summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_1_x_n_s8.c
blob: a3edd40e1387bc6d5f2993abc63dd626ad284f57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/*
 * Copyright (C) 2010-2021 Arm Limited or its affiliates.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* ----------------------------------------------------------------------
 * Project:      CMSIS NN Library
 * Title:        arm_convolve_1_x_n_s8.c
 * Description:  s8 version of 1xN convolution using symmetric quantization.
 *
 * $Date:        December 14, 2021
 * $Revision:    V.2.1.0
 *
 * Target Processor:  Cortex-M cores
 *
 * -------------------------------------------------------------------- */

#include "arm_nnfunctions.h"
#include "arm_nnsupportfunctions.h"

/**
 *  @ingroup groupNN
 */

/**
 * @addtogroup NNConv
 * @{
 */

/*
 * 1xN s8 convolution function.
 *
 * Refer header file for details.
 *
 */

arm_status arm_convolve_1_x_n_s8(const cmsis_nn_context *ctx,
                                 const cmsis_nn_conv_params *conv_params,
                                 const cmsis_nn_per_channel_quant_params *quant_params,
                                 const cmsis_nn_dims *input_dims,
                                 const q7_t *input_data,
                                 const cmsis_nn_dims *filter_dims,
                                 const q7_t *filter_data,
                                 const cmsis_nn_dims *bias_dims,
                                 const int32_t *bias_data,
                                 const cmsis_nn_dims *output_dims,
                                 q7_t *output_data)
{
    (void)bias_dims;
    arm_status status = ARM_MATH_SUCCESS;
    if (output_dims->w % 4 != 0)
    {
        status = ARM_MATH_SIZE_MISMATCH;
        goto out;
    }

#if defined(ARM_MATH_MVEI)
    (void)ctx;

    const uint16_t input_x = input_dims->w;
    const uint16_t kernel_x = filter_dims->w;
    const uint16_t output_x = output_dims->w;
    const uint16_t output_ch = output_dims->c;
    const uint16_t input_ch = input_dims->c;
    const uint16_t pad_x = conv_params->padding.w;
    const uint16_t stride_x = conv_params->stride.w;

    const int32_t input_offset = conv_params->input_offset;
    const int32_t out_offset = conv_params->output_offset;
    const int32_t out_activation_min = conv_params->activation.min;
    const int32_t out_activation_max = conv_params->activation.max;
    int32_t *output_mult = quant_params->multiplier;
    int32_t *output_shift = quant_params->shift;

    for (int i_out_x = 0; i_out_x <= (output_x - 4); i_out_x += 4)
    {
        int32_t input_begin_idx[4];
        int32_t ker_begin_idx[4];
        int32_t ker_end_idx[4];

        for (int i = 0; i < 4; i++)
        {
            const int32_t est_input_x_idx = stride_x * (i_out_x + i) - pad_x;
            input_begin_idx[i] = MAX(0, est_input_x_idx);
            ker_begin_idx[i] = MAX(0, -est_input_x_idx);
            ker_end_idx[i] = MIN(kernel_x, input_x - est_input_x_idx);
        }

        if ((ker_begin_idx[0] != 0) || (ker_end_idx[3] != kernel_x))
        {
            for (int i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
            {
                int32x4_t s_offset;
                int32_t acc[4];
                {
                    int32_t sum_row[4];

                    (void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[0] - ker_begin_idx[0]) * input_ch,
                                                    input_data + input_begin_idx[0] * input_ch,
                                                    filter_data + (input_ch * kernel_x * i_out_ch) +
                                                        (ker_begin_idx[0] * input_ch),
                                                    &sum_row[0],
                                                    &acc[0]);
                    (void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[1] - ker_begin_idx[1]) * input_ch,
                                                    input_data + input_begin_idx[1] * input_ch,
                                                    filter_data + (input_ch * kernel_x * i_out_ch) +
                                                        (ker_begin_idx[1] * input_ch),
                                                    &sum_row[1],
                                                    &acc[1]);

                    (void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[2] - ker_begin_idx[2]) * input_ch,
                                                    input_data + input_begin_idx[2] * input_ch,
                                                    filter_data + (input_ch * kernel_x * i_out_ch) +
                                                        (ker_begin_idx[2] * input_ch),
                                                    &sum_row[2],
                                                    &acc[2]);

                    (void)arm_nn_mat_mul_core_1x_s8((ker_end_idx[3] - ker_begin_idx[3]) * input_ch,
                                                    input_data + input_begin_idx[3] * input_ch,
                                                    filter_data + (input_ch * kernel_x * i_out_ch) +
                                                        (ker_begin_idx[3] * input_ch),
                                                    &sum_row[3],
                                                    &acc[3]);

                    s_offset = vldrwq_s32(sum_row);
                }
                int32x4_t res = vldrwq_s32(acc);
                s_offset = vmulq_n_s32(s_offset, input_offset);
                res = vaddq_s32(res, s_offset);
                if (bias_data)
                {
                    res = vaddq_n_s32(res, bias_data[i_out_ch]);
                }
                res = arm_requantize_mve(res, output_mult[i_out_ch], output_shift[i_out_ch]);
                res = vaddq_n_s32(res, out_offset);

                res = vmaxq_s32(res, vdupq_n_s32(out_activation_min));
                res = vminq_s32(res, vdupq_n_s32(out_activation_max));

                const uint32x4_t scatter_offset = {0, output_ch, output_ch * 2, output_ch * 3};
                vstrbq_scatter_offset_s32(output_data, scatter_offset, res);
                output_data++;
            }
            output_data += (3 * output_ch);
        }
        else
        {
            output_data = arm_nn_mat_mul_core_4x_s8(kernel_x * input_ch,
                                                    stride_x * input_ch,
                                                    input_data + input_begin_idx[0] * input_ch,
                                                    filter_data,
                                                    output_ch,
                                                    conv_params,
                                                    quant_params,
                                                    bias_data,
                                                    output_data);
        }
    }

#else
    status = arm_convolve_s8(ctx,
                             conv_params,
                             quant_params,
                             input_dims,
                             input_data,
                             filter_dims,
                             filter_data,
                             bias_dims,
                             bias_data,
                             output_dims,
                             output_data);
#endif

out:
    /* Return to application */
    return status;
}

int32_t arm_convolve_1_x_n_s8_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
{
#if !defined(ARM_MATH_MVEI)
    return (2 * input_dims->c * filter_dims->w * filter_dims->h) * sizeof(int16_t);
#else
    (void)input_dims;
    (void)filter_dims;
    return 0;
#endif
}

/**
 * @} end of NNConv group
 */