplx_dot_prod_f32.c
 * Description:  Floating-point complex dot product
 *
 * $Date:        23 April 2021
 * $Revision:    V1.9.0
 *
 * Target Processor: Cortex-M and Cortex-A cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "dsp/complex_math_functions.h"

/**
  @ingroup groupCmplxMath
 */

/**
  @defgroup cmplx_dot_prod Complex Dot Product

  Computes the dot product of two complex vectors.
  The vectors are multiplied element-by-element and then summed.

  The <code>pSrcA</code> points to the first complex input vector and
  <code>pSrcB</code> points to the second complex input vector.
  <code>numSamples</code> specifies the number of complex samples
  and the data in each array is stored in an interleaved fashion
  (real, imag, real, imag, ...).
  Each array has a total of <code>2*numSamples</code> values.

  The underlying algorithm is used:

  <pre>
  realResult = 0;
  imagResult = 0;
  for (n = 0; n < numSamples; n++) {
      realResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
      imagResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
  }
  </pre>

  There are separate functions for floating-point, Q15, and Q31 data types.
 */

/**
  @addtogroup cmplx_dot_prod
  @{
 */

/**
  @brief         Floating-point complex dot product.
  @param[in]     pSrcA       points to the first input vector
  @param[in]     pSrcB       points to the second input vector
  @param[in]     numSamples  number of samples in each vector
  @param[out]    realResult  real part of the result returned here
  @param[out]    imagResult  imaginary part of the result returned here
  @return        none
 */

#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)

void arm_cmplx_dot_prod_f32(
    const float32_t * pSrcA,
    const float32_t * pSrcB,
    uint32_t numSamples,
    float32_t * realResult,
    float32_t * imagResult)
{
    int32_t         blkCnt;
    float32_t       real_sum, imag_sum;
    f32x4_t         vecSrcA, vecSrcB;
    f32x4_t         vec_acc = vdupq_n_f32(0.0f);
    f32x4_t         vecSrcC, vecSrcD;

    blkCnt = numSamples >> 2;
    blkCnt -= 1;
    if (blkCnt > 0) {
        /* should give more freedom to generate stall free code */
        vecSrcA = vld1q(pSrcA);
        vecSrcB = vld1q(pSrcB);
        pSrcA += 4;
        pSrcB += 4;

        while (blkCnt > 0) {
            vec_acc = vcmlaq(vec_acc, vecSrcA, vecSrcB);
            vecSrcC = vld1q(pSrcA);
            pSrcA += 4;

            vec_acc = vcmlaq_rot90(vec_acc, vecSrcA, vecSrcB);
            vecSrcD = vld1q(pSrcB);
            pSrcB += 4;

            vec_acc = vcmlaq(vec_acc, vecSrcC, vecSrcD);
            vecSrcA = vld1q(pSrcA);
            pSrcA += 4;

            vec_acc = vcmlaq_rot90(vec_acc, vecSrcC, vecSrcD);
            vecSrcB = vld1q(pSrcB);
            pSrcB += 4;
            /*
             * Decrement the blockSize loop counter
             */
            blkCnt--;
        }

         /* process last elements out of the loop avoid the armclang breaking the SW pipeline */
        vec_acc = vcmlaq(vec_acc, vecSrcA, vecSrcB);
        vecSrcC = vld1q(pSrcA);

        vec_acc = vcmlaq_rot90(vec_acc, vecSrcA, vecSrcB);
        vecSrcD = vld1q(pSrcB);

        vec_acc = vcmlaq(vec_acc, vecSrcC, vecSrcD);
        vec_acc = vcmlaq_rot90(vec_acc, vecSrcC, vecSrcD);

        /*
         * tail
         */
        blkCnt = CMPLX_DIM * (numSamples & 3);
        while (blkCnt > 0) {
            mve_pred16_t    p = vctp32q(blkCnt);
            pSrcA += 4;
            pSrcB += 4;
            vecSrcA = vldrwq_z_f32(pSrcA, p);
            vecSrcB = vldrwq_z_f32(pSrcB, p);
            vec_acc = vcmlaq_m(vec_acc, vecSrcA, vecSrcB, p);
            vec_acc = vcmlaq_rot90_m(vec_acc, vecSrcA, vecSrcB, p);
            blkCnt -= 4;
        }
    } else {
        /* small vector */
        blkCnt = numSamples * CMPLX_DIM;
        vec_acc = vdupq_n_f32(0.0f);

        do {
            mve_pred16_t    p = vctp32q(blkCnt);

            vecSrcA = vldrwq_z_f32(pSrcA, p);
            vecSrcB = vldrwq_z_f32(pSrcB, p);

            vec_acc = vcmlaq_m(vec_acc, vecSrcA, vecSrcB, p);
            vec_acc = vcmlaq_rot90_m(vec_acc, vecSrcA, vecSrcB, p);

            /*
             * Decrement the blkCnt loop counter
             * Advance vector source and destination pointers
             */
            pSrcA += 4;
            pSrcB += 4;
            blkCnt -= 4;
        }
        while (blkCnt > 0);
    }

    real_sum = vgetq_lane(vec_acc, 0) + vgetq_lane(vec_acc, 2);
    imag_sum = vgetq_lane(vec_acc, 1) + vgetq_lane(vec_acc, 3);

    /*
     * Store the real and imaginary results in the destination buffers
     */
    *realResult = real_sum;
    *imagResult = imag_sum;
}

#else
void arm_cmplx_dot_prod_f32(
  const float32_t * pSrcA,
  const float32_t * pSrcB,
        uint32_t numSamples,
        float32_t * realResult,
        float32_t * imagResult)
{
        uint32_t blkCnt;                               /* Loop counter */
        float32_t real_sum = 0.0f, imag_sum = 0.0f;    /* Temporary result variables */
        float32_t a0,b0,c0,d0;

#if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
    float32x4x2_t vec1,vec2,vec3,vec4;
    float32x4_t accR,accI;
    float32x2_t accum = vdup_n_f32(0);

    accR = vdupq_n_f32(0.0f);
    accI = vdupq_n_f32(0.0f);

    /* Loop unrolling: Compute 8 outputs at a time */
    blkCnt = numSamples >> 3U;

    while (blkCnt > 0U)
    {
	/* C = (A[0]+jA[1])*(B[0]+jB[1]) + ...  */
        /* Calculate dot product and then store the result in a temporary buffer. */

	      vec1 = vld2q_f32(pSrcA);
        vec2 = vld2q_f32(pSrcB);

	/* Increment pointers */
        pSrcA += 8;
        pSrcB += 8;

	/* Re{C} = Re{A}*Re{B} - Im{A}*Im{B} */
        accR = vmlaq_f32(accR,vec1.val[0],vec2.val[0]);
        accR = vmlsq_f32(accR,vec1.val[1],vec2.val[1]);

	/* Im{C} = Re{A}*Im{B} + Im{A}*Re{B} */
        accI = vmlaq_f32(accI,vec1.val[1],vec2.val[0]);
        accI = vmlaq_f32(accI,vec1.val[0],vec2.val[1]);

        vec3 = vld2q_f32(pSrcA);
        vec4 = vld2q_f32(pSrcB);
	
	/* Increment pointers */
        pSrcA += 8;
        pSrcB += 8;

	/* Re{C} = Re{A}*Re{B} - Im{A}*Im{B} */
        accR = vmlaq_f32(accR,vec3.val[0],vec4.val[0]);
        accR = vmlsq_f32(accR,vec3.val[1],vec4.val[1]);

	/* Im{C} = Re{A}*Im{B} + Im{A}*Re{B} */
        accI = vmlaq_f32(accI,vec3.val[1],vec4.val[0]);
        accI = vmlaq_f32(accI,vec3.val[0],vec4.val[1]);

        /* Decrement the loop counter */
        blkCnt--;
    }

    accum = vpadd_f32(vget_low_f32(accR), vget_high_f32(accR));
    real_sum += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);

    accum = vpadd_f32(vget_low_f32(accI), vget_high_f32(accI));
    imag_sum += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);

    /* Tail */
    blkCnt = numSamples & 0x7;

#else
#if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE)

  /* Loop unrolling: Compute 4 outputs at a time */
  blkCnt = numSamples >> 2U;

  while (blkCnt > 0U)
  {
    a0 = *pSrcA++;
    b0 = *pSrcA++;
    c0 = *pSrcB++;
    d0 = *pSrcB++;

    real_sum += a0 * c0;
    imag_sum += a0 * d0;
    real_sum -= b0 * d0;
    imag_sum += b0 * c0;

    a0 = *pSrcA++;
    b0 = *pSrcA++;
    c0 = *pSrcB++;
    d0 = *pSrcB++;

    real_sum += a0 * c0;
    imag_sum += a0 * d0;
    real_sum -= b0 * d0;
    imag_sum += b0 * c0;

    a0 = *pSrcA++;
    b0 = *pSrcA++;
    c0 = *pSrcB++;
    d0 = *pSrcB++;

    real_sum += a0 * c0;
    imag_sum += a0 * d0;
    real_sum -= b0 * d0;
    imag_sum += b0 * c0;

    a0 = *pSrcA++;
    b0 = *pSrcA++;
    c0 = *pSrcB++;
    d0 = *pSrcB++;

    real_sum += a0 * c0;
    imag_sum += a0 * d0;
    real_sum -= b0 * d0;
    imag_sum += b0 * c0;

    /* Decrement loop counter */
    blkCnt--;
  }

  /* Loop unrolling: Compute remaining outputs */
  blkCnt = numSamples % 0x4U;

#else

  /* Initialize blkCnt with number of samples */
  blkCnt = numSamples;

#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
#endif /* #if defined(ARM_MATH_NEON) */

  while (blkCnt > 0U)
  {
    a0 = *pSrcA++;
    b0 = *pSrcA++;
    c0 = *pSrcB++;
    d0 = *pSrcB++;

    real_sum += a0 * c0;
    imag_sum += a0 * d0;
    real_sum -= b0 * d0;
    imag_sum += b0 * c0;

    /* Decrement loop counter */
    blkCnt--;
  }

  /* Store real and imaginary result in destination buffer. */
  *realResult = real_sum;
  *imagResult = imag_sum;
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */

/**
  @} end of cmplx_dot_prod group
 */