summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_fast_s16.c
blob: f509f26c175198f73223d66a0588bdba0b9b9d6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*
 * Copyright (C) 2010-2021 Arm Limited or its affiliates.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* ----------------------------------------------------------------------
 * Project:      CMSIS NN Library
 * Title:        arm_convolve_fast_s16.c
 * Description:  Optimized s16 version of convolution.
 *
 * $Date:        12 August 2021
 * $Revision:    V.1.1.0
 *
 * Target Processor:  Cortex-M cores
 *
 * -------------------------------------------------------------------- */

#include "arm_nnfunctions.h"
#include "arm_nnsupportfunctions.h"

/**
 *  @ingroup groupNN
 */

/**
 * @addtogroup NNConv
 * @{
 */

/*
 * Basic s16 convolution function.
 *
 * Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
 * are multiples of 4 or atleast greater than 4.
 *
 */

arm_status arm_convolve_fast_s16(const cmsis_nn_context *ctx,
                                 const cmsis_nn_conv_params *conv_params,
                                 const cmsis_nn_per_channel_quant_params *quant_params,
                                 const cmsis_nn_dims *input_dims,
                                 const q15_t *input_data,
                                 const cmsis_nn_dims *filter_dims,
                                 const q7_t *filter_data,
                                 const cmsis_nn_dims *bias_dims,
                                 const int64_t *bias_data,
                                 const cmsis_nn_dims *output_dims,
                                 q15_t *output_data)
{
    (void)bias_dims;
    if (filter_dims->w * filter_dims->h * input_dims->c >= 512)
    {
        return ARM_MATH_SIZE_MISMATCH;
    }

    if (ctx->buf == NULL && arm_convolve_s8_get_buffer_size(input_dims, filter_dims) > 0)
    {
        return ARM_MATH_ARGUMENT_ERROR;
    }
    q15_t *buffer_a = (q15_t *)ctx->buf;

    const int32_t input_batches = input_dims->n;
    const int32_t input_x = input_dims->w;
    const int32_t input_y = input_dims->h;
    const int32_t input_ch = input_dims->c;
    const int32_t kernel_x = filter_dims->w;
    const int32_t kernel_y = filter_dims->h;
    const int32_t output_x = output_dims->w;
    const int32_t output_y = output_dims->h;
    const int32_t output_ch = output_dims->c;

    const int32_t pad_x = conv_params->padding.w;
    const int32_t pad_y = conv_params->padding.h;
    const int32_t stride_x = conv_params->stride.w;
    const int32_t stride_y = conv_params->stride.h;

    const int16_t out_activation_min = conv_params->activation.min;
    const int16_t out_activation_max = conv_params->activation.max;
    int32_t *output_mult = quant_params->multiplier;
    int32_t *output_shift = quant_params->shift;

    for (int i_batch = 0; i_batch < input_batches; i_batch++)
    {
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
        /* Generate two columns from the input tensor a GEMM computation */
        q15_t *two_column_buf = buffer_a;
        q15_t *out = output_data;
        /* This part implements the im2col function */
        for (int32_t i_out_y = 0; i_out_y < output_y; i_out_y++)
        {
            for (int32_t i_out_x = 0; i_out_x < output_x; i_out_x++)
            {
                for (int32_t i_ker_y = i_out_y * stride_y - pad_y; i_ker_y < i_out_y * stride_y - pad_y + kernel_y;
                     i_ker_y++)
                {
                    for (int32_t i_ker_x = i_out_x * stride_x - pad_x; i_ker_x < i_out_x * stride_x - pad_x + kernel_x;
                         i_ker_x++)
                    {
                        if (i_ker_y < 0 || i_ker_y >= input_y || i_ker_x < 0 || i_ker_x >= input_x)
                        {
                            /* Filling 0 for out-of-bound paddings */
                            arm_memset_q7((q7_t *)two_column_buf, 0, sizeof(q15_t) * input_ch);
                        }
                        else
                        {
                            arm_memcpy_q7((q7_t *)two_column_buf,
                                          (const q7_t *)(input_data + (i_ker_y * input_x + i_ker_x) * input_ch),
                                          input_ch * sizeof(q15_t));
                        }
                        two_column_buf += input_ch;
                    }
                }
                /* Computation is filed for every 2 columns */
                if (two_column_buf == buffer_a + 2 * input_ch * kernel_y * kernel_x)
                {
                    out = arm_nn_mat_mult_kernel_s16(filter_data,
                                                     buffer_a,
                                                     output_ch,
                                                     output_shift,
                                                     output_mult,
                                                     out_activation_min,
                                                     out_activation_max,
                                                     (input_ch * kernel_y * kernel_x),
                                                     bias_data,
                                                     out);

                    /* Counter reset */
                    two_column_buf = buffer_a;
                }
            }
        }

        /* Left-over because odd number of output pixels */
        if (two_column_buf != buffer_a)
        {
            const q7_t *ker_a = filter_data;
            int i;

            for (i = 0; i < output_ch; i++)
            {
                /* Init the accumulator*/
                q31_t sum = 0;

                /* Point to the beginning of the im2col buffer where the input is available as a rearranged column */
                const q15_t *ip_as_col = buffer_a;

                /* 4 multiply and accumulates are done in one loop. */
                uint16_t col_count = (input_ch * kernel_y * kernel_x) >> 2;

                while (col_count)
                {
                    q31_t ker_a1, ker_a2;
                    q31_t ip_b1, ip_b2;

                    ker_a = read_and_pad(ker_a, &ker_a1, &ker_a2);

                    ip_b1 = arm_nn_read_q15x2_ia(&ip_as_col);
                    sum = __SMLAD(ker_a1, ip_b1, sum);
                    ip_b2 = arm_nn_read_q15x2_ia(&ip_as_col);
                    sum = __SMLAD(ker_a2, ip_b2, sum);

                    col_count--;
                }
                /* Handle left over mac */
                col_count = input_ch * kernel_y * kernel_x & 0x3;
                while (col_count)
                {
                    q7_t ker_a1 = *ker_a++;
                    q15_t ip_b1 = *ip_as_col++;
                    sum += ker_a1 * ip_b1;
                    col_count--;
                }
                if (bias_data)
                {
                    q31_t reduced_multiplier = REDUCE_MULTIPLIER(output_mult[i]);
                    q63_t acc_64 = sum + bias_data[i];
                    sum = arm_nn_requantize_s64(acc_64, reduced_multiplier, output_shift[i]);
                }
                else
                {
                    sum = arm_nn_requantize(sum, output_mult[i], output_shift[i]);
                }
                sum = MAX(sum, out_activation_min);
                sum = MIN(sum, out_activation_max);
                *out++ = (q15_t)sum;
            }
        }
#else
        (void)input_data;
        (void)output_data;
        (void)bias_data;
        (void)filter_data;
        (void)buffer_a;
        (void)kernel_x;
        (void)kernel_y;
        (void)pad_x;
        (void)pad_y;
        (void)stride_x;
        (void)stride_y;
        (void)out_activation_min;
        (void)out_activation_max;
        (void)output_mult;
        (void)output_shift;
        return ARM_MATH_ARGUMENT_ERROR;
#endif
        /* Advance to the next batch */
        input_data += (input_x * input_y * input_ch);
        output_data += (output_x * output_y * output_ch);
    }

    /* Return to application */
    return ARM_MATH_SUCCESS;
}

int32_t arm_convolve_fast_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
{
#if defined(ARM_MATH_DSP) && !defined(ARM_MATH_MVEI)
    return (2 * input_dims->c * filter_dims->w * filter_dims->h) * (int32_t)sizeof(int16_t);
#else
    (void)input_dims;
    (void)filter_dims;
    return 0;
#endif
}

/**
 * @} end of NNConv group
 */