1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_rotation2quaternion_f32.c
* Description: Floating-point rotation to quaternion conversion
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/quaternion_math_functions.h"
#include <math.h>
#define RI(x,y) r[(3*(x) + (y))]
/**
@ingroup QuatConv
*/
/**
@defgroup RotQuat Rotation to Quaternion
Conversions from rotation to quaternion.
*/
/**
@addtogroup RotQuat
@{
*/
/**
* @brief Conversion of a rotation matrix to an equivalent quaternion.
* @param[in] pInputRotations points to an array 3x3 rotation matrix (in row order)
* @param[out] pOutputQuaternions points to an array quaternions
* @param[in] nbQuaternions number of quaternions in the array
* @return none.
*
* q and -q are representing the same rotation. This ambiguity must be taken into
* account when using the output of this function.
*
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
#define R00 vgetq_lane(q1,0)
#define R01 vgetq_lane(q1,1)
#define R02 vgetq_lane(q1,2)
#define R10 vgetq_lane(q1,3)
#define R11 vgetq_lane(q2,0)
#define R12 vgetq_lane(q2,1)
#define R20 vgetq_lane(q2,2)
#define R21 vgetq_lane(q2,3)
#define R22 ro22
void arm_rotation2quaternion_f32(const float32_t *pInputRotations,
float32_t *pOutputQuaternions,
uint32_t nbQuaternions)
{
float32_t ro22, trace;
f32x4_t q1,q2, q;
float32_t doubler;
float32_t s;
q = vdupq_n_f32(0.0f);
for(uint32_t nb=0; nb < nbQuaternions; nb++)
{
q1 = vld1q(pInputRotations);
pInputRotations += 4;
q2 = vld1q(pInputRotations);
pInputRotations += 4;
ro22 = *pInputRotations++;
trace = R00 + R11 + R22;
if (trace > 0)
{
(void)arm_sqrt_f32(trace + 1.0f, &doubler) ; // invs=4*qw
doubler = 2.0f*doubler;
s = 1.0f / doubler;
q1 = vmulq_n_f32(q1,s);
q2 = vmulq_n_f32(q2,s);
q[0] = 0.25f * doubler;
q[1] = R21 - R12;
q[2] = R02 - R20;
q[3] = R10 - R01;
}
else if ((R00 > R11) && (R00 > R22) )
{
(void)arm_sqrt_f32(1.0f + R00 - R11 - R22,&doubler); // invs=4*qx
doubler = 2.0f*doubler;
s = 1.0f / doubler;
q1 = vmulq_n_f32(q1,s);
q2 = vmulq_n_f32(q2,s);
q[0] = R21 - R12;
q[1] = 0.25f * doubler;
q[2] = R01 + R10;
q[3] = R02 + R20;
}
else if (R11 > R22)
{
(void)arm_sqrt_f32(1.0f + R11 - R00 - R22,&doubler); // invs=4*qy
doubler = 2.0f*doubler;
s = 1.0f / doubler;
q1 = vmulq_n_f32(q1,s);
q2 = vmulq_n_f32(q2,s);
q[0] = R02 - R20;
q[1] = R01 + R10;
q[2] = 0.25f * doubler;
q[3] = R12 + R21;
}
else
{
(void)arm_sqrt_f32(1.0f + R22 - R00 - R11,&doubler); // invs=4*qz
doubler = 2.0f*doubler;
s = 1.0f / doubler;
q1 = vmulq_n_f32(q1,s);
q2 = vmulq_n_f32(q2,s);
q[0] = R10 - R01;
q[1] = R02 + R20;
q[2] = R12 + R21;
q[3] = 0.25f * doubler;
}
vst1q(pOutputQuaternions, q);
pOutputQuaternions += 4;
}
}
#else
void arm_rotation2quaternion_f32(const float32_t *pInputRotations,
float32_t *pOutputQuaternions,
uint32_t nbQuaternions)
{
uint32_t nb;
for(nb=0; nb < nbQuaternions; nb++)
{
const float32_t *r=&pInputRotations[nb*9];
float32_t *q=&pOutputQuaternions[nb*4];
float32_t trace = RI(0,0) + RI(1,1) + RI(2,2);
float32_t doubler;
float32_t s;
if (trace > 0.0f)
{
doubler = sqrtf(trace + 1.0f) * 2.0f; // invs=4*qw
s = 1.0f / doubler;
q[0] = 0.25f * doubler;
q[1] = (RI(2,1) - RI(1,2)) * s;
q[2] = (RI(0,2) - RI(2,0)) * s;
q[3] = (RI(1,0) - RI(0,1)) * s;
}
else if ((RI(0,0) > RI(1,1)) && (RI(0,0) > RI(2,2)) )
{
doubler = sqrtf(1.0f + RI(0,0) - RI(1,1) - RI(2,2)) * 2.0f; // invs=4*qx
s = 1.0f / doubler;
q[0] = (RI(2,1) - RI(1,2)) * s;
q[1] = 0.25f * doubler;
q[2] = (RI(0,1) + RI(1,0)) * s;
q[3] = (RI(0,2) + RI(2,0)) * s;
}
else if (RI(1,1) > RI(2,2))
{
doubler = sqrtf(1.0f + RI(1,1) - RI(0,0) - RI(2,2)) * 2.0f; // invs=4*qy
s = 1.0f / doubler;
q[0] = (RI(0,2) - RI(2,0)) * s;
q[1] = (RI(0,1) + RI(1,0)) * s;
q[2] = 0.25f * doubler;
q[3] = (RI(1,2) + RI(2,1)) * s;
}
else
{
doubler = sqrtf(1.0f + RI(2,2) - RI(0,0) - RI(1,1)) * 2.0f; // invs=4*qz
s = 1.0f / doubler;
q[0] = (RI(1,0) - RI(0,1)) * s;
q[1] = (RI(0,2) + RI(2,0)) * s;
q[2] = (RI(1,2) + RI(2,1)) * s;
q[3] = 0.25f * doubler;
}
}
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
@} end of RotQuat group
*/
|