summaryrefslogtreecommitdiffstats
path: root/Drivers/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_s16.c
blob: 9702575b7a1fdd99941dda831517e60231d8e069 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*
 * Copyright (C) 2010-2022 Arm Limited or its affiliates.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* ----------------------------------------------------------------------
 * Project:      CMSIS NN Library
 * Title:        arm_convolve_s16.c
 * Description:  s16 version of convolution using symmetric quantization.
 *
 * $Date:        January 13, 2022
 * $Revision:    V.1.1.0
 *
 * Target Processor:  Cortex-M cores
 *
 * -------------------------------------------------------------------- */

#include "arm_nnfunctions.h"
#include "arm_nnsupportfunctions.h"

/**
 *  @ingroup groupNN
 */

/**
 * @addtogroup NNConv
 * @{
 */

/*
 * Basic s16 convolution function.
 *
 * Refer header file for details. Optimal use case for the DSP/MVE implementation is when input and output channels
 * are multiples of 4 or atleast greater than 4.
 *
 */

arm_status arm_convolve_s16(const cmsis_nn_context *ctx,
                            const cmsis_nn_conv_params *conv_params,
                            const cmsis_nn_per_channel_quant_params *quant_params,
                            const cmsis_nn_dims *input_dims,
                            const q15_t *input_data,
                            const cmsis_nn_dims *filter_dims,
                            const q7_t *filter_data,
                            const cmsis_nn_dims *bias_dims,
                            const int64_t *bias_data,
                            const cmsis_nn_dims *output_dims,
                            q15_t *output_data)
{
    (void)bias_dims;
    (void)ctx;

    const int32_t input_batches = input_dims->n;
    const int32_t input_x = input_dims->w;
    const int32_t input_y = input_dims->h;
    const int32_t input_ch = input_dims->c;
    const int32_t kernel_x = filter_dims->w;
    const int32_t kernel_y = filter_dims->h;
    const int32_t output_x = output_dims->w;
    const int32_t output_y = output_dims->h;
    const int32_t output_ch = output_dims->c;

    const int32_t pad_x = conv_params->padding.w;
    const int32_t pad_y = conv_params->padding.h;
    const int32_t stride_x = conv_params->stride.w;
    const int32_t stride_y = conv_params->stride.h;
    const int32_t dilation_x = conv_params->dilation.w;
    const int32_t dilation_y = conv_params->dilation.h;

    const int32_t out_activation_min = conv_params->activation.min;
    const int32_t out_activation_max = conv_params->activation.max;
    int32_t *output_mult = quant_params->multiplier;
    int32_t *output_shift = quant_params->shift;

    for (int i_batch = 0; i_batch < input_batches; i_batch++)
    {
        /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
        for (int32_t i_out_ch = 0; i_out_ch < output_ch; i_out_ch++)
        {
            const q31_t reduced_multiplier = REDUCE_MULTIPLIER(output_mult[i_out_ch]);

            for (int32_t base_idx_y = -pad_y, i_out_y = 0; i_out_y < output_y; base_idx_y += stride_y, i_out_y++)
            {
                for (int32_t base_idx_x = -pad_x, i_out_x = 0; i_out_x < output_x; base_idx_x += stride_x, i_out_x++)
                {
                    int64_t conv_out_acc = 0;

                    const int32_t start_y_max = (-base_idx_y + dilation_y - 1) / dilation_y;
                    const int32_t ker_y_start = MAX(0, start_y_max);
                    const int32_t start_x_max = (-base_idx_x + dilation_x - 1) / dilation_x;
                    const int32_t ker_x_start = MAX(0, start_x_max);
                    const int32_t end_min_y = (input_y - base_idx_y + dilation_y - 1) / dilation_y;
                    const int32_t ker_y_end = MIN(kernel_y, end_min_y);
                    const int32_t end_min_x = (input_x - base_idx_x + dilation_x - 1) / dilation_x;
                    const int32_t ker_x_end = MIN(kernel_x, end_min_x);

                    for (int32_t i_ker_y = ker_y_start; i_ker_y < ker_y_end; i_ker_y++)
                    {
                        for (int32_t i_ker_x = ker_x_start; i_ker_x < ker_x_end; i_ker_x++)
                        {
                            const int32_t in_row = base_idx_y + dilation_y * i_ker_y;
                            const int32_t in_col = base_idx_x + dilation_x * i_ker_x;

                            for (int32_t i_input_ch = 0; i_input_ch < input_ch; i_input_ch++)
                            {
                                conv_out_acc += input_data[(in_row * input_x + in_col) * input_ch + i_input_ch] *
                                    filter_data[i_out_ch * input_ch * kernel_y * kernel_x +
                                                (i_ker_y * kernel_x + i_ker_x) * input_ch + i_input_ch];
                            }
                        }
                    }

                    if (bias_data)
                    {
                        conv_out_acc += bias_data[i_out_ch];
                    }

                    int32_t conv_out = arm_nn_requantize_s64(conv_out_acc, reduced_multiplier, output_shift[i_out_ch]);
                    conv_out = MAX(conv_out, out_activation_min);
                    conv_out = MIN(conv_out, out_activation_max);
                    output_data[i_out_ch + (i_out_y * output_x + i_out_x) * output_ch] = (int16_t)conv_out;
                }
            }
        }
        /* Advance to the next batch */
        input_data += (input_x * input_y * input_ch);
        output_data += (output_x * output_y * output_ch);
    }

    /* Return to application */
    return ARM_MATH_SUCCESS;
}

int32_t arm_convolve_s16_get_buffer_size(const cmsis_nn_dims *input_dims, const cmsis_nn_dims *filter_dims)
{
    (void)input_dims;
    (void)filter_dims;
    return 0;
}

/**
 * @} end of NNConv group
 */