1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_spline_interp_f32.c
* Description: Floating-point cubic spline interpolation
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/interpolation_functions.h"
/**
@ingroup groupInterpolation
*/
/**
@defgroup SplineInterpolate Cubic Spline Interpolation
Spline interpolation is a method of interpolation where the interpolant
is a piecewise-defined polynomial called "spline".
@par Introduction
Given a function f defined on the interval [a,b], a set of n nodes x(i)
where a=x(1)<x(2)<...<x(n)=b and a set of n values y(i) = f(x(i)),
a cubic spline interpolant S(x) is defined as:
<pre>
S1(x) x(1) < x < x(2)
S(x) = ...
Sn-1(x) x(n-1) < x < x(n)
</pre>
where
<pre>
Si(x) = a_i+b_i(x-xi)+c_i(x-xi)^2+d_i(x-xi)^3 i=1, ..., n-1
</pre>
@par Algorithm
Having defined h(i) = x(i+1) - x(i)
<pre>
h(i-1)c(i-1)+2[h(i-1)+h(i)]c(i)+h(i)c(i+1) = 3/h(i)*[a(i+1)-a(i)]-3/h(i-1)*[a(i)-a(i-1)] i=2, ..., n-1
</pre>
It is possible to write the previous conditions in matrix form (Ax=B).
In order to solve the system two boundary conidtions are needed.
- Natural spline: S1''(x1)=2*c(1)=0 ; Sn''(xn)=2*c(n)=0
In matrix form:
<pre>
| 1 0 0 ... 0 0 0 || c(1) | | 0 |
| h(0) 2[h(0)+h(1)] h(1) ... 0 0 0 || c(2) | | 3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)] |
| ... ... ... ... ... ... ... || ... |=| ... |
| 0 0 0 ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
| 0 0 0 ... 0 0 1 || c(n) | | 0 |
</pre>
- Parabolic runout spline: S1''(x1)=2*c(1)=S2''(x2)=2*c(2) ; Sn-1''(xn-1)=2*c(n-1)=Sn''(xn)=2*c(n)
In matrix form:
<pre>
| 1 -1 0 ... 0 0 0 || c(1) | | 0 |
| h(0) 2[h(0)+h(1)] h(1) ... 0 0 0 || c(2) | | 3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)] |
| ... ... ... ... ... ... ... || ... |=| ... |
| 0 0 0 ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
| 0 0 0 ... 0 -1 1 || c(n) | | 0 |
</pre>
A is a tridiagonal matrix (a band matrix of bandwidth 3) of size N=n+1. The factorization
algorithms (A=LU) can be simplified considerably because a large number of zeros appear
in regular patterns. The Crout method has been used:
1) Solve LZ=B
<pre>
u(1,2) = A(1,2)/A(1,1)
z(1) = B(1)/l(11)
FOR i=2, ..., N-1
l(i,i) = A(i,i)-A(i,i-1)u(i-1,i)
u(i,i+1) = a(i,i+1)/l(i,i)
z(i) = [B(i)-A(i,i-1)z(i-1)]/l(i,i)
l(N,N) = A(N,N)-A(N,N-1)u(N-1,N)
z(N) = [B(N)-A(N,N-1)z(N-1)]/l(N,N)
</pre>
2) Solve UX=Z
<pre>
c(N)=z(N)
FOR i=N-1, ..., 1
c(i)=z(i)-u(i,i+1)c(i+1)
</pre>
c(i) for i=1, ..., n-1 are needed to compute the n-1 polynomials.
b(i) and d(i) are computed as:
- b(i) = [y(i+1)-y(i)]/h(i)-h(i)*[c(i+1)+2*c(i)]/3
- d(i) = [c(i+1)-c(i)]/[3*h(i)]
Moreover, a(i)=y(i).
@par Behaviour outside the given intervals
It is possible to compute the interpolated vector for x values outside the
input range (xq<x(1); xq>x(n)). The coefficients used to compute the y values for
xq<x(1) are going to be the ones used for the first interval, while for xq>x(n) the
coefficients used for the last interval.
*/
/**
@addtogroup SplineInterpolate
@{
*/
/**
* @brief Processing function for the floating-point cubic spline interpolation.
* @param[in] S points to an instance of the floating-point spline structure.
* @param[in] xq points to the x values of the interpolated data points.
* @param[out] pDst points to the block of output data.
* @param[in] blockSize number of samples of output data.
*/
void arm_spline_f32(
arm_spline_instance_f32 * S,
const float32_t * xq,
float32_t * pDst,
uint32_t blockSize)
{
const float32_t * x = S->x;
const float32_t * y = S->y;
int32_t n = S->n_x;
/* Coefficients (a==y for i<=n-1) */
float32_t * b = (S->coeffs);
float32_t * c = (S->coeffs)+(n-1);
float32_t * d = (S->coeffs)+(2*(n-1));
const float32_t * pXq = xq;
int32_t blkCnt = (int32_t)blockSize;
int32_t blkCnt2;
int32_t i;
float32_t x_sc;
#ifdef ARM_MATH_NEON
float32x4_t xiv;
float32x4_t aiv;
float32x4_t biv;
float32x4_t civ;
float32x4_t div;
float32x4_t xqv;
float32x4_t temp;
float32x4_t diff;
float32x4_t yv;
#endif
/* Create output for x(i)<x<x(i+1) */
for (i=0; i<n-1; i++)
{
#ifdef ARM_MATH_NEON
xiv = vdupq_n_f32(x[i]);
aiv = vdupq_n_f32(y[i]);
biv = vdupq_n_f32(b[i]);
civ = vdupq_n_f32(c[i]);
div = vdupq_n_f32(d[i]);
while( *(pXq+4) <= x[i+1] && blkCnt > 4 )
{
/* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */
xqv = vld1q_f32(pXq);
pXq+=4;
/* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */
diff = vsubq_f32(xqv, xiv);
temp = diff;
/* y(i) = a(i) + ... */
yv = aiv;
/* ... + b(i)*(x-x(i)) + ... */
yv = vmlaq_f32(yv, biv, temp);
/* ... + c(i)*(x-x(i))^2 + ... */
temp = vmulq_f32(temp, diff);
yv = vmlaq_f32(yv, civ, temp);
/* ... + d(i)*(x-x(i))^3 */
temp = vmulq_f32(temp, diff);
yv = vmlaq_f32(yv, div, temp);
/* Store [y(k) y(k+1) y(k+2) y(k+3)] */
vst1q_f32(pDst, yv);
pDst+=4;
blkCnt-=4;
}
#endif
while( *pXq <= x[i+1] && blkCnt > 0 )
{
x_sc = *pXq++;
*pDst = y[i]+b[i]*(x_sc-x[i])+c[i]*(x_sc-x[i])*(x_sc-x[i])+d[i]*(x_sc-x[i])*(x_sc-x[i])*(x_sc-x[i]);
pDst++;
blkCnt--;
}
}
/* Create output for remaining samples (x>=x(n)) */
#ifdef ARM_MATH_NEON
/* Compute 4 outputs at a time */
blkCnt2 = blkCnt >> 2;
while(blkCnt2 > 0)
{
/* Load [xq(k) xq(k+1) xq(k+2) xq(k+3)] */
xqv = vld1q_f32(pXq);
pXq+=4;
/* Compute [xq(k)-x(i) xq(k+1)-x(i) xq(k+2)-x(i) xq(k+3)-x(i)] */
diff = vsubq_f32(xqv, xiv);
temp = diff;
/* y(i) = a(i) + ... */
yv = aiv;
/* ... + b(i)*(x-x(i)) + ... */
yv = vmlaq_f32(yv, biv, temp);
/* ... + c(i)*(x-x(i))^2 + ... */
temp = vmulq_f32(temp, diff);
yv = vmlaq_f32(yv, civ, temp);
/* ... + d(i)*(x-x(i))^3 */
temp = vmulq_f32(temp, diff);
yv = vmlaq_f32(yv, div, temp);
/* Store [y(k) y(k+1) y(k+2) y(k+3)] */
vst1q_f32(pDst, yv);
pDst+=4;
blkCnt2--;
}
/* Tail */
blkCnt2 = blkCnt & 3;
#else
blkCnt2 = blkCnt;
#endif
while(blkCnt2 > 0)
{
x_sc = *pXq++;
*pDst = y[i-1]+b[i-1]*(x_sc-x[i-1])+c[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])+d[i-1]*(x_sc-x[i-1])*(x_sc-x[i-1])*(x_sc-x[i-1]);
pDst++;
blkCnt2--;
}
}
/**
@} end of SplineInterpolate group
*/
|